1887

Chapter 17 : Regulation of Phosphorus Metabolism

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Regulation of Phosphorus Metabolism, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap17-1.gif /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap17-2.gif

Abstract:

This chapter focuses on the genes that are expressed in response to phosphate starvation, i.e., genes of the phosphate stimulon. Special emphasis is given to genes of the PHO regulon, which are dependent on the PhoP-PhoR two-component regulators. The study of the regulation of phosphate metabolism in species in general and in specifically has been complicated by a feature that increases the potential importance of this process: alkaline phosphatases (APases) are encoded by multiple structural genes. Secreted APases and APases from different cell fractions have similar physical and chemical properties. Genes regulated by the PHO regulon show overlapping regulation with other global regulatory systems outside of the phosphate stimulon. All genes that are known to require PhoP and PhoR for expression are also controlled b y SpoOA. This is consistent with the thought that phosphorylated SpoOA controls genes needed for various stationary-phase phenomena and not only those needed for sporulation, since phosphate-starved cultures enter postexponential growth because of limited phosphate availability. Further analysis of promoters controlled by phosphate starvation and a two-component system other than PhoPPhoR, such as gsiA, which requires ComP-ComA, may reveal additional network circuitry between the two component systems.

Citation: Hulett F. 1993. Regulation of Phosphorus Metabolism, p 229-235. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch17

Key Concept Ranking

Gene Expression and Regulation
0.51697123
0.51697123
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Genetic map of phosphate stimulon genes in . Gene loci indicated on the inside of the circle are for reference and include all the loci used in mapping Tn917 insertions ( ). The psi promoters (on the outside of the circle) show phosphate starvation-inducible expression; they were identified by screening a Tn fusion library. was given a pho designation because the Tn interruption was in the structural gene for APaseB. identifies the phoP-phoR operon regulatory locus. identifies the mapping location of the gene encoding APaseA.

Citation: Hulett F. 1993. Regulation of Phosphorus Metabolism, p 229-235. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818388.chap17
1. Amemura, M.,, K. Maklno,, H. Shinagawa,, and A. Nakata. 1990. Cross talk to the phosphate regulon of Escherichia coli by PhoM protein: PhoM is a histidine protein kinase and catalyzes phosphorylation of PhoB and PhoM-open reading frame 2. J. Bacteriol. 172: 6300 6307.
2. Berg, P. 1981. Cloning and characterization of the Escherichia coli gene coding for alkaline phosphatase. J. Bacteriol. 146: 660 667.
3. Booksteln, C. 1990. Cloning and characterization of the Bacillus subtilis genes phoAIII and XPAC. Ph.D. thesis, University of Illinois at Chicago, Chicago.
4. Booksteln, C.,, C. W. Edwards,, N. V. Kapp,, and F. M. Hulett. 1990. The Bacillus subtilis 168 alkaline phosphatase III gene: impact of a phoAIII mutation on total alkaline phosphatase synthesis. J. Bacteriol. 172: 3730 3737.
5. Burbulys, D.,, K. A. Trach,, and J. A. Hoch. 1991. Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell 64: 545 552.
6. Chen, C.-M.,, Q. Ye,, Z. Zhu,, B. L. Wanner,, and C. T. Walsh. 1990. Molecular biology of carbon-phosphorus bond, cleavage: cloning and sequencing of the phn (psiD) genes involved in alkylphosphonate uptake and C-P lyase activity in Escherichia coli B. J. Biol. Chem. 265: 4461 4471.
7. Chesnut, R. S.,, C. Booksteln,, and F. M. Hulett. 1991. Separate promoters direct expression of phoAIII, a member of the Bacillus subtilis alkaline phosphatase multigene family, during phosphate starvation and sporulation. Mol. Microbiol. 5: 2181 2190.
8. Chesnut, R. S.,, and F. M. Hulett. Unpublished data.
9. Coleman, J. E.,, and P. Gettins. 1983. Alkaline phosphatase, solution structure, and mechanism. Adv. Enzymol. 55: 381 452.
10. Elvln, C. M.,, C. M. Hardy,, and H. Rosenberg. 1987. Molecular studies on the phosphate (inorganic) transport (pit) gene of Escherichia coli: identification of the pit* gene product and physical mapping of the pit-gar region of the chromosome. Mol. Gen. Genet. 204: 477 484.
11. Glenn, A. R. 1975. Alkaline phosphatase mutants of Bacillus subtilis. Aust. J. Biol. Sci. 28: 323 330.
12. Glenn, A. R.,, and J. Mandelstam. 1971. Sporulation in Bacillus subtilis 168: comparison of alkaline phosphatase from sporulating and vegetative cells. Biochem. J. 123: 129 138.
13. Glew, R. H.,, and E. C. Heath. 1971. Studies on the extracellular alkaline phosphatase of Micrococcus sodonensis isolation and characterization. J. Biol. Chem. 246: 1556 1565.
14. Glew, R. H.,, and E. C. Heath. 1971. Studies on the extracellular alkaline phosphatase of Micrococcus sodonensis factors effecting secretion. J. Biol. Chem. 246: 1566 1574.
15. Glynn, J. A.,, S. D. Schaffel,, J. M. McNicholas,, and F. M. Hulett. 1977. Biochemical localization of the alkaline phosphatase of Bacillus licheniformis MCI 4 as a function of culture age. J. Bacteriol. 129: 1010 1019.
16. Grant, W. D. 1979. Cell wall teichoic acid as a reserve phosphate source in Bacillus subtilis. J. Bacteriol. 137: 35 43.
17. Guan, C.-D.,, B. Wanner,, and H. Inouye. 1983. Analysis of regulation of phoB expression using phoB cat fusion. J. Bacteriol. 156: 710 717.
18. Guddal, P. H.,, T. Johansen,, K. Schulstad,, and C. Little. 1989. Apparent phosphate retrieval system in Bacillus cereus. J. Bacteriol. 171: 5702 5706.
19. Hansa, J. G.,, M. La Porta,, M. Kuna,, R. Reimschussel,, and F. M. Hulett. 1981. A soluble alkaline phosphatase from Bacillus licheniformis MC 14: histochemical localization, purification, characterization and comparison with the membrane-associated alkaline phosphatase. Biochim. Biophys. Acta 657: 390 401.
20. Henthorn, P. S.,, B. J. Knoll,, M. Raducha,, K. N. Roth-blum,, C. Slaughter,, M. Weiss,, M. A. Lafferty,, T. Fischer,, and H. Harris. 1986. Products of two common alelles at the locus for human placental alkaline phosphatase differ by seven amino acids. Proc. Natl. Acad. Set. USA 83: 5597 5601.
21. Hirano, K.,, K. Kusano,, Y. Matsumoto,, T. Stigbrand,, S. lino,, and K. Hayahsi. 1989. Intestinal-like alkaline phosphatase expressed in normal human adult kidney. Eur. J. Biochem. 183: 419 423.
22. Hulett, F. M.,, C. Bookstein,, and K. Jensen. 1990. Evidence for two structural genes for alkaline phosphatase in Bacillus subtilis. J. Bacteriol. 172: 735 740.
23. Hulett, F. M.,, and K. Jensen. 1988. Critical roles oispoOA and spoOH in vegetative alkaline phosphatase production in Bacillus subtilis. J. Bacteriol. 170: 3765 3768.
24. Hulett, F. M.,, E. E. Kim,, C. Bookstein,, N. V. Kapp,, C. W. Edwards,, and H. W. Wyckoff. 1991. Bacillus subtilis alkaline phosphatases III and IV. J. Biol. Chem. 266: 1077 1084.
25. Hulett, F. M.,, W. Liu,, S. Birkey,, and L. Shi. Unpublished data.
26. Hulett, F. M.,, K. Stuckmann,, D. B. Spencer,, and T. Sanopoulou. 1986. Purification and characterization of the secreted alkaline phosphatase of Bacillus licheniformis MC14: identification of a possible precursor. J. Gen. Microbiol. 132: 2387 2395.
27. Kapp, N. V. 1992. Analysis of the phosphate stimulon of Bacillus subtilis. Ph.D. thesis. University of Illinois at Chicago, Chicago.
28. Kapp, N. V.,, C. W. Edwards,, R. S. Chesnut,, and F. M. Hulett. 1990. The Bacillus subtilis phoAIV gene: effects of in vitro inactivation on total alkaline phosphatase production. Gene 96: 95 100.
29. Kim, E. E.,, and H. W. Wycoff. 1989. Structure of alkaline phosphatases. Clin. Chim. Acta 186: 175 188.
30. Knoll, B. J.,, K. N. Rothblum,, and M. Longley. 1988. Nucleotide sequence of the human placental alkaline phosphatase gene. J. Biol. Chem. 263: 12020 12027.
31. La Nauze, J. M.,, H. Rosenberg,, and D. C. Shaw. 1970. The enzyme cleavage of the carbon-phosphorus bond: purification and properties of phosphonatase. Biochim. Biophys. Acta 212: 332 350.
32. Lee, J. K.,, C. W. Edwards,, and F. M. Hulett. 1991. Bacillus licheniformis APase I gene promoter: a strong well-regulated promoter in B. subtilis. J. Gen. Microbiol. 137: 1127 1133.
33. Lee, J. K.,, H. W. Wyckoff,, and F. M. Hulett. Unpublished data.
34. Le Hegarat, J.-C,, and C. Anagnostopoulos. 1973. Purification, subunit structure and properties of two repressible phosphohydrolases of Bacillus subtilis. Eur. J. Biochem. 39: 525 539.
35. Makino, K.,, H. Shinagawa,, M. Amemura,, K. Kimura,, and A. Nakata. 1988. Regulation of the phosphate regulon of Escherichia coli: activation of pstS transcription by PhoB protein in vitro. J. Mol. Biol. 203: 85 95.
36. Mansouri, K.,, and W. Piepersberg. 1991. Genetics of streptomycin production in Streptomyces griseus: nucleotide sequence of five genes, strFGHIK, including a phosphatase gene. Mol. Gen. Genet. 228: 459 469.
37. Manuel, C.,, M. Young,, and D. Karamata. 1991. Genes concerned with synthesis of poly(glycerol phosphate), the essential teichoic acid in Bacillus subtilis strain 168, are organized in two divergent transcription units. J. Gen. Microbiol. 137: 929 941.
38. Mathiopoulos, C.,, J. P. Mueller,, F. J. Slack,, C. G. Murphy,, S. Patankar,, G. Bukusoglu,, and A. L. Sonenshein. 1991. A Bacillus subtilis dipeptide transport system expressed early during sporulation. Mol. Microbiol. 5: 1903 1913.
39. Mathiopoulos, C.,, and L. Sonenshein. 1989. Identification of Bacillus subtilis genes expressed early during sporulation. Mol. Microbiol. 3: 1071 1081.
40. McNicholas, J. M.,, and F. M. Hulett. 1977. Electron microscopic histochemical localization of alkaline phos-phatase(s) in Bacillus licheniformis MCI4. I. Bacteriol. 129: 501 515.
41. Mild, T.,, A. Minami,, and Y. Ikeda. 1965. The genetics of alkaline phosphatase formation in Bacillus subtilis. Genetics 52: 1093 1100.
42. Msadek, T.,, F. Kunst,, A. Klier,, and G. Rapopoit. 1991. DegS-DegU and ComP-ComA modulator-effector pairs control expression of the Bacillus subtilis plieotropic regulatory gene degQ. J. Bacteriol. 173: 2366 2377.
43. Mueller, P.,, G. Bukusoglu,, and A. L. Sonenshein. Personal communication.
44. Ogata, S.,, Y. Hayashi,, N. Takami,, and Y. Ikehara. 1988. Chemical characterization of the membrane-anchoring domain of human placental alkaline phosphatase. J. Biol. Chem. 263: 10489 10494.
45. Ozanne, P. G., 1980. P hosphate nutrition of plants—a general treatise, p. 559 585. In E. Khasawneh (éd.). The Role of Phosphorus in Agriculture. American Society of Agronomy, Madison, Wis..
46. Piggot, P. J.,, and J. A. Hoch. 1985. Revised genetic linkage map of Bacillus subtilis. Microbiol. Rev. 49: 158 179.
47. Rosenberg, H.,, and J. M. La Nauze. 1967. The metabolism of phosphonates by microorganisms: the transport of aminoethylphosphonic acid in Bacillus cereus. Biochim. Biophys. Acta 141: 79 90.
48. Rosenberg, H.,, N. Medveczky,, and J. M. La Nauze. 1969. Phosphate transport in Bacillus cereus. Biochim. Biophys. Acta 193: 159 167.
49. Rothschild, C. B.,, R. P. Ross,, and A. Claiborne,. 1991. Molecular analysis of the gene encoding alkaline phosphatase in Streptococcus faecalis 10C1, p. 45 48. In G. M. Dunny,, P. P. Cleavy,, and L. L. McKay (éd.). Genetics and Molecular Biology of Streptococci, Lactococci, and Enterococci. American Society for Microbiology, Washington, D.C..
50. Schaffel, S. D.,, and F. M. Hulett. 1978. Alkaline phosphatase from Bacillus licheniformis, solubility dependent on magnesium, purification and characterization. Biochim. Biophys. Acta 526: 457 467.
51. Seki, T.,, H. Yoshikawa,, H. Takahashi,, and H. Saito. 1987. Cloning and nucleotide sequence of phoP, the regulatory gene for alkaline phosphatase and phosphor-diesterase in Bacillus subtilis. J. Bacterial. 169: 2913 2916.
52. Sekl, T.,, H. Yoshikawa,, H. Takahashi,, and H. Saito. 1988. Nucleotide sequence of the Bacillus subtilis phoR gene. J. Bacteriol. 170: 5935 5938.
53. Slack, F. J.,, J. P. Mueller,, M. A. Strauch,, C. Mathiopoulos,, and A. L. Sonenshein. 1991. Transcriptional regulation of a Bacillus subtilis dipeptide transport operon. Mol. Microbiol. 5: 1915 1925.
54. Spencer, D. B.,, J. G. Hansa,, K. V. Stuckmann,, and F. M. Hulett. 1982. Membrane-associated alkaline phos-phatase from Bacillus licheniformis that requires detergent for solubilization: lactoperoxidase 12SI localization and molecular weight determination. J. Bacteriol. 150: 826 834.
55. Spencer, D. B.,, and F. M. Hulett. 1981. Effect of cobalt on synthesis and activation of Bacillus licheniformis MCI4 alkaline phosphatase. J. Bacteriol. 145: 926 933.
56. Spencer, D. B.,, and F. M. Hulett. 1981. Lactoperoxidase l25I localization of salt extractable alkaline phosphatase on the cytoplasmic membrane of Bacillus licheniformis. J. Bacteriol. 145: 934 945.
57. Strauch, M. A.,, J. A. Hoch,, and F. M. Hulett. Unpublished data.
58. Vandeyar, M. A.,, and S. A. Zahler. 1986. Chromosomal insertions of Tn917 in Bacillus subtilis. J. Bacteriol. 167: 530 534.
59. Wackett, L. P.,, B. L. Wanner,, C. P. Venditti,, and C. T. Walsh. 1987. Involvement of the phosphate regulon and the psiD locus in the carbon-phosphorus lyase activity of Escherichia coli K-12. J. Bacteriol. 169: 1753 1756.
60. Wanner, B. L., 1990. Phosphorus assimilation and its control of gene expression in Escherichia coli, p. 152 163. In G. Hauska,, and R. Thauer (éd.), 41st Mosbach Colloquium: The Molecular Basis of Bacterial Metabolism. Springer-Verlag, Heidelberg.
61. Wanner, B. L.,, and J. A. Boline. 1990. Mapping and molecular cloning of the phn (psiD) locus for phospho-nate utilization in Escherichia coli. J. Bacteriol. 172: 1186 1196.
62. Yamane, K.,, and F. M. Hulett. Unpublished data.
63. Yamane, K.,, and B. Maruo. 1978. Purification and characterization of extracellular soluble and membrane-bound insoluble alkaline phosphatases possessing phos-phodiesterase activities in Bacillus subtilis. J. Bacteriol. 134: 100 107.
64. Yamane, K.,, T. Miki,, H. Saito,, Y. Ikeda,, and B. Maruo. 1976. Isolation of a mutant secreting extracellular soluble alkaline phosphatase in Bacillus subtilis. J. Bacteriol. Chem. 40: 2181 2185.

Tables

Generic image for table
Table 1

Classification of phosphate starvation-inducible promoters based on their PhoP-PhoR dependencies ( )

Citation: Hulett F. 1993. Regulation of Phosphorus Metabolism, p 229-235. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch17

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error