1887

Chapter 18 : Biosynthesis of the Aspartate Family of Amino Acids

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Biosynthesis of the Aspartate Family of Amino Acids, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap18-1.gif /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap18-2.gif

Abstract:

Diaminopimelate, lysine, methionine, and threonine derive most of their carbon atoms from L-aspartate, and these amino acids are therefore often referred to as the aspartate family. Their biosynthesis is effected by a complex pathway involving common intermediates from which multiple branches lead to the end products. The so-called aspartate pathway has several features that distinguish it from other pathways of amino acid biosynthesis and lend its study particular interest in the contexts of bacterial physiology and biochemical evolution. A number of different mechanisms for the control of the aspartate pathway that has evolved in the eubacteria and even within the genus Bacillus is discussed in this chapter. The primary focus of this chapter is on and closely related species. The aspartate pathway splits after the synthesis of aspartate semialdehyde, one branch leading to biosynthesis of diaminopimelate and lysine and the other leading to biosynthesis of threonine and methionine. The branch point enzyme homoserine dehydrogenase is the counterpart of dihydrodipicolinate synthase in controlling the utilization of aspartate semialdehyde for the biosynthesis of threonine and methionine by catalyzing the NADPH-dependent reduction of L-aspartate semialdehyde to L-homoserine. The major route for the biosynthesis of aspartate from glycolytic intermediates involves the carboxylation of pyruvate to oxaloacetate and subsequent transamination.

Citation: Paulus H. 1993. Biosynthesis of the Aspartate Family of Amino Acids, p 237-267. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch18

Key Concept Ranking

Transcription Start Site
0.5173473
Acetyl Coenzyme A
0.48778424
Amino Acids
0.46392536
Cell Wall Biosynthesis
0.4313126
Sodium Dodecyl Sulfate
0.4313126
0.5173473
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Overview of the pathway for biosynthesis of the aspartate family of amino acids. S-adenosyl-methionine.

Citation: Paulus H. 1993. Biosynthesis of the Aspartate Family of Amino Acids, p 237-267. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

The branch of the aspartate pathway leading to biosynthesis of diaminopimelate and lysine. The reaction catalyzed by diaminopimelate dehydrogenase, indicated by the dotted arrows, occurs in a few species and in coryneform bacteria but not in Ac-SCoA, acetyl-CoA; CoASH, coenzyme A; Ac, acetyl.

Citation: Paulus H. 1993. Biosynthesis of the Aspartate Family of Amino Acids, p 237-267. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

The branch of the aspartate pathway leading to biosynthesis of threonine and methionine. The reaction catalyzed by O-acetylhomoserine sulfhydrylase, indicated by dotted arrows, occurs in coryneform bacteria. CoASH, coenzyme A; Ac-SCoA, acetyl-CoA; Ac, aceryl; THF, tetrahydrofolate.

Citation: Paulus H. 1993. Biosynthesis of the Aspartate Family of Amino Acids, p 237-267. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Common reactions in the biosynthesis of diaminopimelate, lysine, threonine, and methionine.

Citation: Paulus H. 1993. Biosynthesis of the Aspartate Family of Amino Acids, p 237-267. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Postulated folding domains of aspartokinases. (A) Proposed biglobular structure of the subunit of aspartokinase II (left) and arrangements of the and subunits in the native enzyme (right). (B) Proposed triglobular structure of a subunit of aspartokinase-homoserine dehydrogenase I (left) and arrangements of subunits in the native tetrameric enzyme (right) (modified from reference ). AK, aspartokinase domain; HSD, homoserine dehydrogenase domain; I, interdomain.

Citation: Paulus H. 1993. Biosynthesis of the Aspartate Family of Amino Acids, p 237-267. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Sequence homology of aspartokinase II and the aspartokinases. A and B are the sites at which trypsin cleaves aspartokinase II and aspartokinase-homoserine dehydrogenase I, respectively. AK, aspartokinase; HSD, homoserine dehydrogenase.

Citation: Paulus H. 1993. Biosynthesis of the Aspartate Family of Amino Acids, p 237-267. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Physical map of the chromosome near the locus at 144°. The diagram shows positions of various restriction endonuclease cleavage sites and locations of deduced coding regions. Dotted arrows indicate polarities of transcription.

Citation: Paulus H. 1993. Biosynthesis of the Aspartate Family of Amino Acids, p 237-267. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

Possible secondary structures of RNA transcribed from the intercistronic region of ( ). Stabilization free energies were estimated by using the parameters of Freier et al. ( ). RBS, ribosome-binding site; Fmet, formylmethionyl.

Citation: Paulus H. 1993. Biosynthesis of the Aspartate Family of Amino Acids, p 237-267. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9
Figure 9

Diagram of the operon and adjacent regions (modified from reference ). The diagram shows positions of various restriction endonuclease cleavage sites and locations of deduced coding regions. Arrows indicate the polarities of transcription. P, promoter; SD, ribosome-binding site; T, transcription terminator; ORF, open reading frame.

Citation: Paulus H. 1993. Biosynthesis of the Aspartate Family of Amino Acids, p 237-267. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 10
Figure 10

Nucleotide sequence of the untranslated leader region of the operon ( ). The sequence from 168 is shown in its entirety. Sequences from strains VB217, FB59, and KA120 ( ) and from A34, ATR1, ATR4, AT9, AT10, TSH9, TSH25, TSH112, and TSHL2 ( ) are shown only where they differ from that of strain 168. The sequence is annotated to show elements of potential regulatory significance, with inverted repeats indicated by arrows and ribosome-binding sites (R.B.S.) indicated by asterisks. Nucleotide residues are numbered from the transcription start site.

Citation: Paulus H. 1993. Biosynthesis of the Aspartate Family of Amino Acids, p 237-267. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 11
Figure 11

Biosynthesis of l-aspartate. Ac-SCoA, acetyl-CoA.

Citation: Paulus H. 1993. Biosynthesis of the Aspartate Family of Amino Acids, p 237-267. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818388.chap18
1. Aleksieva, Z. M.,, T. N. Shevtchenko,, and S. S. Malyuta. 1985. A study of lysine operon organization in Bacillus subtilis. Biopolim. Kletka 1:156158.
2. Aronson, A. I.,, E. Henderson,, and A. Tincher. 1967. Participation of the lysine pathway in dipicolinic acid synthesis of Bacillus cereus T. Biochem. Biophys. Res. Commun. 26:454460.
3. Bach, M. L., and C. Gilvarg. 1966. Biosynthesis of dipicolinic acid in sporulating Bacillus megaterium. J. Biol. Chem. 241:45634566.
4. Balassa, G.,, P. Mllhaud,, E. Raulet,, M. T. Stlva,, and J. C. F. Sousa. 1979. A Bacillus subtilis mutant requiring dipicolinic acid for the development of heat-resistant spores. J. Gen. Microbiol. 110:365379.
5. Bartlett, A. T. M.,, and P. J. White. 1985. Species of Bacillus that make a vegetative peptidoglycan containing lysine lack diaminopimelate epimerase but have diaminopimelate dehydrogenase. J. Gen. Microbiol. 131:21452152.
6. Bartlett, A. T. M.,, and P. J. White. 1986. Regulation of the enzymes of lysine biosynthesis in Bacillus sphaericus NCTC 9602 during vegetative growth. J. Gen. Microbiol. 132:31693177.
7. Biswas, C.,, E. Gray,, and H. Paulus. 1970. Multivalent feedback inhibition of aspartokinase in Bacillus polymyxa. III. Purification and subunit structure of the enzyme. J. Biol. Chem. 245:49004906.
8. Biswas, C.,, and H. Paulus. 1973. Multivalent feedback inhibition of aspartokinase in Bacillus polymyxa. IV. Arrangement and function of the subunits. J. Biol. Chem. 248:28942900.
9. Bonassie, S.,, J. Oreglia,, and A. M. Sicard. 1990. Nucleotide sequence of the dapA gene from Corynebacterium glutamicum. Nucleic Acids Res. 18:6421.
10. Bondaryk, R. 1984. Ph.D. thesis. Harvard University, Cambridge, Mass.
11. Bondaryk, R. P.,, and H. Paulus. 1985. Cloning'and structure of the gene for the subunits of aspartokinase II from Bacillus subtilis. J. Biol. Chem. 260:585591.
12. Bondaryk, R. P.,, and H. Paulus. 1985. Expression of the gene for Bacillus subtilis aspartokinase II in Escherichia coli. J. Biol. Chem. 260:592597.
13. Brandt, C.,, and D. Karamata. 1987. Thermosensitive Bacillus subtilis mutants which lyse at the nonpermissive temperature. J. Gen. Microbiol. 133:11591170.
14. Brush, A.,, and H. Paulus. 1971. The enzymatic formation of O-acetylhomoserine in Bacillus subtilis and its regulation by methionine and S-adenosylmethionine. Biochem. Biophys. Res. Commun. 45:735741.
15. Buxton, R. S. 1978. A heat-sensitive lysis mutant of Bacillus subtilis 168 with a low activity of pyruvate decarboxylase. J. Gen. Microbiol. 105:175185.
16. Buxton, R. S.,, and J. B. Ward. 1980. Heat-sensitive lysis mutants of Bacillus subtilis 168 blocked at three different stages of peptidoglycan synthesis. J. Gen. Microbiol. 120:283293.
17. Cardineau, G. A.,, and R. Curtiss III. 1987. Nucleotide sequence of the asd gene of Streptococcus mutans. Identification of the promoter region and evidence for attenuator-like sequences preceding the structural gene. J. Biol. Chem. 262:33443353.
18. Cassan, M.,, J. Ronceray,, and J. C. Patte. 1983. Nucleotide sequence of the promoter region of the E. coli lysC gene. Nucleic Acids Res. 11:61576166.
19. Chasln, L. A.,, and J. Szulmajster. 1967. Biosynthesis of dipicolinic acid in Bacillus subtilis. Biochem. Biophys. Res. Commun. 29:648654.
20. Chasln, L. A.,, and J. Szulmajster,. 1969. Enzymes of dipicolinic acid biosynthesis in Bacillus subtilis, p. 133147. In L. L. Campbell (ed.), Spores IV. American Society for Microbiology, Washington, D.C.
21. Chatteijee, M. 1986. Aspartokinase of lysine excreting and non-excreting strain of Bacillus megaterium. Curr. Sci. 55:11761179.
22. Chatteijee, M.,, and P. J. White. 1982. Activities and regulation of the enzymes of lysine biosynthesis in a lysine-excreting strain of Bacillus megaterium. J. Gen. Microbiol. 128:10731081.
23. Chen, N. Y.,, F. M. Hu,, and H. Paulus. 1987. Nucleotide sequence of the overlapping genes for the subunits of Bacillus subtilis aspartokinase II and their control region. J. Biol. Chem. 262:87878798.
24. Chen, N. Y.,, S. Q. Jiang,, D. A. Klein,, and H. Paulus. Organization and nucleotide sequence of the Bacillus subtilis diaminopimelate operon, a cluster of genes encoding the first three enzymes of diaminopimelate synthesis and dipicolinate synthase. J. Biol. Chem. 268, in press.
25. Chen, N. Y.,, and H. Paulus. 1988. Mechanisms of expression of the overlapping genes of Bacillus subtilis aspartokinase II. J. Biol. Chem. 263:95269532.
26. Chen, N. Y.,, J. J. Zhang,, and H. Paulus. 1989. Chromosomal location of the Bacillus subtilis aspartokinase II gene and nucleotide sequence of the adjacent genes homologous to uvrC and trx of Escherichia coli. J. Gen. Microbiol. 135:29312940.
27. Cohen, G. N.,, and I. Saint-Girons,. 1987. Biosynthesis of threonine, lysine and methionine, p. 429444. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C.
28. Coruzzi, G. M. 1991. Molecular approaches to the study of amino acid biosynthesis in plants. Plant Sci. 74:145155.
29. Cremer, J.,, L. Eggeling,, and H. Sahm. 1990. Cloning the dapA-dapB cluster of the lysine-secreting bacterium Corynebacterium glutamicum. Mol. Gen. Genet. 224:317324.
30. Cremer, J.,, C. Treptow,, L. Eggeling,, and H. Sahm. 1988. Regulation of the enzymes of lysine biosynthesis in Corynebacterium glutamicum. J. Gen. Microbiol. 134: 32213229.
31. Datta, P.,, and L. Prakash. 1966. Aspartokinase of Rho-dopseudomonas sphéroïdes. Regulation of enzyme activity by aspartate j8-semialdehyde. J. Biol. Chem. 241: 58275835.
32. Diesterhaft, M. D.,, and E. Freese. 1973. Role of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, and malic enzyme during growth and sporulation of Bacillus subtilis. J. Biol. Chem. 248:60626070.
33. Follettie, M. T.,, O. P. Peoples,, and A. J. Sinskey. Structure and expression analysis of the Corynebacterium flavum N13 ask-asd operon. Submitted for publication.
34. FoUettie, M. T.,, H. K. Shin,, and A. J. Sinskey. 1988. Organization and regulation of the Corynebacterium glutamicum hom-thrB and thrC loci. Mol. Microbiol. 2:5362.
35. Forman, M., and A, Aronson. 1972. Regulation of dipicolinic acid biosynthesis in sporulating Bacillus cereus. Characterization of enzymatic changes and analysis of mutants. Biochem. J. 126:503513.
36. Freier, S. M.,, R. Kierzek,, J. A. Jaeger,, N. Sugimoto,, M. H. Caruthers,, T. Neilson,, and D. H. Turner. 1986. Improved free energy parameters for predictions of RNA duplex stability. Proc. Natl. Acad. Sci. USA 83: 93739377.
37. Fukuda, A.,, and C. Gilvarg. 1968. The relationship of dipicolinate and lysine biosynthesis in Bacillus megaterium. J. Biol. Chem. 243:38713876.
38. Gaily, D.,, C. R. Harwood,, and A. R. Archibald. 1991. Diaminopimelate uptake by Bacillus megaterium: influence of growth conditions and other amino acids. Lett. Appl. Microbiol. 12:5458.
39. Grandgenett, D. P.,, and D. P. Stahly. 1971. Repression of diaminopimelate decarboxylase by L-lysine in different Bacillus species. J. Bacteriol. 105:12111212.
40. Grandgenett, D. P.,, and D. P. Stahly. 1971. Control of diaminopimelate decarboxylase by L-lysine during growth and sporulation of Bacillus cereus. J. Bacteriol. 106:551560.
41. Graves, L. M.,, and R. L. Switzer. 1990. Aspartokinase III, a new isozyme in Bacillus subtilis 168. J. Bacteriol. 172:218233.
42. Graves, L. M.,, and R. L. Switzer. 1990. Aspartokinase II from Bacillus subtilis is degraded in response to nutrient limitation. J. Biol. Chem. 265:1494714955.
43. Gray, B. H.,, and R. W. Bernlohr. 1969. The regulation of aspartokinase in Bacillus licheniformis. Biochim. Biophys. Acta 178:248261.
44. Grondstrom, T., and B. Jaurin. 1982. Overlap between ampC and frd opérons of the Escherichia colt chromosomes. Proc. Natl. Acad. Sci. USA 79:11111115.
45. Hailing, S. M.,, and D. P. Stahly. 1976. Dihydrodipi-colinic acid synthase from Bacillus licheniformis. Quaternary structure, kinetics, and stability in the presence of sodium chloride and substrates. Biochim. Biophys. Acta 452:580596.
46. Hampton, M. L.,, N. G. McCormick,, N. C. Behforouz,, and E. Freese. 1971. Regulation of two aspartokinases in Bacillus subtilis. J. Bacteriol. 108:11291134.
47. Han, K. S.,, J. A. Archer,, and A. J. Sinskey. 1990. The molecular structure of the Corynebacterium glutamicum threonine synthase gene. Mol. Microbiol. 4:16931702.
48. Haziza, C.,, P. Stragier,, and J. C. Patte. 1982. Nucleotide sequence of the asd gene of Escherichia coli: absence of a typical attenuation signal. EMBO J. 1:379384.
49. Hitchcock, M. J. M. 1976. Ph.D. thesis. University of Melbourne, Melbourne, Australia.
50. Hitchcock, M. J. M.,, and B. Hodgson. 1976. Lysine- and lysine-plus-threonine-inhibitable aspartokinases in Bacillus brevis. Biochim. Biophys. Acta 445:350363.
51. Hitchcock, M. J. M.,, B. Hodgson,, and J. L. Linforth. 1980. Regulation of lysine- and lysine-plus-threonine-inhibitable aspartokinases in Bacillus brevis. J. Bacteriol. 142:424432.
52. Hoch, J. A.,, and J. Mathews,. 1972. Genetic studies in Bacillus subtilis, p. 113116. In H. O. Halvorson,, R. Hanson,, and L. L. Campbell (ed.), Spores V. American Society for Microbiology, Washington, D.C.
53. Hoganson, D. A.,, R. L. Irgens,, R. H. Doi,, and D. P. Stahly. 1975. Bacterial sporulation and regulation of dihydrodipicolinate synthase in ribonucleic acid poly-merase mutants of Bacillus subtilis. J. Bacteriol. 124: 16281629.
54. Hoganson, D. A.,, C. D. Smith,, and D. P. Stahly,. 1978. Regulation of aspartokinase activity in Bacillus cereus, p. 304307. In G. Chambliss, and J. C. Vary (ed.), Spores VII. American Society for Microbiology, Washington, D.C.
55. Hoganson, D. A.,, and D. P. Stahly. 1975. Regulation of dihydrodipicolinate synthase during growth and sporulation of Bacillus cereus. J. Bacteriol. 124:13441350.
56. Iijima, T.,, M. D. Dlesterhaft,, and E. Freese. 1977. Sodium effect of growth on aspartate and genetic analysis of a Bacillus subtilis mutant with high aspartase activity. J. Bacteriol. 129:14411447.
57. Ishino, I.,, T. Mizukami,, K. Yamaguchi,, R. Katsumata,, and K. Arakl. 1987. Nucleotide sequence of the meso-diaminopimelate D-dehydrogenase gene from Corynebacterium glutamicum. Nucleic Acids Res. 15:3917.
58. Ishino, I.,, T. Mizukami,, K. Yamaguchi,, R. Katsumata,, and K. Araki. 1988. Cloning and sequencing of the meso-diaminopimelate D-dehydrogenase gene (ddh) of Corynebacterium glutamicum. Agric. Biol. Chem. 52: 29032909.
59. Jenkinson, H. F.,, and J. Mandelstam. 1983. Cloning of the Bacillus subtilis lys and spoIIIB genes in phage φ105. J. Gen. Microbiol. 129:22292240.
60. Kalinowskl, J.,, B. Bachmann,, G. Thierbach,, and A. Pflhler. 1990. Aspartokinase genes lysCα and lysCβ overlap and are adjacent to the aspartate semialdehyde dehydrogenase gene asd in Corynebacterium glutamicum. Mol. Gen. Genet. 224:317324.
61. Kalinowskl, J.,, J. Cremer,, B. Bachmann,, L. Eggeling,, H. Sahm,, and A. Pflhler. 1991. Genetic and biochemical analysis of the aspartokinase from Corynebacterium glutamicum. Mol. Microbiol. 5:11971204.
62. Kanzaki, H.,, M. Kobayashi,, T. Nagasawa,, and H. Yamada. 1986. Distribution of two kinds of cystathionine γ-synthase in various bacteria. FEMS Microbiol. Lett. 33:6568.
63. Kase, H.,, and K. Nakayama. 1974. Mechanism of L-threonine and L-lysine production by analog-resistant mutants of Corynebacterium glutamicum. Agric. Biol. Chem. 38:9931000.
64. Kase, H.,, and K. Nakayama. 1974. Production of O-acetyl-L-homoserine by methionine analog-resistant mutants and regulation of homoserine-O-transacetylase in Corynebacterium glutamicum. Agric. Biol. Chem. 38:20212030.
65. Kern, B. A.,, D. Hendlin,, and E. Inamine. 1980. L-Lysine-ϵ-aminotransferase involved in cephamycin C synthesis in Streptomyces lactamdurans. Antimicrob. Agents Che-mother. 17:679685.
66. Kimura, K. 1975. Pyridine-2,6-dicarboxylic acid (dipi-colinic acid) formation in Bacillus subtilis. I. Non-enzymatic formation of dipicolinic acid from pyruvate and aspartic semialdehyde. J. Biochem. 75:961967.
67. Kimura, K. 1975. A new flavin enzyme catalyzing the reduction of dihydrodipicolinate in sporulating Bacillus subtilis. I. Purification and properties. J. Biochem. 77:405413.
68. Kimura, K.,, and T. Goto. 1975. A new flavin enzyme catalyzing the reduction of dihydrodipicolinate in sporulating Bacillus subtilis. II. Kinetics and regulatory function. J. Biochem. 77:415420.
69. Kimura, K.,, and T. Goto. 1977. Dihydrodipicolinate reductases from Bacillus cereus and Bacillus megaterium. I. Purification and properties. J. Biochem. 81: 13671373.
70. Kimura, K.,, T. Goto,, and S. Ujita,. 1978. Two differentiatable types of dihydrodipicolinate reductases from sporeforming bacilli, p. 308311. In G. Chambliss, and J. C. Vary (ed.), Spores VII. American Society for Microbiology, Washington, D.C.
71. Kimura, K., andT. Sasakawa. 1975. Pyridine-2,6-dicarboxylic acid (dipicolinic acid) formation in Bacillus subtilis. I. Non-enzymatic and enzymatic formations of dipicolinic acid from α,ε-diketopimelic acid and ammonia. J. Biochem. 78:381390.
72. Kirkpatrlck, J. R.,, L. E. Doolin,, and O. W. Godfrey. 1973. Lysine biosynthesis in Streptomyces lipmanii: implications in antibiotic biosynthesis. Antimicrob. Agents Chemother. 4:542550.
73. Kornberg, A.,, J. A. Spudich,, D. L. Nelson,, and M. P. Deutscher. 1968. Origins of proteins in sporulation. Annu. Rev. Biochem. 37:5178.
74. Krueger, J. M.,, J. R. Pappenheimer,, and M. L. Karnovsky. 1982. The composition of sleep-promoting factor isolated from human urine. J. Biol. Chem. 257:16641669.
75. Kuramltsu, H. K. 1970. Concerted feedback inhibition of aspartokinase from Bacillus stearothermophilus. I. Catalytic and regulatory properties. J. Biol. Chem. 245: 29912997.
76. Kuramltsu, H. K.,, and S. Yoshimura. 1971. Catalytic and regulatory properties of meso-diaminopimelate-sensitive aspartokinase from Bacillus stearothermophilus. Arch. Biochem. Biophys. 147:683691.
77. Kuramltsu, H. K.,, and S. Yoshimura. 1972. Elevated diaminopimelate-sensitive aspartokinase activity during sporulation of Bacillus stearothermophilus. Biochim. Biophys. Acta 264:152164.
78. Landick, R.,, and C. Yanofsky. 1987. Transcription attenuation, p. 12761301. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 2. American Society for Microbiology, Washington, D.C.
79. Lee, C. W.,, J. M. Ravel,, and W. Shive. 1966. Multimetabolite control of a biosynthetic pathway by sequential metabolites. J. Biol. Chem. 241:54795480.
80. Lu, Y.,, N. Y. Chen,, and H. Paulus. 1991. Identification of aecA mutations in Bacillus subtilis as nucleotide substitutions in the untranslated leader region of the aspartokinase II operon. J. Gen. Microbiol. 137:11351143.
81. Lu, Y.,, T. N. Shevtchenko,, and H. Paulus. Unpublished observations.
82. Magnusson, K.,, B. Rutberg,, L. Hederstedt,, and L. Rutberg. 1983. Characterization of a pleiotropic succinate dehydrogenase-negative mutant of Bacillus subtilis. J. Gen. Microbiol. 129:917922.
83. Marcel, T.,, J. A. C. Archer,, D. Mengin-Lecreulx,, and A. J. Sinskey. 1990. Nucleotide sequence and organization of the upstream region of the Corynebacterium lysA gene. Mol. Microbiol. 4:18191830.
84. Mattioll, R.,, M. Bazzicolupo,, G. Federici,, E. Gallori,, and M. Polsinelli. 1979. Characterization of mutants of Bacillus subtilis resistant to S-(2-aminoethyl)cysteine. J. Gen. Microbiol. 114:223225.
85. Michaud, C.,, D. Megnin-Lecreulx,, J. van Heijenoort,, and D. Blanot. 1990. Over-production, purification and properties of the uridine-diphosphate-N-acetylmuramoyl-L-alanyl-D-glutamate:meso-2,6-diaminopimelate ligase from Escherichia coli. Eur. J. Biochem. 194:853861.
86. Mlsono, H.,, and K. Soda. 1980. Properties of meso-α,ε-diaminopimelate dehydrogenase from Bacillus sphaericus. J. Biol. Chem. 255:1059910605.
87. Misono, H.,, H. Togawa,, T. Yamomoto,, and K. Soda. 1976. Occurrence of meso-a,e-diaminopimelate dehydrogenase in Bacillus sphaericus. Biochem. Biophys. Res. Commun. 72:8993.
88. Misono, H.,, H. Togawa,, T. Yamomoto,, and K. Soda. 1979. meso-a,E-Diaminopimelate dehydrogenase: distribution and the reaction product. J. Bacteriol. 137:2227.
89. Miyajima, R.,, and I. Shiio. 1970. Regulation of aspartate family amino acid biosynthesis in Brevibacterium flavum. III. Properties of homoserine dehydrogenase. J. Biochem. 68:311319.
90. Miyajima, R.,, and I. Shiio. 1971. Regulation of aspartate family amino acid biosynthesis in Brevibacterium flavum. IV. Repression of the enzymes in threonine biosynthesis. Agric. Biol. Chem. 35:424430.
91. Miyajima, R.,, and I. Shiio. 1972. Regulation of aspartate family amino acid biosynthesis in Brevibacterium flavum. V. Properties of homoserine kinase. J. Biochem. 71:219226.
92. Miyajima, R.,, and I. Shiio. 1973. Regulation of aspartate family amino acid biosynthesis in Brevibacterium flavum. VII. Properties of homoserine O-transacetylase. J. Biochem. 73:10611068.
93. Moir, D.,, and H. Paulus. 1977. Properties and subunit structure of aspartokinase II from Bacillus subtilis. J. Biol. Chem. 252:46484654.
94. Moir, D.,, and H. Paulus. 1977. Immunological and chemical comparison of the nonidentical subunits of aspartokinase II from Bacillus subtilis. J. Biol. Chem. 252:4655661.
95. Moir, D. T. 1977. Ph.D. thesis. Harvard University, Cambridge, Mass.
96. Monod, J.,, J. Wyman,, and J. P. Changeux. 1965. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12:88105.
97. Mueller, J. P.,, and H. W. Taber. 1989. Isolation and sequence of ctaA, a gene required for cytochrome aa3 biosynthesis and sporulation in Bacillus subtilis. J. Bacteriol. 171:49674978.
98. Ozaki, H.,, and I. Shiio. 1982. Methionine biosynthesis in Brevibacterium flavum: properties and essential role of O-acetylhomoserine sulfhydrylase. J. Biochem. 91: 11631171.
99. Parsot, C. 1986. Evolution of biosynthetic pathways: a common ancestor for threonine synthase, threonine dehydratase and D-serine dehydratase. EMBO J. 5:30133019.
100. Parsot, C.,, and G. N. Cohen. 1988. Cloning and nucleotide sequence of the Bacillus subtilis horn gene coding for homoserine dehydrogenase. Structural and evolutionary relationships with Escherichia coli aspartokinases-homoserine dehydrogenases I and II. J. Biol. Chem. 263:1465414660.
101. Paulus, H. 1984. Regulation and structure of aspartokinase in the genus Bacillus. J. Biosci. 6:403418.
102. Paulus, H.,, and E. Gray. 1967. Multivalent feedback inhibition of aspartokinase in Bacillus polymyxa. I. Kinetic studies. J. Biol. Chem. 242:49804986.
103. Paulus, H.,, and E. Gray. 1968. Multivalent feedback inhibition of aspartokinase in Bacillus polymyxa. II. Effect of nonpolar L-amino acids. J. Biol. Chem. 243: 13491355.
104. Peoples, O. P.,, W. Liebl,, M. Bodis,, P. J. Maeng,, M. T. Follettie,, J. A. Archer,, and A. J. Sinskey. 1988. Nucleotide sequence and fine structure analysis of the Corynebacterium glutamicum hom-thrB operon. Mol. Microbiol. 2:6372.
105. Petrlcek, M.,, L. Rutberg,, and L. Hederstedt. 1989. The structural gene for aspartokinase II in Bacillus subtilis is closely linked to the sdh operon. FEMS Microbiol. Lett. 61:8588.
106. Piggot, P. J.,, and J. A. Hoch. 1985. Revised genetic linkage map of Bacillus subtilis. Microbiol. Rev. 49:158179.
107. Piggot, P. J.,, A. Moir,, and D. A. Smith,. 1981. Advances in the genetics of Bacillus subtilis differentiation, p. 2939. In H. S. Levinson,, A. L. Sonenshein,, and D. J. Tipper (ed.), Sporulation and Germination. American Society for Microbiology, Washington, D.C.
108. Rao, A. S. 1985. Regulation of lysine and dipicolinic acid biosynthesis in Bacillus brevis ATCC 10068: significance of derepression of the enzymes during the change from vegetative growth to sporulation. Arch. Microbiol. 141:143150.
109. Reinscheld, D. J.,, B. J. Eikmanns,, and H. Sahm. 1991. Analysis of a Corynebacterium glutamicum horn gene coding for a feedback-resistant homoserine dehydrogenase. J. Bacteriol. 173:32283230.
110. Richaud, F.,, C. Richaud,, P. Ratet,, and J. C. Patte. 1986. Chromosomal location and nucleotide sequence of the Escherichia coli dapA gene. J. Bacteriol. 166:297300.
111. Ron, E. Z.,, and B. D. Davis. 1971. Growth rate of Escherichia coli at elevated temperatures: limitation by methionine. J. Bacteriol. 107:391396.
112. Ron, E. Z.,, and M. Shani. 1971. Growth rate of Escherichia coli at elevated temperatures: reversible inhibition of homoserine franssuccinylase. J. Bacteriol. 107: 397400.
113. Rosner, A. 1975. Control of lysine biosynthesis in Bacillus subtilis: inhibition of diaminopimelate decarboxylase by lysine. J. Bacteriol. 121:2028.
114. Rosner, A.,, and H. Paulus. 1971. Regulation of aspartokinase in Bacillus subtilis. The separation and properties of two isofunctional enzymes. J. Biol. Chem. 246:29652971.
115. Roten, C. A. H.,, C. Brandt,, and D. Karamata. 1991. Genes involved in mwo-diaminopimelate synthesis in Bacillus subtilis: identification of the gene encoding aspartokinase I. J. Gen. Microbiol. 137:951962.
116. Saleh, F.,, and P. J. White. 1979. Metabolism of DD-2,6-diaminopimelic acid by a diaminopimelate-requiring mutant of Bacillus megaterium. J. Gen. Microbiol. 115: 95100.
117. Schendel, F. J.,, and M. C. Flickinger. 1992. Cloning and nucleotide sequence of the gene coding for aspartokinase II from a thermophilic methylotrophic Bacillus sp. Appl. Environ. Microbiol. 58:28062814.
118.Schlldkraut, 1.1974. Ph.D. Thesis. University of Miami, Coral Gables, Fla.
119. Schlldkraut, I.,, and S. Greer. 1973. Threonine synthetase-catalyzed conversion of phosphohomoserine to α-ketobutyrate in Bacillus subtilis. J. Bacteriol. 115:777785.
120. Schleiffer, K. H.,, and O. Handler. 1972. Peptidoglycan types of bacterial cell walls and their taxonomie implications. Bacteriol. Rev. 36:407477.
121. Schrumpf, B.,, A. Schwarzer,, J. Kalinowski,, A. Pühler,, L. Eggeling,, and H. Sahm. 1991. A functionally split pathway for lysine synthesis in Corynebacterium glutamicum. J. Bacteriol. 173:45104516.
122. Shevtchenko, T. N.,, O. V. Okunev,, Z. M. Aleksieva,, and S. S. Malyuta. 1984. Expression of genes for the biosynthesis of lysine from Bacillus subtilis in cells of Escherichia coli. Tsitol. Genet. 1:5860.
123. Shevtchenko, T. N.,, H. O. Timashova,, and Z. M. Aleksieva. 1989. Mutants of Bacillus subtilis resistant to S-2-aminoethyl-L-cysteine. Genetika 25:19371945.
124. Shevtchenko, T. N.,, H. O. Timashova,, Z. M. Aleksieva,, N. V. Rotnln,, and S. S. Malyuta. 1988. Bacillus subtilis mutants auxotrophic for lysine. Mol. Genet. Mikrobiol. Virusol. 6:3337.
125. Shiio, I.,, and R. Miyajima. 1969. Concerted inhibition and its reversal by end products of aspartate kinase in Brevibacterium flavum. J. Biochem. 65:849859.
126. Shiio, I.,, R. Miyajima,, and S. Hakamori. 1970. Homoserine dehydrogenase genetically desensitized to the feedback inhibition in Brevibacterium flavum. J. Biochem. 68:859866.
127. Shiio, I.,, R. Miyajima,, and K. Sano. 1970. Genetically desensitized aspartokinase to the concerted feedback inhibition in Brevibacterium flavum. J. Biochem. 68: 701710.
128. Shiio, I.,, and H. Ozaki. 1981. Feedback inhibition by methionine and S-adenosylmethionine, and desensitization of homoserine acetyltransferase in Brevibacterium flavum. J. Biochem. 89:14931500.
129. Shiio, I.,, A. Yokota,, Y. Toride,, and S. Sugimoto. 1989. Threonine production by dihydrodipicolinate synthase-defective mutants of Brevibacterium flavum. Agric. Biol. Chem. 53:4148.
130. Shimotsu, H.,, M. I. Kuroda,, C. Yanofsky,, and D. J. Henner. 1986. Novel form of transcription attenuation regulates expression of the Bacillus subtilis tryptophan operon. J. Bacteriol. 166:461471.
131. Skarstedt, M. T.,, and S. B. Greer. 1973. Threonine synthetase of Bacillus subtilis. The nature of an associated dehydratase activity. J. Biol. Chem. 248:10321044.
132. Stahly, D. P. 1969. Dihydrodipicolinate synthase of Bacillus licheniformis. Biochim. Biophys. Acta 191:439451.
133. Stahly, D. P.,, and R. W. Bernlohr. 1967. Control of aspartokinase during development of Bacillus licheniformis. Biochim. Biophys. Acta 146:467476.
134. Stragier, P.,, F. Richaud,, F. Borne,, and J. C. Patte. 1983. Regulation of diaminopimelate decarboxylase synthesis in Escherichia coli. I. Identification of a lysR gene encoding an activator of the lysA gene. J. Mol. Biol. 168:307320.
135. Sundharadas, G.,, and C. Gilvarg. 1967. Biosynthesis of α,ε-diaminopimelic acid in Bacillus megaterium. J. Biol. Chem. 242:39833988.
136. Sung, M. H.,, K. Tanizawa,, H. Tanaka,, S. Kuramitsu,, H. Kagamiyama,, K. Hlrotsu,, A. Okamoto,, T. Higuchi,, and K. Soda. 1991. Thermostable aspartate aminotransferase from a thermophilic Bacillus species. Gene cloning, sequence determination, and preliminary X-ray characterization. J. Biol. Chem. 266:25672572.
137. Sung, M. H.,, K. Tanizawa,, H. Tanaka,, S. Kuramitsu,, H. Kagamiyama,, and K. Soda. 1990. Purification and characterization of thermostable aspartate aminotransferase from a thermophilic Bacillus species. J. Bacteriol. 172:13451351.
138. Thierbach, G.,, J. Kalinowski,, B. Bachmann,, and A. Pühler. 1990. Cloning of a DNA fragment from Corynebacterium glutamicum conferring aminoethyl cysteine resistance and feedback resistance to aspartokinase. Appl. Microbiol. Biotechnol. 32:443448.
139. Tosaka, O.,, and K. Taklnami. 1978. Pathway and regulation of lysine biosynthesis in Brevibacterium lactofermentum. Agric. Biol. Chem. 42:95100.
140. Trach, K.,, and J. A. Hoch. 1989. The Bacillus subtilis spoOB stage 0 sporulation operon encodes an essential GTP-binding protein. J. Bacteriol. 171:13621371.
141. Vapnek, D.,, and S. Greer. 1971. Suppression by dere-pression in threonine dehydratase-deficient mutants of Bacillus subtilis. J. Bacteriol. 106:615625.
142. Vapnek, D.,, and S. Greer. 1971. Minor threonine dehydratase encoded within the threonine synthetic region of Bacillus subtilis. J. Bacteriol. 106:983993.
143. Vold, B.,, J. Szulmajster,, and A. Carbone. 1975. Regulation of dihydrodipicolinate synthase and aspartate kinase in Bacillus subtilis. J. Bacteriol. 121:970974.
144. Ward, J. B. 1975. Peptidoglycan synthesis in L-phase variants of Bacillus subtilis and Bacillus licheniformis. J. Bacteriol. 124:668678.
145. Webster, F. H.,, and R. V. Lechowlch. 1970. Partial purification and characterization of dihydrodipicolinic acid synthetase from sporulating Bacillus megaterium. J. Bacteriol. 101:118126.
146. Weinberger, S.,, and C. Gilvarg. 1970. Bacterial distribution of the use of succinyl and acetyl blocking groups in diaminopimelic acid biosynthesis. J. Bacteriol. 101: 323324.
147. White, P. J. 1983. The essential role of diaminopimelate dehydrogenase in the biosynthesis of lysine by Bacillus sphaericus. J. Gen. Microbiol. 129:739749.
148. White, P. J.,, B. Lejeune,, and E. Work. 1969. Assay and properties of diaminopimelate epimerase from Bacillus megaterium. Biochem. J. 113:589601.
149. Wyman, A.,, and H. Paulus. 1975. Purification and properties of homoserine transacetylase from Bacillus polymyxa. J. Biol. Chem. 250:38973903.
150. Wyman, A.,, E. Shelton,, and H. Paulus. 1975. Regulation of homoserine transacetylase in whole cells of Bacillus polymyxa. J. Biol. Chem. 250:39043908.
151. Wyrick, P. B.,, M. McConnell,, and H. J. Rogers. 1973. Genetic transfer of the stable L form state to intact bacterial cells. Nature (London) 244:505507.
152. Wyrick, P. B.,, and H. J. Rogers. 1973. Isolation and characterization of cell-wall defective variants of Bacillus subtilis and Bacillus licheniformis. J. Bacteriol. 116: 456465.
153. Yamakura, F.,, Y. Ikeda,, K. Kimura,, and T. Sasakawa. 1974. Partial purification and some properties of pyruvate-aspartic semialdehyde condensing enzyme from sporulating Bacillus subtilis. J. Biochem. 76:611621.
154. Yamamoto, J.,, M. Shimizu,, and K. Yamane. 1991. Molecular cloning and analysis of nucleotide sequence of the Bacillus subtilis lysA gene region using B. subtilis phage vectors and a multi-copy plasmid, pUBHO. Ague. Biol. Chem. 55:16151626.
155. Yamane, K.,, Y. Takeichi,, T. Masuda,, F. Kawamura,, and H. Saito. 1982. Construction and physical map of a Bacillus subtilis specialized transducing phage pi 1 containing Bacillus subtilis lys+ gene. J. Gen. Appl. Microbiol. 28:417428.
156. Yeggy, J. P.,, and D. P. Stahly. 1980. Sporulation and regulation of homoserine dehydrogenase in Bacillus subtilis. Can. J. Microbiol. 26:13861391.
157. Yeh, E. C.,, and W. Steinberg. 1978. The effect of gene position, gene dosage and a regulatory mutation on the temporal sequence of enzyme synthesis accompanying outgrowth of Bacillus subtilis spores. Mol. Gen. Genet. 158:287296.
158. Yeh, P.,, A. M. SIcard,, and A. J. Sinskey. 1988. General organization of the genes specifically involved in the diaminopimelate-lysine biosynthetic pathway of Corynebacterium glutamicum. Mol. Gen. Genet. 212:105111.
159. Yeh, P.,, A. M. Sicard,, and A. J. Sinskey. 1988. Nucleotide sequence of the lysS gene of Corynebacterium glutamicum and possible mechanisms for modulation of its expression. Mol. Gen. Genet. 212:112119.
160. Yugari, Y.,, and C. Gilvarg. 1965. The condensation step in diaminopimelate biosynthesis. J. Biol. Chem. 240: 47104716.
161. Zeigler, D. R.,, and H. Paulus. Unpublished data.
162. Zhang, J. J.,, F. M. Hu,, N. Y. Chen,, and H. Paulus. 1990. Comparison of the three aspartokinase isozymes in Bacillus subtilis Marburg and 168. J. Bacteriol. 172:701708.
163. Zhang, J. J.,, and H. Paulus. 1990. Desensitization of Bacillus subtilis aspartokinase I to allosteric inhibition by meso-diaminopimelate allows aspartokinase I to function in amino acid biosynthesis during exponential growth. J. Bacteriol. 172:46904693.
164. Zhang, J. J.,, and H. Paulus. Unpublished data.

Tables

Generic image for table
Table 1

Aspartokinase isozymes of

Citation: Paulus H. 1993. Biosynthesis of the Aspartate Family of Amino Acids, p 237-267. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch18
Generic image for table
Table 2

Enzymes of the diaminopimelate-lysine pathway

Citation: Paulus H. 1993. Biosynthesis of the Aspartate Family of Amino Acids, p 237-267. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch18
Generic image for table
Table 3

Enzymes of the threonine-methionme pathway

Citation: Paulus H. 1993. Biosynthesis of the Aspartate Family of Amino Acids, p 237-267. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch18

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error