1887

Chapter 14 : Respiratory Chains

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Respiratory Chains, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap14-2.gif

Abstract:

This chapter briefly reviews some major aspects of the physiology, biochemistry, and molecular genetics of respiratory chains currently under active study and to suggest some neglected areas to which effort could be directed. It reflects the author's biases, but the references lead the diligent reader to a fuller or more balanced treatment of certain issues. Membrane-bound respiratory chains catalyze the transfer of reducing equivalents from a reduced substrate to an oxidant. This transfer is spontaneous and is based on differences in oxidation-reduction potential among the members of the chain. The usage of menaquinone (to the exclusion of ubiquinone), for example, not only in all gram-positive bacteria but also in the majority of archaebacteria suggests that formation of the unique features of bacterial respiratory chains constituted a very early event in the evolutionary development of cellular biochemistry. In terms of total electron flow through the respiratory chain, the two most important dehydrogenases are those responsible for oxidizing succinate and NADH. As work with respiratory chains progresses to studies of the molecular nature of the complex, NADH dehydrogenase, cytochrome , and cytochrome , undoubtedly there will be further structural and functional similarities to well-studied bacteria such as . Indeed, the paths for electron flow through respiratory chains to oxygen have remarkable similarities to those in the .

Citation: Taber H. 1993. Respiratory Chains, p 199-212. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch14

Key Concept Ranking

Bacterial Proteins
0.9956989
Bacillus cereus
0.68948644
0.9956989
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Structures of hemes found in bacterial cytochromes. In heme D, the 8,9 double bond is saturated to create a dihydroporphyrin (chlorin) ring structure. The group at C-2 of heme A is hydroxyethylfarnesyl. Heme ? has been proposed ( ) to have a grouping at C-2 similar to that of heme A but with a methyl rather than a formyl group at C-l.

Citation: Taber H. 1993. Respiratory Chains, p 199-212. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Gene-enzyme relationships in the biosynthesis of uroporphyrinogen III (UroIII) from glutamate (Glu) in ( ). Protoporphyrin is formed from UroIII by sequential decarboxylation and dehydrogenation reactions, and protoheme is formed from protoporphyrin by incorporation of Fe. Enzyme 1, glutamyl-tRNA synthase; enzyme 2, NAD(P)H:glutamyl-tRNA reductase; enzyme 3, glutamate-1-semialdehyde (GSA) 2,1-aminotransferase; enzyme 4, porphobilinogen (PBG) synthase; enzyme 5, hydroxymethylbilane (HMB) synthase; enzyme 6, UroIII synthase. ALA, 5-aminoIevulinic acid.

Citation: Taber H. 1993. Respiratory Chains, p 199-212. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Organization of the gene cluster (based on data in reference ). Gene functions are as given in Fig. 2 . P, promoter.

Citation: Taber H. 1993. Respiratory Chains, p 199-212. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Organization of the and genes in ( ). The gene constitutes a verified monocistronic transcriptional unit ( ), while the and transcripts are inferred from localization of putative promoter sequences. Arrangement of the genes appears to be similar in the thermophilic sp. strain PS3 ( ) and the alkaliphile ( ).

Citation: Taber H. 1993. Respiratory Chains, p 199-212. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

. Gene-enzyme relationships in the biosynthesis of menaquinone from chorismate in This scheme is in part based on results from but the relationships appear to be identical in both species. menaquinone-specific isochorismate synthase; menaquinone-specific 2-ketoglutarate dehydrogenase; 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase; o-succinylbenzoic acid synthase; o-succinylbenzoic acid coenzyme A synthetase; l,4-dihydroxy-2-naphthoic acid synthase; polyisoprenyl transferase; SAM, S-adenosylmethionine; TPP, thiamine pyrophosphate anion; CoA-SH, coenzyme A-sulfhydryl; RPP, polyisoprenyl pyrophosphate; and SAH, S-adenosyl-homocysteine. R' and R” in OSB-CoA denote the positional indeterminacy of CoA-SH.

Citation: Taber H. 1993. Respiratory Chains, p 199-212. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Sequence and transcriptional organization of the gene cluster in ( ). The and gene functions are shown in Fig. 4 and 5 ; open reading frames 1, 5, and 8 have not been identified with specific enzymatic activities. Bold arrows denote experimentally established sites of transcription initiation; light arrows indicate sites inferred from integrational disruption experiments. See text for details.

Citation: Taber H. 1993. Respiratory Chains, p 199-212. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Metabolic relationship of menaquinone biosynthesis to formation of dihydroxybenzoic acid-based iron-chelating compounds in A similar scheme can be drawn for with replacing For abbreviations, see the legend to Fig. 5 . PABA, -aminobenzoic acid.

Citation: Taber H. 1993. Respiratory Chains, p 199-212. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

Possible paths for aerobic electron transfer in the bacilli. See the text for discussion.

Citation: Taber H. 1993. Respiratory Chains, p 199-212. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818388.chap14
1. Anemüller, S.,, and G. Schâfer. 1989. Cytochrome aa 3 from the thermoacidophilic archaebacterium Sulfolobus aeidocaldarius. FEBS Lett. 244: 451 455.
2. Anraku, Y. 1988. Bacterial electron transfer chains. Annu. Rev. Biochem. 57: 101 132.
3. Anraku, Y.,, and R. B. Gennis. 1987. The aerobic respiratory chain of Escherichia coli. Trends Biochem. Sci. 12: 262 266.
4. Anthony, C. (ed.) 1988. Bacterial Energy Transduction. Academic Press, Inc., New York.
5. Arrow, A. S.,, and H. W. Taber. 1986. Streptomycin accumulation by Bacillus subtilis requires both a membrane potential and cytochrome aa 3. Antimicrob. Agents Chemother. 29: 141 146.
6. Bentley, R.,, and R. Meganathan,. 1987. Biosynthesis of the isoprenoid quinones ubiquinone and menaquinone, p. 512 520. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C.
7. Berek, I.,, A. Miczak,, and G. Ivanovics. 1974. Mapping of the delta-aminolevulinic acid dehydrase and porpho-bilinogen deaminase loci in Bacillus subtilis. Mol. Gen. Genet. 132: 233 239.
8. Berek, I.,, A. Miczak,, I. Kiss,, G. Ivanovics,, and I. Durko. 1975. Genetic and biochemical analysis of hemin dependent mutants of Bacillus subtilis. Acta Microbiol. Acad. Sci. Hung. 22: 157 167.
9. Bergsma, J.,, M. B. M. van Dongen,, and W. N. Konings. 1982. Purification and characterization of NADH dehydrogenase from Bacillus subtilis. Eur. J. Biochem. 128: 151 157.
10. Bergsma, J.,, K. E. Melhuizen,, W. van Oeveren,, and W. N. Konings. 1982. Restoration of NADH oxidation with menaquinones and menaquinone analogues in membrane vesicles from the menaquinone-dencient Bacillus subtilis aroD. Eur. J. Biochem. 125: 651 657.
11. Bergsma, J.,, R. Strijker,, J. Y. E. Alkema,, H. G. Seljen,, and W. N. Konings. 1981. NADH dehydrogenase and NADH oxidation in membrane vesicles from Bacillus subtilis. Eur. J. Biochem. 120: 599 606.
12. Bisschop, A.,, and W. N. Konings. 1976. Reconstitution of reduced nicotinamide adenine dinucleotide oxidase activity with menadione in membrane vesicles from the menaquinone-deficient Bacillus subtilis aroD. Relation between electron transfer and active transport. Eur. J. Biochem. 67: 357 365.
13. Broberg, P. L.,, and L. Smith. 1967. The cytochrome system of Bacillus megaterium KM. The presence and properties of two CO-binding cytochromes. Biochim. Biophys. Acta 131: 479 489.
14. Castor, L. N.,, and B. Chance. 1959. Photochemical determinations of the oxidases of bacteria. J. Biol. Chem. 234: 1587 1592.
15. Chaix, P.,, and J. F. Petit. 1956. Etude des différents spectres cytochromique de Bacillus subtilis. Biochim. Biophys. Acta 22: 66 71.
16. Chaix, P.,, and J. F. Petit. 1957. Influence du taux de croissance sur la constitution du spectra hématinique de Bacillus subtilis. Biochim. Biophys. Acta 25: 481 486.
17. Chepuri, V.,, L. J. Lemieux,, D. C.-T. Au,, and R. B. Gennis. 1990. The sequence of the cyo operon indicates substantial structural similarities between the cytochrome o ubiquinol oxidase of Escherichia coli and the aa 3-type family of the cytochrome c oxidases. J. Biol. Chem. 265: 11185 11192.
18. Collins, M. D.,, and D. Jones. 1981. Distribution of isoprenoid quinone structure types in bacteria and their taxonomie implications. Microbiol. Rev. 45: 316 354.
19. Collins, M. D.,, and T. A. Langworthy. 1983. Respiratory quinone composition of some acidophilic bacteria. Syst. Appl. Microbiol. 4: 295 304.
20. Davidson, M. W.,, K. A. Gray,, D. B. Knaff,, and T. A. Krulwich. 1988. Purification and characterization of two soluble cytochromes from the alkalophile Bacillus firmus RAB. Biochim. Biophys. Acta 933: 470 477.
21. De Vrij, W.,, A. Azzi,, and W. N. Konings. 1983. Structural and functional properties of cytochrome c oxidase iron Bacillus subtilis W23. Eur. J. Biochem. 131: 97 103.
22. De Vrij, W.,, A. J. M. Driessen,, K. J. Hellingwerf,, and W. N. Konings. 1986. Measurements of the protonmotive force generated by cytochrome c oxidase from Bacillus subtilis in proteoliposomes and membrane vesicles. Eur. J. Biochem. 156: 431 440.
23. De Vrij, W.,, R. I. R. Heyne,, and W. N. Konings. 1989. Characterization and application of a thermostable primary transport system: cytochrome c oxidase from Bacillus stearothermophilus. Eur. J. Biochem. 178: 763 770.
24. De Vrij, W.,, and W. N. Konings. 1987. Kinetic characterization of cytochrome c oxidase from Bacillus subtilis. Eur. J. Biochem. 166: 581 587.
25. De Vrij, W.,, B. Poolman,, W. N. Konings,, and A. Azzi. 1986. Purification, enzymatic properties and reconstitution of cytochrome c oxidase from Bacillus subtilis. Methods Enzymol. 126: 159 173.
26. De Vrij, W.,, B. van den Burg,, and W. N. Konings. 1987. Spectral and potentiometric analysis of cytochromes from Bacillus subtilis. Eur. J. Biochem. 166: 589 595.
27. Downey, R. J. 1966. Nitrate reductase and respiratory adaptation in Bacillus stearothermophilus. J. Bacteriol. 91: 634 641.
28. Driscoll, J. R.,, and H. W. Taber. 1992. Sequence organization and regulation of the Bacillus subtilis menBE operon. J. Bacteriol. 174: 5063 5071.
29. Escamllla, J. E.,, B. Barquera,, R. Ramirez,, A. Garcia-Horsman,, and P. Del Arenal. 1988. Role of menaquinone in inactivation and activation of the Bacillus cereus forespore respiratory system. J. Bacteriol. 170: 5908 5912.
30. Escamllla, J. E.,, and M. C. Benito. 1984. Respiratory system of vegetative and sporulating Bacillus cereus. J. Bacteriol. 160: 473 477.
31. Escamllla, J. E.,, R. Ramirez,, P. Del Arenal,, and A. Aranda. 1986. Respiratory systems of the Bacillus cereus mother cell and forespore. J. Bacteriol. 167: 544 550.
32. Escamllla, J. E.,, R. Ramirez,, I. P. Del Arenal,, G. Zarzoza,, and V. Linares. 1987. Expression of cytochrome oxidases in Bacillus cereus: effects of oxygen tension and carbon source. J. Gen. Microbiol. 133: 3549 3555.
33. Farrand, S. K.,, and H. W. Taber. 1973. Pleiotropic menaquinone-deficient mutant of Bacillus subtilis. J. Bacteriol. 115: 1021 1034.
34. Farrand, S. K.,, and H. W. Taber. 1973. Physiological effects of menaquinone deficiency in Bacillus subtilis. J. Bacteriol. 115: 1035 1044.
35. Farrand, S. K.,, and H. W. Taber. 1974. Changes in menaquinone concentration during growth and early sporulation in Bacillus subtilis. J. Bacteriol. 117: 324 326.
36. Frade, R.,, and P. Chaix. 1973. Influence du pH sur la synthèse de 1'oxidase (cytochrome a 3) chez Bacillus coagulans, microorganisme thermophile, capable d' "adaptation respiratoire." Biochim. Biophys. Acta 325: 424 432.
37. Frade, R.,, and P. Chaix. 1976. Etude du mécanisme de l'influence du pH extracellulaire sur la synthèse du complexe oxydasique (cytochromes a + a3) chez Bacillus coagulans: relation avec "l'effet glucose" et rôle de la coproporphyrine III excrétée. Biochim. Biophys. Acta 423: 573 585.
38. Freese, E. B. 1973. Unusual membranous structures in cytochrome a-deficient mutants of Bacillus subtilis. J. Gen. Microbiol. 75: 187 190.
39. Friden, H.,, and L. Hederstedt. 1990. Role of His residues in Bacillus subtilis cytochrome b-558 for haem binding and assembly of succinate:quinone oxidore-ductase (complex II). Mol. Microbiol. 4: 1045 1056.
40. Garcia-Horsman, J. A.,, B. Barquera,, and J. E. Escamllla. 1991. Two different aa 3-type cytochromes can be purified from the bacterium Bacillus cereus. Eur. J. Biochem. 199: 761 768.
41. Garcia-Horsman, J. A.,, B. Barquera,, D. Gonzalez-Halphen,, and J. E. Escamllla. 1991. Purification and characterization of two-subunit cytochrome aa 3 from Bacillus cereus. Mol. Microbiol. 5: 197 205.
42. Gennis, R. B. 1991. Some recent advances relating to prokaryotic cytochrome c reductases and cytochrome c oxidases. Biochim. Biophys. Acta 1058: 21 24.
43. Goodman, S. R.,, B. L. Marrs,, R. J. Narconis,, and R. E. Olson. 1976. Isolation and description of a menaquinone mutant from Bacillus licheniformis. J. Bacteriol. 125: 282 289.
44. Guffanti, A. A.,, and T. A. Krulwich. 1992. A model for a non-chemiosmotic mode of energization of oxidative phosphorylation by alkaliphilic Bacillus firmus OF4. Personal communication.
45. Haddock, B. A.,, and W. A. Hamilton (ed.). 1977. Microbial Energetics. Society for General Microbiology Symposium, vol. 27. Cambridge University Press, Cambridge.
46. Haltia, T.,, M. Finel,, N. Harms,, T. Nakari,, M. Raitlo,, M. Wikstrom,, and M. Saraste. 1989. Deletion of the gene for subunit III leads to defective assembly of bacterial cytochrome oxidase. EMBO J. 8: 3571 3579.
47. Hansson, M.,, L. Rutberg,, I. Schroder,, and L. Hederstedt. 1991. The Bacillus subtilis hemAXCDBL gene cluster, which encodes enzymes of the biosynthetic pathway from glutamate to uroporphyrinogen III. J. Bacteriol. 173: 2590 2599.
48. Hederstedt, L. 1986. Molecular properties, genetics and biosynthesis of Bacillus subtilis succinate dehydrogenase complex. Methods Enzymol. 126: 399 414.
49. Hicks, D. B.,, R. J. Plass,, and P. G. Quirk. 1991. Evidence for multiple terminal oxidases, including cytochrome d, in facultatively alkaliphilic Bacillus firmus OF4.7. Bacteriol. 173: 5010 5016.
50. Hill, K. F.,, J. P. Mueller,, and H. W. Taber. 1990. The Bacillus subtilis menCD promoter is responsive to extracellular pH. Arch. Microbiol. 153: 355 359.
51. Hogarth, C.,, J. J. Wilkinson,, and D. J. Ellar. 1977. Cyanide resistant electron transport in sporulating Bacillus megaterium KM. Biochim. Biophys. Acta 461: 109 123.
52. Ishizuka, M.,, K. Machlda,, S. Shimada,, A. Magi,, T. Tsuchiya,, T. Ohmorl,, Y. Suoma,, M. Gonda,, and N. Sone. 1990. Nucleotide sequence of the genes coding for four subunits of cytochrome c oxidase from the thermophilic bacterium PS3. J. Biochem. 108: 866 873.
53. Ivey, D. M.,, D. B. Hicks,, A. A. Guffantl,, G. Sobel,, and T. A. Krulwich. 1990. The problem of the electrochemical proton potential in alkaliphilic bacteria. Mosbach Colloq. 41: 105 113.
54. James, W. S.,, F. Gibson,, P. Taronl,, and R. K. Poole. 1989. The cytochrome oxidases of Bacillus subtilis: mapping of a gene affecting cytochrome aa 3 and its replacement by cytochrome o in a mutant strain. FEMS Microbiol. Lett. 58: 277 282.
55. Jones, C. W., 1977. Aerobic respiratory systems in bacteria, p. 23 59. In B. A. Haddock, and W. A. Hamilton (ed.), Microbiol Energetics. Society for General Microbiology Symposium, vol. 27. Cambridge University Press, Cambridge.
56. Jones, C. W., 1987. Membrane-associated energy conservation in bacteria: a general introduction, p. 1 82. In C. Anthony (d.), Bacterial Energy Transduction. Academic Press, Inc., New York.
57. Kaiser, A.,, and E. Leistner. 1990. Role of the entC gene in enterobactin and menaquinone biosynthesis in Escherichia coli. Arch. Biochem. Biophys. 276: 331 335.
58. Keilin, D. 1925. On cytochrome, a respiratory pigment, common to animals, yeast, and higher plants. Proc. R. Soc.Ser. 5 98: 312 339.
59. Keilin, D. 1929. Cytochrome and respiratory enzymes. Proc. R. Soc. Ser. B. 104: 206 252.
60.Keilin, D. 1966. The History of Cell Respiration and Cytochrome. Cambridge University Press, Cambridge.
61. Kell, D. B., 1987. Protonmotive energy-transducing systems: some physical principles and experimental approaches, p. 429 490. In C. Anthony (ed.), Bacterial Energy Transduction. Academic Press, Inc., New York.
62. Ketchum, P. A.,, G. Denaniaz,, J. LeGall,, and W. J. Payne. 1991. Menaquinol-nitrate oxidoreductase of Bacillus halodenitrificans. J. Bacteriol. 173: 2498 2505.
63. Kltada, M.,, and T. A. Krulwich. 1984. Purification and characterization of the cytochrome oxidase from alkaliphilic Bacillus firmus RAB. J. Bacteriol. 158: 963 966.
64. Krulwich, T. A. (ed.). 1990. The Bacteria, vol. XII. Bacterial Energetics. Academic Press, Inc., New York.
65. Krulwich, T. A.,, and A. A. Guffantl. 1989. Alkalophilic bacteria. Annu. Rev. Microbiol. 43: 435 463.
66. Krulwich, T. A.,, and A. A. Guffantl. 1989. The Na + cycle of extreme alkalophiles: a secondary Na +/H + antiporter and Na +/solute symporters. J. Bioenerg. Bio-membr. 21: 663 677.
67. Krulwich, T. A.,, D. B. Hicks,, D. Seto-Young,, and A. A. Guffantl. 1988. The bioenergetics of alkalophilic bacilli. Crit. Rev. Microbiol. 16: 15 36.
68. Lauraeus, M.,, T. Haltia,, M. Saraste,, and M. Wikstrom. 1991. Bacillus subtilis expresses two kinds of haem A-containing terminal oxidases. Eur. J. Biochem. 197: 699 705.
69. Lemma, E.,, C. Hagerhall,, V. Gelsler,, U. Brandt,, G. von Jagow,, and A. Kröger. 1991. Reactivity of the Bacillus subtilis succinate dehydrogenase complex with quinones. Biochim. Biophys. Acta 1059: 281 285.
70. Lin, E. C. C.,, and D. R. Kuritzkas,. 1987. Pathways for anaerobic electron transport, p. 201 221. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C.
70a. Lübben, M.,, B. Kolmerer,, and M. Saraste. 1992. An archaebacterial terminal oxidase combines core structures of two mitochondrial respiratory complexes. EMBO J. 11: 805 812.
71. Ludwig, B. 1987. Cytochrome c oxidase in prokaryotes. FEMS Microbiol. Rev. 46: 41 56.
72. Maloney, P.,C. 1987. Coupling to an energized membrane: role of ion-motive gradients in the transduction of metabolic energy, p. 222 243. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C.
73. Mather, M. W.,, P. Springer,, and J. A. Fee. 1991. Cytochrome oxidase genes from Thermus thermophilus. Nucleotide sequence and analysis of the deduced primary structure of subunit He of cytochrome caa 3. J. Biol. Chem. 266: 5025 5035.
74. McEnroe, A. S.,, and H. W. Taber. 1984. Correlation between cytochrome aa 3 concentrations and streptomycin accumulation in Bacillus subtilis. Antimicrob. Agents Chemother. 26: 507 512.
75. Meganathan, R.,, R. Bentley,, and H. Taber. 1981. Identification of Bacillus subtilis men mutants which lack o-succinylbenzoyl-coenzyme A synthetase and dihydroxynaphthoate synthase. J. Bacteriol. 145: 328 332.
75a. Meganathan, R.,, and M. Hudspeth. Personal communication.
76. Micznk, A.,, I. Berek,, and G. Ivànovics. 1976. Mapping the uroporphyrinogen decarboxylase, coproporphyrinogen oxidase and ferrochetalase loci in Bacillus subtilis. Mol. Gen. Genet. 146: 85 87.
77. Miczák, A.,, B. Prágai,, and I. Berek. 1979. Mapping the uroporphyrinogen III cosynthase locus in Bacillus subtilis. Mol. Gen. Genet. 174: 293 295.
78. Mild, K.,, and K. Okunukl. 1969. Cytochromes of Bacillus subtilis. Purification and spectral properties of cytochromes c-550 and c-554. J. Biochem. 66: 831 854.
79. Miller, P.,, J. Mueller,, K. H1U,, and H. Taber. 1988. Transcriptional regulation of a promoter in the men gene cluster of Bacillus subtilis. J. Bacteriol. 170: 2742 2748.
80. Miller, P.,, A. Rablnowltz,, and H. Taber. 1988. Molecular cloning and preliminary genetic analysis of the men gene cluster of Bacillus subtilis. J. Bacteriol. 170: 2735 2741.
81. Mueller, J. P.,, and H. W. Taber,. 1988. Genetic regulation of cytochrome aa 3 in Bacillus subtilis, p. 91 95. In A. T. Ganesan, and J. A. Hoch (ed.), Genetics and Biotechnology of Bacilli, vol. 2. Academic Press, Inc., New York.
82. Mueller, J. P.,, and H. W. Taber. 1989. Isolation and sequence of ctaA, a gene required for cytochrome aa 3 biosynthesis and sporulation in Bacillus subtilis. J. Bacteriol. 171: 4967 4978.
83. Mueller, J. P.,, and H. W. Taber. 1989. Structure and expression of the cytochrome aa 3 controlling gene ctaA of Bacillus subtilis. J. Bacteriol. 171: 4979 4986.
84. Neidhardt, F. C.,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.). 1987. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology, Washington, D.C.
85. Nicholls, P.,, and N. Sone. 1984. Kinetics of cytochrome c and TMPD oxidation by cytochrome c oxidase from the thermophilic bacterium PS3. Biochim. Biophys. Acta 767: 240 247.
86. O'Neill, G. P.,, M.-W. Chen,, and D. Soil. 1989. Delta-aminolevulinic acid biosynthesis in Escherichia coli and Bacillus subtilis involves formation of glutamyl-tRNA. FEMS Microbiol. Lett. 60: 255 260.
87. Petricek, M.,, L. Rutberg,, I. Schroder,, and L. Heder-stedt. 1990. Cloning and characterization of the hemA region of the Bacillus subtilis chromosome. J. Bacteriol. 172: 2250 2258.
88. Plggot, P. J., 1989. Revised genetic map of Bacillus subtilis 168, p. 1 41. In I. Smith,, R. A. Slepecky,, and P. Setlow (ed.), Regulation of Procaryotic Development. American Society for Microbiology, Washington, D.C.
89. Poole, R. K. 1981. Ligand-binding cytochromes a 3, c and o in membranes from the thermophilic bacterium PS3. FEBS Lett. 133: 255 259.
90. Poole, R. K. 1983. Bacterial cytochrome oxidases. A structurally and functionally diverse group of electron-transfer proteins. Biochim. Biophys. Acta 726: 205 243.
91. Poole, R. K., 1988. Bacterial cytochrome oxidase, p. 231 291. In C. Anthony (ed.), Bacterial Energy Transduction. Academic Press, Inc., New York.
92. Poole, R. K.,, and W. J. Ingledew,. 1987. Pathways of electrons to oxygen, p. 170 200. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C.
93. Puustinen, A.,, M. Finel,, T. Haltla,, R. P. Gennis,, and M. Wikström. 1991. Properties of the two terminal oxidases of Escherichia coli. Biochemistry 30: 3936 3942.
94. Puustinen, A.,, and M. Wikström. 1991. The heme groups of cytochrome o from Escherichia coli. Proc. Natl. Acad. Set. USA 88: 6122 6126.
94a. Qin, X.,, and H. Taber. Unpublished data.
95. Quirk, P. G.,, A. A. Guffanti,, and T. A. Krulwlch. 1992. Cloning and characterization of genes encoding the caa 3-type terminal oxidase from alkaliphilic Bacillus firmus OF4. Abstr. Annu. Meet. Biophys. Soc., p. A285.
96. Quirk, P. G.,, A. A. Guffanti,, R. J. Plass,, S. Clejan,, and T. A. Krulwlch. 1991. Protonophore-resistance and cytochrome expression in mutant strains of the facultative alkaliphile Bacillus firmus OF4. Biochim. Biophys. Acta 1058: 131 140.
97. Qureshi, M. H.,, I. Yomoto,, T. Fujiwara,, Y. Fukumori,, and T. Yamana. 1990. A novel aco-type cytochrome-c oxidase from a facultative alkalophilic Bacillus: purification, and some molecular and enzymatic features. J. Biochem. 107: 480 485.
98. Raitio, M.,, J. M. Pispa,, T. Metso,, and M. Saraste. 1990. Are there isoenzymes of cytochrome c oxidase in Paracococcus denitrificans? FEBS Lett. 261: 431 435.
98a. Rowland, B. Unpublished data.
98b. Rowland, B., et al. Unpublished data.
99. Santana, M.,, F. Kunst,, M. F. Hullo,, G. Rapoport,, A. Danchin,, and P. Glaser. 1992. Molecular cloning, sequencing and physiological characterization of the qox operon from Bacillus subtilis, encoding the aa 3-600 quinol oxidase. J. Biol. Chem. 267: 10225 10231.
100. Saraste, M. 1990. Structural features of cytochrome oxidase. Q. Rev. Biophys. 23: 331 366.
101. Saraste, M.,, L. Holm,, L. Lemieux,, M. Lubben,, and J. van der Oost. 1991. The happy family of cytochrome oxidases. Biochem. Soc. Trans. 19: 608 612.
102. Saraste, M.,, T. Metso,, T. Nakari,, T. Jalli,, M. Lauraeus,, and J. van der Oost. 1991. The Bacillus subtilis cytochrome c oxidase. Variations on a conserved theme. Eur. J. Biochem. 195: 517 525.
103. Saraste, M.,, M. Raitio,, T. Jalli,, V. Chepuri,, L. Lemieux,, and R. B. Gennis. 1988. Cytochrome o from Escherichia coli is structurally related to cytochrome aa 3. Ann. N.Y. Acad. Sci. 550: 314 324.
104. Schroder, I.,, L. Hederstedt,, C. G. Kannangara,, and S. P. Gough. 1992. Glutamyl-tRNA reductase activity in Bacillus subtilis is dependent on the hemA gene product. Biochem. J. 281: 843 850.
105. Shapleigh, J. P.,, and R. B. Gennis. 1992. Cloning, sequencing and deletion from the chromosome of the gene encoding subunit I of the aa 3-type cytochrome c oxidase of Rhodobacter sphaeroides. Mol. Microbiol. 6: 635 642.
106. Sharma, V.,, K. Suvarna,, R. Meganathan,, and M. E. S. Hudspeth. 1992. Menaquinone (vitamin K 2) biosynthesis: nucleotide sequence and expression of the menB gene from Escherichia coli. J. Bacteriol. 174: 5057 5062.
107. Smith, L. 1954. Bacterial cytochromes. Difference spectra. Arch. Biochem. Biophys. 50: 299 314.
108. Sone, N. 1989. Energy transducing complexes in bacterial respiratory chains. Subcell. Biochem. 14: 279 337.
109. Sone, N., 1990. Respiration-driven proton pumps, p. 1 32. In T. A. Krulwich (ed.), The Bacteria, vol. XII. Bacterial Energetics. Academic Press, Inc., New York.
110. Sone, N.,, and Y. Fujiwara. 1991. Haem O can replace haem A in the active site of cytochrome c oxidase from thermophilic bacterium PS3. FEBS Lett. 288: 154 158.
111. Sone, N.,, and Y. Fujiwara. 1991. Effects of aeration during growth of Bacillus stearothermophilus on proton pumping activity and change of terminal oxidases. J. Biochem. 110: 111 116.
112. Sone, N.,, E. Kutoh,, and K. Sato. 1990. A cytochrome o-type oxidase of the thermophilic bacterium PS3 grown under air-limited conditions. J. Biochem. 107: 597 602.
113. Sone, N.,, M. Sekimachi,, and E. Kutoh. 1987. Identification and properties of a quinol oxidase super-complex composed of a be 1 complex and cytochrome oxidase in the thermophilic bacterium PS3. J. Biol. Chem. 262: 15386 15391.
114. Sone, N.,, S. Shimada,, T. Ohmori,, Y. Souma,, M. Gonda,, and M. Ishizuka. 1990. A fourth subunit is present in cytochrome c oxidase from the thermophilic bacterium PS3. FEBS Lett. 262: 249 252.
115. Sone, N.,, and T. Takagi. 1990. Monomer-dimer structure of cytochrome c oxidase and cytochrome fee, complex from the thermophilic bacterium PS3. Biochim. Biophys. Acta 1020: 207 212.
116. Sone, N.,, and Y. Yanagita. 1982. A cytochrome aa 3-type terminal oxidase of a thermophilic bacterium. Purification, properties and proton pumping. Biochim. Biophys. Acta 682: 216 226.
117. Sone, N.,, F. Yokoi,, T. Fu,, S. Ohta,, T. Metso,, M. Raitio,, and M. Saraste. 1988. Nucleotide sequence of the gene coding for cytochrome oxidase subunit I from the thermophilic bacterium PS3. J. Biochem. 103: 606 610.
118. Sonenshein, A. L., 1989. Metabolic regulation of sporulation and other stationary-phase phenomena, p. 109 129. In I. Smith,, R. A. Slepecky,, and P. Setlow (ed.), Regulation of Procaryotic Development. American Society for Microbiology, Washington, D.C.
119. Staal, S. P.,, and J. A. Hoch. 1972. Conditional dihydro-streptomycin resistance in Bacillus subtilis. J. Bacteriol. 110: 202 207.
120. Taber, H. 1974. Isolation and properties of cytochrome a deficient mutants of Bacillus subtilis. J. Gen. Microbiol. 81: 435 444.
121. Taber, H., 1980. Functions of vitamin K 2 in microorganisms, p. 177 187. In J. W. Suttie (ed.), Vitamin K Metabolism and Vitamin K-Dependent Proteins. University Park Press, Baltimore, Md.
122. Taber, H.,, S. K. Farrand,, and G. M. Halfenger,. 1972. Genetic regulation of membrane components in Bacillus subtilis, p. 140 147. In H. O. Halvorson,, R. S. Hanson,, and L. L. Campbell (ed.), Spores V. American Society for Microbiology, Washington, D.C.
123. Taber, H.,, and E. Freese. 1974. Sporulation properties of cytochrome a-deficient mutants of Bacillus subtilis. J. Bacteriol. 120: 1004 1011.
124. Taber, H.,, and G. M. Halfenger. 1976. Multiple amino-glycoside-resistant mutants of Bacillus subtilis deficient in accumulation of kanamycin. Antimicrob. Agents Chemother. 9: 251 259.
125. Taber, H. W.,, E. A. Dellers,, and L. R. Lombarde. 1981. Menaquinone biosynthesis in Bacillus subtilis: isolation of men mutants and evidence for clustering of men genes. J. Bacteriol. 145: 321 327.
126. Taber, H. W.,, J. P. Mueller,, P. F. Miller,, and A. S. Arrow. 1987. Bacterial uptake of aminoglycoside antibiotics. Microbiol. Rev. 51: 439 457.
127. Taber, H. W.,, B. J. Sugarman,, and G. M. Halfenger. 1981. Involvement of menaquinone in active accumulation of gentamicin by Bacillus subtilis. J. Gen. Microbiol. 123: 143 149.
128. Takahashl, I.,, and K. Ogura. 1982. Prenyltransferases of Bacillus subtilis: undecaprenyl pyrophosphate synthetase and geranylgeranyl pyrophosphate synthetase. J. Biochem. 92: 1527 1537.
129. Tochikubo, K. 1971. Changes in terminal respiratory pathways of Bacillus subtilis during germination, outgrowth, and vegetative growth. J. Bacteriol. 108: 652 661.
130. Unden, G. 1988. Differential roles for menaquinone and demethylmenaquinone in anaerobic electron transport of E. coli and their /nr-independent expression. Arch. Microbiol. 150: 499 503.
131. van der Oost, J.,, C. von Wachenfeld,, L. Hederstedt,, and M. Saraste. 1991. Bacillus subtilis cytochrome oxidase mutants: biochemical analysis and genetic evidence for two ao 3-type oxidases. Mol. Microbiol. 5: 2063 2072.
132. van't Rlet, J.,, F. B. Wientjes,, J. Van Doorn,, and R. J. Planta. 1979. Purification and characterization of the respiratory nitrate reductase of Bacillus licheniformis. Biochim. Biophys. Acta 576: 347 360.
133. von Wachenfeldt, C.,, and L. Hederstedt. 1990. Bacillus subtilis 13-kilodalton cytochrome c-550 encoded by cccA consists of a membrane-anchor and a heme domain. J. Biol. Chem. 265: 13939 13948.
134. von Wachenfeldt, C.,, and L. Hederstedt. 1990. Bacillus subtilis holo-cytochrome c-550 can be synthesized in aerobic Escherichia coli. FEBS Lett. 270: 147 151.
135. Wallace, B. J.,, and I. G. Young. 1977. Role of quinones in electron transport to oxygen and nitrate in Escherichia coli. Studies with a ubiA~ menA' double quinone mutant. Biochim. Biophys. Acta 461: 84 100.
136. Weber, M. M.,, and D. A. Broadbent,. 1975. Electron transport in membranes from spores and from vegetative and mother cells of Bacillus subtilis, p. 411 417. In P. Gerhardt,, R. N. Costilow,, and H. L. Sadoff (ed.), Spores VI. American Society for Microbiology, Washington, D.C.
137. Wissenbach, U.,, A. Kröger,, and G. Unden. 1990. The specific functions of menaquinone and demethylmenaquinone in anaerobic respiration with fumarate, dimethyl-sulfoxide, trimethylamine N-oxide and nitrate by Escherichia coli. Arch. Microbiol. 154: 60 66.
138. Wooley, K. J. 1987. The c-type cytochromes of the Gram-positive bacterium Bacillus licheniformis. Arch. Biochem. Biophys. 254: 376 379.
139. Yoshlda, T.,, and J. A. Fee. 1984. Studies on cytochrome c oxidase activity of thé c 1aa3 complex from Thermus thermophilus. J. Biol. Chem. 259: 1031 1036.
140. Zimmermann, B. H.,, C. I. Nitsche,, J. A. Fee,, F. Rusnak,, and E. Munck. 1988. Properties of a copper-containing cytochrome ba 3: a second terminal oxidase from the extreme thermophile Thermus thermophilus. Proc. Natl. Acad. Sci. USA 85: 5779 5783.

Tables

Generic image for table
Table 1

Terminal oxidases identified in spp. and several other bacterial species

Citation: Taber H. 1993. Respiratory Chains, p 199-212. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch14

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error