1887

Chapter 16 : Utilization of Amino Acids and Other Nitrogen-Containing Compounds

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Utilization of Amino Acids and Other Nitrogen-Containing Compounds, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap16-1.gif /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap16-2.gif

Abstract:

This chapter discusses the catabolism of amino acids and other nitrogen-containing compounds. Aspartate is transported into by two systems, a high-affinity system energized by the proton motive force and a low-affinity system. The enzymes of the arginase degradative pathway are found in and . In and , the proline-degradative enzymes are induced by proline. In , this induction is inhibited if the growth medium also contains glucose and amino acids. Hut expression in is induced by histidine and repressed by rapidly metabolized carbon sources such as glucose. Growth in the presence of amino acids severely inhibits synthesis of the Hut enzymes. Dehydrogenase enzymes may play a role in the degradation of phenylalanine in , of valine in , and of leucine in . Nitrate reductase activity is found in cells growing in the presence of nitrate under semianaerobic conditions. Amino acids and small peptides produced by the degradation of extracellular polypeptides can also supply with nutrients during growth and sporulation.

Citation: Fisher S. 1993. Utilization of Amino Acids and Other Nitrogen-Containing Compounds, p 221-228. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch16

Key Concept Ranking

Amino Acids
0.7165265
Proteins
0.55813146
Arginine Deiminase
0.5265048
Streptomyces coelicolor
0.50106263
0.7165265
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Arginine and proline degradative pathways in Bacillus spp. The proline degradative enzymes are as follows: 1, proline oxidase; 2, pyrroline-5-carboxylate dehydrogenase. The enzymes of the arginase degradative pathway (I) are as follows: 3, ornithine transaminase; 4, arginase; 5, urease. The enzymes of the deiminase pathway (II) are as follows: 6, arginine deiminase; 7, ornithine carbamoyltransferase; 8, carbamate kinase. Glutamate semialdehyde is spontaneously converted to pyrroline 5-carboxylate, the more-stable cyclic form of glutamate semialdehyde. The last step in the arginase degradative pathway and proline degradation was reported to be catalyzed by different pyrroIine-5-carboxylate dehydrogenase isozymes in B. subtilis ( ). However, the bacterial strain used in these studies ( ) was subsequently found to be B. lichentformis ( ).

Citation: Fisher S. 1993. Utilization of Amino Acids and Other Nitrogen-Containing Compounds, p 221-228. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Histidine degradative pathways. Pathway I is found in enteric bacteria and B. subtilis, while pathway II is present in pseudomonads and S. coelicolor. The enzymes are as follows: 1, histidase (hutH); 2, urocanase (hutU); 3, imida-zolonepropionate hydrolase QiutI); 4, formiminoglutamic acid formiminohydrolase (hutG); 5, formiminoglutamic acid iminohydrolase (hutF); 6, formylglutamic acid amidohydro-lase (hutG).

Citation: Fisher S. 1993. Utilization of Amino Acids and Other Nitrogen-Containing Compounds, p 221-228. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Genetic organization of the B. subtilis hut genes. The physical map of the hutPHU genes is taken from reference 54. Abbreviations: P, hut promoter region; hutP, hut regulatory gene; hutH, histidase structural gene; hutU, urocanase structural gene.

Citation: Fisher S. 1993. Utilization of Amino Acids and Other Nitrogen-Containing Compounds, p 221-228. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818388.chap16
1. Abdelal, A. T. 1979. Arginine catabolism by microorganisms. Annu. Rev. Microbiol. 33:139168.
2. Andreoli, A. J.,, J. Saranto,, N. Callri,, E. Escamilla,, and E. Pina,. 1978. Comparative studies of proteins from fore-spore and mother cell compartments of Bacillus cereus, p. 260264. In G. Chambliss, and J. C. Vary (éd.). Spores VII. American Society for Microbiology, Washington, D.C..
3. Asano, Y.,, A. Nakazawa,, K. Endo,, Y. Hibino,, M. Ohmorl,, N. Numano,, and K. Kondo. 1987. Phenylalanine dehydrogenase of Bacillus badius. Eur. J. Biochem. 168:153159.
4. Atkinson, M. R.,, and S. H. Fisher. 1991. Identification of genes and gene products whose expression is activated during nitrogen-limited growth in Bacillus subtilis. J. Bacteriol. 173:2327.
5. Atkinson, M. R.,, L. V. Wray,, and S. H. Fisher. 1990. Regulation of the histidine and proline degradative enzymes by amino acid availability in Bacillus subtilis. J. Bacteriol. 172:47584765.
6. Bascarán, V.,, C. Hardisson,, and A. F. Brafia. 1989. Regulation of nitrogen catabolic enzymes in Streptomyces clavuligerus. J. Gen. Microbiol. 135:24652474.
7. Bates, C. J.,, and C. A. Pasternak. 1965. Further studies on the regulation of amino acid sugar metabolism in Bacillus subtilis. Biochem. J. 96:147154.
8. Baumberg, S. (Leeds University). 1992. Personal communication.
9. Baumberg, S.,, and C. R. Harwood. 1979. Carbon and nitrogen repression of arginine catabolic enzymes in Bacillus subtilis. J. Bacteriol. 137:189196.
10. Bender, R. A. 1991. The role of the NAC protein in the nitrogen regulation of Klebsiella aerogenes. Mol. Microbiol. 5:25752580.
11. Bender, R. A.,, P. M. Snyder,, R. Bueno,, M. Quinto,, and B. Magasanik. 1983. Nitrogen regulation system of Klebsiella aerogenes: the nac gene. J. Bacteriol. 156:444446.
12. Berberich, R.,, M. Kaback,, and E. Freese. 1968. D-Amino acids as inducers of L-alanine dehydrogenase in Bacillus subtilis. J. Biol. Chem. 243:10061011.
13. Boylan, S. A.,, K. T. Chun,, B. A. Edson, and C. W. Price. 1988. Early-blocked sporulation mutants alter expression of enzymes under carbon control in Bacillus subtilis. Mol. Gen. Genet. 212:271280.
14. Brana, A. F.,, N. Paiva,, and A. L. Demain. 1986. Pathways and regulation of ammonium assimilation in Streptomyces clavuligerus. J. Gen. Microbiol. 132:13051317.
15. Broman, K.,, N. Lauwers,, V. S talon,, and J.-M. Wiame. 1978. Oxygen and nitrate in utilization by Bacillus licheniformis of the arginase and arginine deiminase routes of arginine catabolism and other factors affecting their synthesis. J. Bacteriol. 135:920927.
16. Broman, K.,, V. Stalon,, and J.-M. Wiame. 1975. The duplication of arginine catabolism and the meaning of the two ornithine carbamoyltransferases in Bacillus licheniformis. Biochem. Biophys. Res. Commun. 66:821827.
17. Chasin, L. A.,, and B. Magasanik. 1968. Induction and repression of the histidine-degrading enzymes of Bacillus subtilis. J. Biol. Chem. 243:51655178.
18. Consevage, M. W.,, R. D. Porter,, and A. T. Porter. 1985. Cloning and expression in Escherichia coli of histidine utilization genes for Pseudomonas putida. J. Bacteriol. 162:132146.
19. Cooney, P. H.,, P. Fawcett Whiteman,, and E. Freese. 1977. Media dependence of commitment in Bacillus subtilis. J. Bacteriol. 129:901907.
20. Cooney, P. H.,, and E. Freese. 1976. Commitment to sporulation in Bacillus megaterium and uptake of specific compounds.J. Gen. Microbiol. 95:381390.
21. Cunin, R.,, N. Glansdorff,, A. Piérard,, and V. Stalon. 1986. Biosynthesis and metabolism of arginine in bacteria. Microbiol. Rev. 50:314352.
22. Débarbouille, M.,, I. Martin-Verstraete,, F. Kunst,, and G. Rapoport. 1991. The Bacillus subtilis sigL gene encodes an equivalent of sigma 54 from Gram-negative bacteria. Proc. Natl. Acad. Sci. USA 88:90929096.
23. De Hauwer, G.,, R. Lavalle,, and J. M. Wiame. 1964. Étude de la pyrroline déshydrogénase et de la régulation du catabolisme de l'arginine et de la proline chez Bacillus subtilis. Biochim. Biophys. Acta 81:257269.
24. Deutscher, M. P.,, and A. Kornberg. 1968. Biochemical studies of bacterial sporulation and germination. VIII. Patterns of enzyme development during growth and sporulation of Bacillus subtilis. J. Biol. Chem. 243:46534660.
25. Fisher, S. H.,, and M. R. Atkinson. Unpublished data.
26. Fisher, S. H.,, and A. L. Sonenshein. 1991. Control of carbon and nitrogen metabolism in Bacillus subtilis. Annu. Rev. Microbiol. 45:107135.
27. Freese, E.,, and M. Cashel,. 1965. Initial stages of germination, p. 144151. In L. L. Campbell, and H. O. Halvorson (éd.), Spores HI. American Society for Microbiology, Ann Arbor, Mich..
28. Freese, E.,, S. W. Park,, and M. Cashel. 1964. The developmental significance of alanine dehydrogenase in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 51:11641172.
29. Glaser, P. (Pasteur Institute). 1992. Personal communication.
30. Golden, K. J.,, and R. W. Bernhohr. 1985. Nitrogen catabolite repression of the L-asparaginase of Bacillus licheniformis. J. Bacteriol. 164:938940.
31. Grossman, A. (Massachusetts Institute of Technology). 1991. Personal communication.
32. Guespin-Michel, J. F. 1971. Phenotypic reversion in some early blocked sporulation mutants of Bacillus subtilis. Genetic study of polymyxin resistant partial rever-tants. Mol. Gen. Genet. 112:243254.
33. Guespin-Michel, J. F.,, M. Piechaud,, and P. Schaeffer. 1970. Constitutivité vis-à-vis du nitrate de la nitrate-réductase chez les mutants asporogènes précoces de Bacillus subtilis. Ann. Inst. Pasteur 119:711718.
34. Harwood, C. R.,, and S. Baumberg. 1977. Arginine hydroxamate-resistant mutants of Bacillus subtilis with altered control of arginine metabolism. J. Gen. Microbiol. 100:177188.
35. Iijama, T.,, M. D. Diesterhaft,, and E. Freese. 1977. Sodium effect of growth on aspartate and genetic analysis of a Bacillus subtilis mutant with high aspartate activity. J Bacteriol. 129:14401447.
36. Issaly, I. M., and A. S. Issaly. 1974. Control of ornithine carbamoyltransferase activity by arginase in Bacillus subtilis. Eur. J. Biochem. 49:485495.
37. Jennings, M. P.,, and I. R. Beacham. 1990. Analysis of the Escherichia coli gene encoding L-asparaginase II, ansB and its regulation by cyclic AMP receptor and FNR proteins. J Bacteriol. 172:14911498.
38. Jerlstrom, P. G.,, D. A. Bezjak,, M. P. Jennings,, and I. R. Beacham. 1989. Structure and expression in Escherichia coli K-12 of the L-asparaginase I-encoding ansA gene and its flanking region. Gene 78:3746.
39. Kaminskas, E.,, and B. Magasanik. 1970. Sequential synthesis of histidine-degrading enzymes in Bacillus subtilis. J. Biol. Chem. 245:35493555.
40. Kendrick, K. (Ohio State University). 1991. Personal communication.
41. Kendrick, K. E.,, and M. L. Wheelis. 1982. Histidine dissimilation in Streptomyces coelicolor. J. Gen. Microbiol. 128:20292040.
42. Konings, W. N.,, and E. Freese. 1972. Amino acid transport in membrane vesicles of Bacillus subtilis. J. Biol. Chem. 247:24082418.
43. Kroenlng, T. A.,, and K. E. Kendrick. 1989. Cascading regulation of histidase activity in Streptomyces griseus. J. Bacteriol. 171:11001105.
44. Laishley, E. J.,, and R. W. Bemlohr. 1968. Regulation of arginine and proline catabolism in Bacillus licheniformis. J. Bacteriol. 96:322329.
45. Legrain, C.,, V. Stalon,, J.-P. Noullez,, A. Mercenier,, J.-P. Simon,, K. Boman,, and J.-M. Wiame. 1977. Structure and function of ornithine carbamoyltransferases. Eur. J. Biochem. 80:401409.
46. Macaluso, A.,, E. A. Best,, and R. A. Bender. 1990. Role of the nac gene product in the nitrogen regulation of some NTR-regulated opérons of Klebsiella aerogenes. J. Bacteriol. 172:72497255.
47. Magasanik, B. 1982. Genetic control of nitrogen assimilation in bacteria. Annu. Rev. Genet. 16:135168.
48. Magasanik, B.,, and F. C. Neidhardt,. 1987. Regulation of carbon and nitrogen utilization, p. 13181325. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. Umbarger (éd.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 2. American Society for Microbiology, Washington, D.C..
49. Maloy, S. R., 1987. The proline utilization operon, p. 15131519. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. Umbarger (éd.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 2. American Society for Microbiology, Washington, D.C..
50. Mathiopoulos, C.,, J. P. Mueller,, F. J. Slack,, C. G. Murphy,, S. Patanker,, G. Bukusoglu,, and A. L. Sonenshein. 1991. A B. subtilis dipeptide transport system expressed early during sporulation. Mol. Microbiol. 5:19031913.
51. Michel, J. F.,, B. Cami,, and P. Schaeffer. 1968. Sélection de mutants de Bacillus subtilis bloqués au début de la sporulation. I. Mutants aporogènes pléotropes sélectionnés par croissance en milieu au nitrate. Annu. Inst. Pasteur 114:1120.
52. Mountain, A.,, and S. Baumberg. 1980. Map locations of some mutations conferring resistance to arginine hy-droxamate in Bacillus subtilis 168. Mol. Gen. Genet. 178:691701.
53. Navarrete, R. M.,, J. A. Vara, and C. R. Hutchinson. 1990. Purification of an inducible L-valine dehydrogenase of Streptomyces coelicolor A3(2). J. Gen. Microbiol. 136:273281.
54. Oda, M.,, A. Sugishita,, and K. Furukawa. 1988. Cloning and nucleotide sequences of histidase and regulatory genes in the Bacillus subtilis hut operon and positive regulation of the operon. J. Bacterial. 170:31993205.
55. Olomuckl, A.,, D. B. Pho,, R. Lebar,, L. Delcambe,, and N. V. Thoai. 1968. Arginine oxygenase decarboxylante V. Purification et nature flavinique. Biochem. Biophys. Acta 151:353366.
56. Ostrovsky de Splcer, P.,, K. O'Brien,, and S. Maloy. 1991. Regulation of proline utilization in Salmonella typhimurium: a membrane-associated dehydrogenase binds DNA in vitro. J. Bacteriol. 173:211219.
57. Ottow, J. C. G. 1974. Arginine dihydrolase activity in species of the genus Bacillus revealed by thin-layer chromatography. J. Gen. Microbiol. 84:209213.
58. Padilla, G.,, Z. Hindle,, R. Callis,, A. Corner,, M. Ludovice,, P. Liras,, and S. Baumberg,. 1991. The relationship between primary and secondary metabolism in Streptomyces, p. 3545. In S. Baumberg,, H. Krügel,, and D. Noack (éd.), Genetics and Product Formation in Streptomyces. Plenum Press, New York.
59. Perego, M.,, C. F. Higgins,, S. R. Pearce,, M. P. Gallagher,, and J. A. Hoch. 1991. The oligopeptide transport system of Bacillus subtilis plays a role in the initiation of sporulation. Mol. Microbiol. 5:173185.
60. Porumb, H.,, D. Vancea,, L. Muregan,, E. Presecan,, I. Lascu,, I. Petrescu,, T. Porumb,, R. Pop,, and O. Bârzu. 1987. Structural and catalytic properties of L-alanine dehydrogenase from Bacillus cereus. J. Biol. Chem. 262: 46104615.
61. Priestley, N. D.,, and J. A. Robinson. 1989. Purification and catalytic properties of L-valine dehydrogenase from Streptomyces cinnamonensis. Biochem. J. 261:853861.
62. Ramaley, R. F.,, and R. E. Bernlohr. 1966. Postlogarith-mic phase metabolism of sporulating microorganisms. J. Biol. Chem. 241:620623.
63. Reitzer, L. J.,, and B. Magasanik,. 1987. Ammonium assimilation and the biosynthesis of glutamine, glutamate, aspartate, asparagine, L-alanine, and D-alanine, p. 302320. In F. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. Umbarger (éd.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C..
64. Rudner, D. Z.,, J. R. LeDeaux,, K. Ireton,, and A. D. Grossman. 1991. The spoOK locus of Bacillus subtilis is homologous to the oligopeptide permease locus and is required for sporulation and competence. J. Bacteriol. 173:13881398.
65. Schreier, H. J.,, S. W. Brown,, K. D. Hirschi,, J. F. Nomel-lini,, and A. L. Sonenshein. 1989. Regulation of the Bacillus subtilis glutamine synthetase gene expression by the product of die glnR gene. J. Mol. Biol. 210:5163.
66. Schreier, H. J.,, T. M. Smith,, and R. W. Bernlohr. 1982. Regulation of nitrogen catabolic enzymes in Bacillus spp. J. Bacteriol. 151:971975.
67. Schreier, H. J.,, and A. L. Sonenshein. 1986. Altered regulation of the glnA gene in glutamine synthetase mutants of Bacillus subtilis. J. Bacteriol. 167:3543.
68. Schutte, H.,, W. Hummed,, H. Tsai,, and M.-R. Kula. 1985. L-Leucine dehydrogenase from Bacillus cereus. Appl. Microbiol. Biotechnol. 22:306317.
69. Shapiro, S.,, and L. C. Vining. 1984. Suppression of nitrate utilization by ammonium and its relationship to chloramphenicol production in Streptomyces venezuelae. Can. J. Microbiol. 30:798804.
70. Simon, J.-P.,, and V. Stalon. 1976. Purification and structure of arginase of Bacillus licheniformis. Biochimie 58: 14191421.
71. Slack, F. J.,, J. P. Muellar,, M. A. Strauch,, C. Mathiopoulos,, and A. L. Sonenshein. 1991. Transcriptional regulation of a Bacillus subtilis dipeptide transport operon. Mol. Microbiol. 5:19151925.
72. Smith, M. C. M.,, L. Czaplewski,, A. K. North,, S. Baumberg,, and P. G. Stockley. 1989. Sequences required for regulation of arginine biosynthesis promoters are conserved between Bacillus subtilis and Escherichia coli. Mol. Microbiol. 3:2328.
73. Sonenshein, A. L., 1989. Metabolic regulation of sporulation and other stationary-phase phenomena, p. 109130. In I. Smith,, R. A. Slepecky,, and P. Setlow (éd.). Regulation of Procaryotic Development. American Society for Microbiology, Washington, D.C..
74. Sun, D.,, and P. Setlow. 1991. Cloning, nucleotide sequence and expression of the Bacillus subtilis ans operon, which codes for L-asparaginase and L-aspartase. J. Bacteriol. 173:38313845.
75. Thoai, N. V.,, F. Thome-Beau,, and A. Olomuckl. 1966. Induction and spécificité des enzymes de Ia nouvelle voie catabolique de l'arginine. Biochim. Biophys. Acta 115: 7380.
76. Venugopal, V.,, and G. B. Nadkarni. 1977. Regulation of the arginine dihydrolase pathway in Clostridium sporogenes.J. Bacteriol. 131:683695.
77. Whiteman, P. A.,, T. Iijima,, M. D. Diesterhaft,, and E. Freese. 1978. Evidence for a low affinity but high velocity aspartate transport system needed for rapid growth of Bacillus subtilis on aspartate as sole carbon source. J. Gen. Microbiol. 107:297307.
78. Willis, R. C.,, and C. A. Woolfolk. 1974. Asparagine utilization in Escherichia coli. J. Bacteriol. 118:231241.
79. Wu, P.C.,, T. A. Kroening,, P. J. White,, and K. E. Kendrick. 1992. Purification of histidase from Streptomyces griseus and nucleotide sequence of the hutH structural gene. J. Bacteriol. 174:16471655.

Tables

Generic image for table
Table 1

Compounds used as nitrogen sources by B. subtilis 168

Citation: Fisher S. 1993. Utilization of Amino Acids and Other Nitrogen-Containing Compounds, p 221-228. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch16

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error