1887

Chapter 18 : Biosynthesis of the Aspartate Family of Amino Acids

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Biosynthesis of the Aspartate Family of Amino Acids, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap18-1.gif /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap18-2.gif

Abstract:

Diaminopimelate, lysine, methionine, and threonine derive most of their carbon atoms from L-aspartate, and these amino acids are therefore often referred to as the aspartate family. Their biosynthesis is effected by a complex pathway involving common intermediates from which multiple branches lead to the end products. The so-called aspartate pathway has several features that distinguish it from other pathways of amino acid biosynthesis and lend its study particular interest in the contexts of bacterial physiology and biochemical evolution. A number of different mechanisms for the control of the aspartate pathway that has evolved in the eubacteria and even within the genus Bacillus is discussed in this chapter. The primary focus of this chapter is on and closely related species. The aspartate pathway splits after the synthesis of aspartate semialdehyde, one branch leading to biosynthesis of diaminopimelate and lysine and the other leading to biosynthesis of threonine and methionine. The branch point enzyme homoserine dehydrogenase is the counterpart of dihydrodipicolinate synthase in controlling the utilization of aspartate semialdehyde for the biosynthesis of threonine and methionine by catalyzing the NADPH-dependent reduction of L-aspartate semialdehyde to L-homoserine. The major route for the biosynthesis of aspartate from glycolytic intermediates involves the carboxylation of pyruvate to oxaloacetate and subsequent transamination.

Citation: Paulus H. 1993. Biosynthesis of the Aspartate Family of Amino Acids, p 237-267. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch18

Key Concept Ranking

Transcription Start Site
0.5173473
Acetyl Coenzyme A
0.48778424
Amino Acids
0.46392536
Cell Wall Biosynthesis
0.4313126
Sodium Dodecyl Sulfate
0.4313126
0.5173473
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Overview of the pathway for biosynthesis of the aspartate family of amino acids. S-adenosyl-methionine.

Citation: Paulus H. 1993. Biosynthesis of the Aspartate Family of Amino Acids, p 237-267. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

The branch of the aspartate pathway leading to biosynthesis of diaminopimelate and lysine. The reaction catalyzed by diaminopimelate dehydrogenase, indicated by the dotted arrows, occurs in a few species and in coryneform bacteria but not in Ac-SCoA, acetyl-CoA; CoASH, coenzyme A; Ac, acetyl.

Citation: Paulus H. 1993. Biosynthesis of the Aspartate Family of Amino Acids, p 237-267. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

The branch of the aspartate pathway leading to biosynthesis of threonine and methionine. The reaction catalyzed by O-acetylhomoserine sulfhydrylase, indicated by dotted arrows, occurs in coryneform bacteria. CoASH, coenzyme A; Ac-SCoA, acetyl-CoA; Ac, aceryl; THF, tetrahydrofolate.

Citation: Paulus H. 1993. Biosynthesis of the Aspartate Family of Amino Acids, p 237-267. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Common reactions in the biosynthesis of diaminopimelate, lysine, threonine, and methionine.

Citation: Paulus H. 1993. Biosynthesis of the Aspartate Family of Amino Acids, p 237-267. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Postulated folding domains of aspartokinases. (A) Proposed biglobular structure of the subunit of aspartokinase II (left) and arrangements of the and subunits in the native enzyme (right). (B) Proposed triglobular structure of a subunit of aspartokinase-homoserine dehydrogenase I (left) and arrangements of subunits in the native tetrameric enzyme (right) (modified from reference ). AK, aspartokinase domain; HSD, homoserine dehydrogenase domain; I, interdomain.

Citation: Paulus H. 1993. Biosynthesis of the Aspartate Family of Amino Acids, p 237-267. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Sequence homology of aspartokinase II and the aspartokinases. A and B are the sites at which trypsin cleaves aspartokinase II and aspartokinase-homoserine dehydrogenase I, respectively. AK, aspartokinase; HSD, homoserine dehydrogenase.

Citation: Paulus H. 1993. Biosynthesis of the Aspartate Family of Amino Acids, p 237-267. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Physical map of the chromosome near the locus at 144°. The diagram shows positions of various restriction endonuclease cleavage sites and locations of deduced coding regions. Dotted arrows indicate polarities of transcription.

Citation: Paulus H. 1993. Biosynthesis of the Aspartate Family of Amino Acids, p 237-267. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

Possible secondary structures of RNA transcribed from the intercistronic region of ( ). Stabilization free energies were estimated by using the parameters of Freier et al. ( ). RBS, ribosome-binding site; Fmet, formylmethionyl.

Citation: Paulus H. 1993. Biosynthesis of the Aspartate Family of Amino Acids, p 237-267. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9
Figure 9

Diagram of the operon and adjacent regions (modified from reference ). The diagram shows positions of various restriction endonuclease cleavage sites and locations of deduced coding regions. Arrows indicate the polarities of transcription. P, promoter; SD, ribosome-binding site; T, transcription terminator; ORF, open reading frame.

Citation: Paulus H. 1993. Biosynthesis of the Aspartate Family of Amino Acids, p 237-267. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 10
Figure 10

Nucleotide sequence of the untranslated leader region of the operon ( ). The sequence from 168 is shown in its entirety. Sequences from strains VB217, FB59, and KA120 ( ) and from A34, ATR1, ATR4, AT9, AT10, TSH9, TSH25, TSH112, and TSHL2 ( ) are shown only where they differ from that of strain 168. The sequence is annotated to show elements of potential regulatory significance, with inverted repeats indicated by arrows and ribosome-binding sites (R.B.S.) indicated by asterisks. Nucleotide residues are numbered from the transcription start site.

Citation: Paulus H. 1993. Biosynthesis of the Aspartate Family of Amino Acids, p 237-267. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 11
Figure 11

Biosynthesis of l-aspartate. Ac-SCoA, acetyl-CoA.

Citation: Paulus H. 1993. Biosynthesis of the Aspartate Family of Amino Acids, p 237-267. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818388.chap18
1. Aleksieva, Z. M.,, T. N. Shevtchenko,, and S. S. Malyuta. 1985. A study of lysine operon organization in Bacillus subtilis. Biopolim. Kletka 1: 156 158.
2. Aronson, A. I.,, E. Henderson,, and A. Tincher. 1967. Participation of the lysine pathway in dipicolinic acid synthesis of Bacillus cereus T. Biochem. Biophys. Res. Commun. 26: 454 460.
3. Bach, M. L., and C. Gilvarg. 1966. Biosynthesis of dipicolinic acid in sporulating Bacillus megaterium. J. Biol. Chem. 241: 4563 4566.
4. Balassa, G.,, P. Mllhaud,, E. Raulet,, M. T. Stlva,, and J. C. F. Sousa. 1979. A Bacillus subtilis mutant requiring dipicolinic acid for the development of heat-resistant spores. J. Gen. Microbiol. 110: 365 379.
5. Bartlett, A. T. M.,, and P. J. White. 1985. Species of Bacillus that make a vegetative peptidoglycan containing lysine lack diaminopimelate epimerase but have diaminopimelate dehydrogenase. J. Gen. Microbiol. 131: 2145 2152.
6. Bartlett, A. T. M.,, and P. J. White. 1986. Regulation of the enzymes of lysine biosynthesis in Bacillus sphaericus NCTC 9602 during vegetative growth. J. Gen. Microbiol. 132: 3169 3177.
7. Biswas, C.,, E. Gray,, and H. Paulus. 1970. Multivalent feedback inhibition of aspartokinase in Bacillus polymyxa. III. Purification and subunit structure of the enzyme. J. Biol. Chem. 245: 4900 4906.
8. Biswas, C.,, and H. Paulus. 1973. Multivalent feedback inhibition of aspartokinase in Bacillus polymyxa. IV. Arrangement and function of the subunits. J. Biol. Chem. 248: 2894 2900.
9. Bonassie, S.,, J. Oreglia,, and A. M. Sicard. 1990. Nucleotide sequence of the dapA gene from Corynebacterium glutamicum. Nucleic Acids Res. 18: 6421.
10. Bondaryk, R. 1984. Ph.D. thesis. Harvard University, Cambridge, Mass.
11. Bondaryk, R. P.,, and H. Paulus. 1985. Cloning'and structure of the gene for the subunits of aspartokinase II from Bacillus subtilis. J. Biol. Chem. 260: 585 591.
12. Bondaryk, R. P.,, and H. Paulus. 1985. Expression of the gene for Bacillus subtilis aspartokinase II in Escherichia coli. J. Biol. Chem. 260: 592 597.
13. Brandt, C.,, and D. Karamata. 1987. Thermosensitive Bacillus subtilis mutants which lyse at the nonpermissive temperature. J. Gen. Microbiol. 133: 1159 1170.
14. Brush, A.,, and H. Paulus. 1971. The enzymatic formation of O-acetylhomoserine in Bacillus subtilis and its regulation by methionine and S-adenosylmethionine. Biochem. Biophys. Res. Commun. 45: 735 741.
15. Buxton, R. S. 1978. A heat-sensitive lysis mutant of Bacillus subtilis 168 with a low activity of pyruvate decarboxylase. J. Gen. Microbiol. 105: 175 185.
16. Buxton, R. S.,, and J. B. Ward. 1980. Heat-sensitive lysis mutants of Bacillus subtilis 168 blocked at three different stages of peptidoglycan synthesis. J. Gen. Microbiol. 120: 283 293.
17. Cardineau, G. A.,, and R. Curtiss III. 1987. Nucleotide sequence of the asd gene of Streptococcus mutans. Identification of the promoter region and evidence for attenuator-like sequences preceding the structural gene. J. Biol. Chem. 262: 3344 3353.
18. Cassan, M.,, J. Ronceray,, and J. C. Patte. 1983. Nucleotide sequence of the promoter region of the E. coli lysC gene. Nucleic Acids Res. 11: 6157 6166.
19. Chasln, L. A.,, and J. Szulmajster. 1967. Biosynthesis of dipicolinic acid in Bacillus subtilis. Biochem. Biophys. Res. Commun. 29: 648 654.
20. Chasln, L. A.,, and J. Szulmajster,. 1969. Enzymes of dipicolinic acid biosynthesis in Bacillus subtilis, p. 133 147. In L. L. Campbell (ed.), Spores IV. American Society for Microbiology, Washington, D.C.
21. Chatteijee, M. 1986. Aspartokinase of lysine excreting and non-excreting strain of Bacillus megaterium. Curr. Sci. 55: 1176 1179.
22. Chatteijee, M.,, and P. J. White. 1982. Activities and regulation of the enzymes of lysine biosynthesis in a lysine-excreting strain of Bacillus megaterium. J. Gen. Microbiol. 128: 1073 1081.
23. Chen, N. Y.,, F. M. Hu,, and H. Paulus. 1987. Nucleotide sequence of the overlapping genes for the subunits of Bacillus subtilis aspartokinase II and their control region. J. Biol. Chem. 262: 8787 8798.
24. Chen, N. Y.,, S. Q. Jiang,, D. A. Klein,, and H. Paulus. Organization and nucleotide sequence of the Bacillus subtilis diaminopimelate operon, a cluster of genes encoding the first three enzymes of diaminopimelate synthesis and dipicolinate synthase. J. Biol. Chem. 268, in press.
25. Chen, N. Y.,, and H. Paulus. 1988. Mechanisms of expression of the overlapping genes of Bacillus subtilis aspartokinase II. J. Biol. Chem. 263: 9526 9532.
26. Chen, N. Y.,, J. J. Zhang,, and H. Paulus. 1989. Chromosomal location of the Bacillus subtilis aspartokinase II gene and nucleotide sequence of the adjacent genes homologous to uvrC and trx of Escherichia coli. J. Gen. Microbiol. 135: 2931 2940.
27. Cohen, G. N.,, and I. Saint-Girons,. 1987. Biosynthesis of threonine, lysine and methionine, p. 429 444. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C.
28. Coruzzi, G. M. 1991. Molecular approaches to the study of amino acid biosynthesis in plants. Plant Sci. 74: 145 155.
29. Cremer, J.,, L. Eggeling,, and H. Sahm. 1990. Cloning the dapA-dapB cluster of the lysine-secreting bacterium Corynebacterium glutamicum. Mol. Gen. Genet. 224: 317 324.
30. Cremer, J.,, C. Treptow,, L. Eggeling,, and H. Sahm. 1988. Regulation of the enzymes of lysine biosynthesis in Corynebacterium glutamicum. J. Gen. Microbiol. 134: 3221 3229.
31. Datta, P.,, and L. Prakash. 1966. Aspartokinase of Rho-dopseudomonas sphéroïdes. Regulation of enzyme activity by aspartate j8-semialdehyde. J. Biol. Chem. 241: 5827 5835.
32. Diesterhaft, M. D.,, and E. Freese. 1973. Role of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, and malic enzyme during growth and sporulation of Bacillus subtilis. J. Biol. Chem. 248: 6062 6070.
33. Follettie, M. T.,, O. P. Peoples,, and A. J. Sinskey. Structure and expression analysis of the Corynebacterium flavum N13 ask-asd operon. Submitted for publication.
34. FoUettie, M. T.,, H. K. Shin,, and A. J. Sinskey. 1988. Organization and regulation of the Corynebacterium glutamicum hom-thrB and thrC loci. Mol. Microbiol. 2: 53 62.
35. Forman, M., and A, Aronson. 1972. Regulation of dipicolinic acid biosynthesis in sporulating Bacillus cereus. Characterization of enzymatic changes and analysis of mutants. Biochem. J. 126: 503 513.
36. Freier, S. M.,, R. Kierzek,, J. A. Jaeger,, N. Sugimoto,, M. H. Caruthers,, T. Neilson,, and D. H. Turner. 1986. Improved free energy parameters for predictions of RNA duplex stability. Proc. Natl. Acad. Sci. USA 83: 9373 9377.
37. Fukuda, A.,, and C. Gilvarg. 1968. The relationship of dipicolinate and lysine biosynthesis in Bacillus megaterium. J. Biol. Chem. 243: 3871 3876.
38. Gaily, D.,, C. R. Harwood,, and A. R. Archibald. 1991. Diaminopimelate uptake by Bacillus megaterium: influence of growth conditions and other amino acids. Lett. Appl. Microbiol. 12: 54 58.
39. Grandgenett, D. P.,, and D. P. Stahly. 1971. Repression of diaminopimelate decarboxylase by L-lysine in different Bacillus species. J. Bacteriol. 105: 1211 1212.
40. Grandgenett, D. P.,, and D. P. Stahly. 1971. Control of diaminopimelate decarboxylase by L-lysine during growth and sporulation of Bacillus cereus. J. Bacteriol. 106: 551 560.
41. Graves, L. M.,, and R. L. Switzer. 1990. Aspartokinase III, a new isozyme in Bacillus subtilis 168. J. Bacteriol. 172: 218 233.
42. Graves, L. M.,, and R. L. Switzer. 1990. Aspartokinase II from Bacillus subtilis is degraded in response to nutrient limitation. J. Biol. Chem. 265: 14947 14955.
43. Gray, B. H.,, and R. W. Bernlohr. 1969. The regulation of aspartokinase in Bacillus licheniformis. Biochim. Biophys. Acta 178: 248 261.
44. Grondstrom, T., and B. Jaurin. 1982. Overlap between ampC and frd opérons of the Escherichia colt chromosomes. Proc. Natl. Acad. Sci. USA 79: 1111 1115.
45. Hailing, S. M.,, and D. P. Stahly. 1976. Dihydrodipi-colinic acid synthase from Bacillus licheniformis. Quaternary structure, kinetics, and stability in the presence of sodium chloride and substrates. Biochim. Biophys. Acta 452: 580 596.
46. Hampton, M. L.,, N. G. McCormick,, N. C. Behforouz,, and E. Freese. 1971. Regulation of two aspartokinases in Bacillus subtilis. J. Bacteriol. 108: 1129 1134.
47. Han, K. S.,, J. A. Archer,, and A. J. Sinskey. 1990. The molecular structure of the Corynebacterium glutamicum threonine synthase gene. Mol. Microbiol. 4: 1693 1702.
48. Haziza, C.,, P. Stragier,, and J. C. Patte. 1982. Nucleotide sequence of the asd gene of Escherichia coli: absence of a typical attenuation signal. EMBO J. 1: 379 384.
49. Hitchcock, M. J. M. 1976. Ph.D. thesis. University of Melbourne, Melbourne, Australia.
50. Hitchcock, M. J. M.,, and B. Hodgson. 1976. Lysine- and lysine-plus-threonine-inhibitable aspartokinases in Bacillus brevis. Biochim. Biophys. Acta 445: 350 363.
51. Hitchcock, M. J. M.,, B. Hodgson,, and J. L. Linforth. 1980. Regulation of lysine- and lysine-plus-threonine-inhibitable aspartokinases in Bacillus brevis. J. Bacteriol. 142: 424 432.
52. Hoch, J. A.,, and J. Mathews,. 1972. Genetic studies in Bacillus subtilis, p. 113 116. In H. O. Halvorson,, R. Hanson,, and L. L. Campbell (ed.), Spores V. American Society for Microbiology, Washington, D.C.
53. Hoganson, D. A.,, R. L. Irgens,, R. H. Doi,, and D. P. Stahly. 1975. Bacterial sporulation and regulation of dihydrodipicolinate synthase in ribonucleic acid poly-merase mutants of Bacillus subtilis. J. Bacteriol. 124: 1628 1629.
54. Hoganson, D. A.,, C. D. Smith,, and D. P. Stahly,. 1978. Regulation of aspartokinase activity in Bacillus cereus, p. 304 307. In G. Chambliss, and J. C. Vary (ed.), Spores VII. American Society for Microbiology, Washington, D.C.
55. Hoganson, D. A.,, and D. P. Stahly. 1975. Regulation of dihydrodipicolinate synthase during growth and sporulation of Bacillus cereus. J. Bacteriol. 124: 1344 1350.
56. Iijima, T.,, M. D. Dlesterhaft,, and E. Freese. 1977. Sodium effect of growth on aspartate and genetic analysis of a Bacillus subtilis mutant with high aspartase activity. J. Bacteriol. 129: 1441 1447.
57. Ishino, I.,, T. Mizukami,, K. Yamaguchi,, R. Katsumata,, and K. Arakl. 1987. Nucleotide sequence of the meso-diaminopimelate D-dehydrogenase gene from Corynebacterium glutamicum. Nucleic Acids Res. 15: 3917.
58. Ishino, I.,, T. Mizukami,, K. Yamaguchi,, R. Katsumata,, and K. Araki. 1988. Cloning and sequencing of the meso-diaminopimelate D-dehydrogenase gene (ddh) of Corynebacterium glutamicum. Agric. Biol. Chem. 52: 2903 2909.
59. Jenkinson, H. F.,, and J. Mandelstam. 1983. Cloning of the Bacillus subtilis lys and spoIIIB genes in phage φ105. J. Gen. Microbiol. 129: 2229 2240.
60. Kalinowskl, J.,, B. Bachmann,, G. Thierbach,, and A. Pflhler. 1990. Aspartokinase genes lysCα and lysCβ overlap and are adjacent to the aspartate semialdehyde dehydrogenase gene asd in Corynebacterium glutamicum. Mol. Gen. Genet. 224: 317 324.
61. Kalinowskl, J.,, J. Cremer,, B. Bachmann,, L. Eggeling,, H. Sahm,, and A. Pflhler. 1991. Genetic and biochemical analysis of the aspartokinase from Corynebacterium glutamicum. Mol. Microbiol. 5: 1197 1204.
62. Kanzaki, H.,, M. Kobayashi,, T. Nagasawa,, and H. Yamada. 1986. Distribution of two kinds of cystathionine γ-synthase in various bacteria. FEMS Microbiol. Lett. 33: 65 68.
63. Kase, H.,, and K. Nakayama. 1974. Mechanism of L-threonine and L-lysine production by analog-resistant mutants of Corynebacterium glutamicum. Agric. Biol. Chem. 38: 993 1000.
64. Kase, H.,, and K. Nakayama. 1974. Production of O-acetyl-L-homoserine by methionine analog-resistant mutants and regulation of homoserine-O-transacetylase in Corynebacterium glutamicum. Agric. Biol. Chem. 38: 2021 2030.
65. Kern, B. A.,, D. Hendlin,, and E. Inamine. 1980. L-Lysine-ϵ-aminotransferase involved in cephamycin C synthesis in Streptomyces lactamdurans. Antimicrob. Agents Che-mother. 17: 679 685.
66. Kimura, K. 1975. Pyridine-2,6-dicarboxylic acid (dipi-colinic acid) formation in Bacillus subtilis. I. Non-enzymatic formation of dipicolinic acid from pyruvate and aspartic semialdehyde. J. Biochem. 75: 961 967.
67. Kimura, K. 1975. A new flavin enzyme catalyzing the reduction of dihydrodipicolinate in sporulating Bacillus subtilis. I. Purification and properties. J. Biochem. 77: 405 413.
68. Kimura, K.,, and T. Goto. 1975. A new flavin enzyme catalyzing the reduction of dihydrodipicolinate in sporulating Bacillus subtilis. II. Kinetics and regulatory function. J. Biochem. 77: 415 420.
69. Kimura, K.,, and T. Goto. 1977. Dihydrodipicolinate reductases from Bacillus cereus and Bacillus megaterium. I. Purification and properties. J. Biochem. 81: 1367 1373.
70. Kimura, K.,, T. Goto,, and S. Ujita,. 1978. Two differentiatable types of dihydrodipicolinate reductases from sporeforming bacilli, p. 308 311. In G. Chambliss, and J. C. Vary (ed.), Spores VII. American Society for Microbiology, Washington, D.C.
71. Kimura, K., andT. Sasakawa. 1975. Pyridine-2,6-dicarboxylic acid (dipicolinic acid) formation in Bacillus subtilis. I. Non-enzymatic and enzymatic formations of dipicolinic acid from α,ε-diketopimelic acid and ammonia. J. Biochem. 78: 381 390.
72. Kirkpatrlck, J. R.,, L. E. Doolin,, and O. W. Godfrey. 1973. Lysine biosynthesis in Streptomyces lipmanii: implications in antibiotic biosynthesis. Antimicrob. Agents Chemother. 4: 542 550.
73. Kornberg, A.,, J. A. Spudich,, D. L. Nelson,, and M. P. Deutscher. 1968. Origins of proteins in sporulation. Annu. Rev. Biochem. 37: 51 78.
74. Krueger, J. M.,, J. R. Pappenheimer,, and M. L. Karnovsky. 1982. The composition of sleep-promoting factor isolated from human urine. J. Biol. Chem. 257: 1664 1669.
75. Kuramltsu, H. K. 1970. Concerted feedback inhibition of aspartokinase from Bacillus stearothermophilus. I. Catalytic and regulatory properties. J. Biol. Chem. 245: 2991 2997.
76. Kuramltsu, H. K.,, and S. Yoshimura. 1971. Catalytic and regulatory properties of meso-diaminopimelate-sensitive aspartokinase from Bacillus stearothermophilus. Arch. Biochem. Biophys. 147: 683 691.
77. Kuramltsu, H. K.,, and S. Yoshimura. 1972. Elevated diaminopimelate-sensitive aspartokinase activity during sporulation of Bacillus stearothermophilus. Biochim. Biophys. Acta 264: 152 164.
78. Landick, R.,, and C. Yanofsky. 1987. Transcription attenuation, p. 1276 1301. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 2. American Society for Microbiology, Washington, D.C.
79. Lee, C. W.,, J. M. Ravel,, and W. Shive. 1966. Multimetabolite control of a biosynthetic pathway by sequential metabolites. J. Biol. Chem. 241: 5479 5480.
80. Lu, Y.,, N. Y. Chen,, and H. Paulus. 1991. Identification of aecA mutations in Bacillus subtilis as nucleotide substitutions in the untranslated leader region of the aspartokinase II operon. J. Gen. Microbiol. 137: 1135 1143.
81. Lu, Y.,, T. N. Shevtchenko,, and H. Paulus. Unpublished observations.
82. Magnusson, K.,, B. Rutberg,, L. Hederstedt,, and L. Rutberg. 1983. Characterization of a pleiotropic succinate dehydrogenase-negative mutant of Bacillus subtilis. J. Gen. Microbiol. 129: 917 922.
83. Marcel, T.,, J. A. C. Archer,, D. Mengin-Lecreulx,, and A. J. Sinskey. 1990. Nucleotide sequence and organization of the upstream region of the Corynebacterium lysA gene. Mol. Microbiol. 4: 1819 1830.
84. Mattioll, R.,, M. Bazzicolupo,, G. Federici,, E. Gallori,, and M. Polsinelli. 1979. Characterization of mutants of Bacillus subtilis resistant to S-(2-aminoethyl)cysteine. J. Gen. Microbiol. 114: 223 225.
85. Michaud, C.,, D. Megnin-Lecreulx,, J. van Heijenoort,, and D. Blanot. 1990. Over-production, purification and properties of the uridine-diphosphate-N-acetylmuramoyl-L-alanyl-D-glutamate: meso-2,6-diaminopimelate ligase from Escherichia coli. Eur. J. Biochem. 194: 853 861.
86. Mlsono, H.,, and K. Soda. 1980. Properties of meso-α,ε-diaminopimelate dehydrogenase from Bacillus sphaericus. J. Biol. Chem. 255: 10599 10605.
87. Misono, H.,, H. Togawa,, T. Yamomoto,, and K. Soda. 1976. Occurrence of meso-a,e-diaminopimelate dehydrogenase in Bacillus sphaericus. Biochem. Biophys. Res. Commun. 72: 89 93.
88. Misono, H.,, H. Togawa,, T. Yamomoto,, and K. Soda. 1979. meso-a,E-Diaminopimelate dehydrogenase: distribution and the reaction product. J. Bacteriol. 137: 22 27.
89. Miyajima, R.,, and I. Shiio. 1970. Regulation of aspartate family amino acid biosynthesis in Brevibacterium flavum. III. Properties of homoserine dehydrogenase. J. Biochem. 68: 311 319.
90. Miyajima, R.,, and I. Shiio. 1971. Regulation of aspartate family amino acid biosynthesis in Brevibacterium flavum. IV. Repression of the enzymes in threonine biosynthesis. Agric. Biol. Chem. 35: 424 430.
91. Miyajima, R.,, and I. Shiio. 1972. Regulation of aspartate family amino acid biosynthesis in Brevibacterium flavum. V. Properties of homoserine kinase. J. Biochem. 71: 219 226.
92. Miyajima, R.,, and I. Shiio. 1973. Regulation of aspartate family amino acid biosynthesis in Brevibacterium flavum. VII. Properties of homoserine O-transacetylase. J. Biochem. 73: 1061 1068.
93. Moir, D.,, and H. Paulus. 1977. Properties and subunit structure of aspartokinase II from Bacillus subtilis. J. Biol. Chem. 252: 4648 4654.
94. Moir, D.,, and H. Paulus. 1977. Immunological and chemical comparison of the nonidentical subunits of aspartokinase II from Bacillus subtilis. J. Biol. Chem. 252: 4655 661.
95. Moir, D. T. 1977. Ph.D. thesis. Harvard University, Cambridge, Mass.
96. Monod, J.,, J. Wyman,, and J. P. Changeux. 1965. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12: 88 105.
97. Mueller, J. P.,, and H. W. Taber. 1989. Isolation and sequence of ctaA, a gene required for cytochrome aa 3 biosynthesis and sporulation in Bacillus subtilis. J. Bacteriol. 171: 4967 4978.
98. Ozaki, H.,, and I. Shiio. 1982. Methionine biosynthesis in Brevibacterium flavum: properties and essential role of O-acetylhomoserine sulfhydrylase. J. Biochem. 91: 1163 1171.
99. Parsot, C. 1986. Evolution of biosynthetic pathways: a common ancestor for threonine synthase, threonine dehydratase and D-serine dehydratase. EMBO J. 5: 3013 3019.
100. Parsot, C.,, and G. N. Cohen. 1988. Cloning and nucleotide sequence of the Bacillus subtilis horn gene coding for homoserine dehydrogenase. Structural and evolutionary relationships with Escherichia coli aspartokinases-homoserine dehydrogenases I and II. J. Biol. Chem. 263: 14654 14660.
101. Paulus, H. 1984. Regulation and structure of aspartokinase in the genus Bacillus. J. Biosci. 6: 403 418.
102. Paulus, H.,, and E. Gray. 1967. Multivalent feedback inhibition of aspartokinase in Bacillus polymyxa. I. Kinetic studies. J. Biol. Chem. 242: 4980 4986.
103. Paulus, H.,, and E. Gray. 1968. Multivalent feedback inhibition of aspartokinase in Bacillus polymyxa. II. Effect of nonpolar L-amino acids. J. Biol. Chem. 243: 1349 1355.
104. Peoples, O. P.,, W. Liebl,, M. Bodis,, P. J. Maeng,, M. T. Follettie,, J. A. Archer,, and A. J. Sinskey. 1988. Nucleotide sequence and fine structure analysis of the Corynebacterium glutamicum hom-thrB operon. Mol. Microbiol. 2: 63 72.
105. Petrlcek, M.,, L. Rutberg,, and L. Hederstedt. 1989. The structural gene for aspartokinase II in Bacillus subtilis is closely linked to the sdh operon. FEMS Microbiol. Lett. 61: 85 88.
106. Piggot, P. J.,, and J. A. Hoch. 1985. Revised genetic linkage map of Bacillus subtilis. Microbiol. Rev. 49: 158 179.
107. Piggot, P. J.,, A. Moir,, and D. A. Smith,. 1981. Advances in the genetics of Bacillus subtilis differentiation, p. 29 39. In H. S. Levinson,, A. L. Sonenshein,, and D. J. Tipper (ed.), Sporulation and Germination. American Society for Microbiology, Washington, D.C.
108. Rao, A. S. 1985. Regulation of lysine and dipicolinic acid biosynthesis in Bacillus brevis ATCC 10068: significance of derepression of the enzymes during the change from vegetative growth to sporulation. Arch. Microbiol. 141: 143 150.
109. Reinscheld, D. J.,, B. J. Eikmanns,, and H. Sahm. 1991. Analysis of a Corynebacterium glutamicum horn gene coding for a feedback-resistant homoserine dehydrogenase. J. Bacteriol. 173: 3228 3230.
110. Richaud, F.,, C. Richaud,, P. Ratet,, and J. C. Patte. 1986. Chromosomal location and nucleotide sequence of the Escherichia coli dapA gene. J. Bacteriol. 166: 297 300.
111. Ron, E. Z.,, and B. D. Davis. 1971. Growth rate of Escherichia coli at elevated temperatures: limitation by methionine. J. Bacteriol. 107: 391 396.
112. Ron, E. Z.,, and M. Shani. 1971. Growth rate of Escherichia coli at elevated temperatures: reversible inhibition of homoserine franssuccinylase. J. Bacteriol. 107: 397 400.
113. Rosner, A. 1975. Control of lysine biosynthesis in Bacillus subtilis: inhibition of diaminopimelate decarboxylase by lysine. J. Bacteriol. 121: 20 28.
114. Rosner, A.,, and H. Paulus. 1971. Regulation of aspartokinase in Bacillus subtilis. The separation and properties of two isofunctional enzymes. J. Biol. Chem. 246: 2965 2971.
115. Roten, C. A. H.,, C. Brandt,, and D. Karamata. 1991. Genes involved in mwo-diaminopimelate synthesis in Bacillus subtilis: identification of the gene encoding aspartokinase I. J. Gen. Microbiol. 137: 951 962.
116. Saleh, F.,, and P. J. White. 1979. Metabolism of DD-2,6-diaminopimelic acid by a diaminopimelate-requiring mutant of Bacillus megaterium. J. Gen. Microbiol. 115: 95 100.
117. Schendel, F. J.,, and M. C. Flickinger. 1992. Cloning and nucleotide sequence of the gene coding for aspartokinase II from a thermophilic methylotrophic Bacillus sp. Appl. Environ. Microbiol. 58: 2806 2814.
118.Schlldkraut, 1. 1974. Ph.D. Thesis. University of Miami, Coral Gables, Fla.
119. Schlldkraut, I.,, and S. Greer. 1973. Threonine synthetase-catalyzed conversion of phosphohomoserine to α-ketobutyrate in Bacillus subtilis. J. Bacteriol. 115: 777 785.
120. Schleiffer, K. H.,, and O. Handler. 1972. Peptidoglycan types of bacterial cell walls and their taxonomie implications. Bacteriol. Rev. 36: 407 477.
121. Schrumpf, B.,, A. Schwarzer,, J. Kalinowski,, A. Pühler,, L. Eggeling,, and H. Sahm. 1991. A functionally split pathway for lysine synthesis in Corynebacterium glutamicum. J. Bacteriol. 173: 4510 4516.
122. Shevtchenko, T. N.,, O. V. Okunev,, Z. M. Aleksieva,, and S. S. Malyuta. 1984. Expression of genes for the biosynthesis of lysine from Bacillus subtilis in cells of Escherichia coli. Tsitol. Genet. 1: 58 60.
123. Shevtchenko, T. N.,, H. O. Timashova,, and Z. M. Aleksieva. 1989. Mutants of Bacillus subtilis resistant to S-2-aminoethyl-L-cysteine. Genetika 25: 1937 1945.
124. Shevtchenko, T. N.,, H. O. Timashova,, Z. M. Aleksieva,, N. V. Rotnln,, and S. S. Malyuta. 1988. Bacillus subtilis mutants auxotrophic for lysine. Mol. Genet. Mikrobiol. Virusol. 6: 33 37.
125. Shiio, I.,, and R. Miyajima. 1969. Concerted inhibition and its reversal by end products of aspartate kinase in Brevibacterium flavum. J. Biochem. 65: 849 859.
126. Shiio, I.,, R. Miyajima,, and S. Hakamori. 1970. Homoserine dehydrogenase genetically desensitized to the feedback inhibition in Brevibacterium flavum. J. Biochem. 68: 859 866.
127. Shiio, I.,, R. Miyajima,, and K. Sano. 1970. Genetically desensitized aspartokinase to the concerted feedback inhibition in Brevibacterium flavum. J. Biochem. 68: 701 710.
128. Shiio, I.,, and H. Ozaki. 1981. Feedback inhibition by methionine and S-adenosylmethionine, and desensitization of homoserine acetyltransferase in Brevibacterium flavum. J. Biochem. 89: 1493 1500.
129. Shiio, I.,, A. Yokota,, Y. Toride,, and S. Sugimoto. 1989. Threonine production by dihydrodipicolinate synthase-defective mutants of Brevibacterium flavum. Agric. Biol. Chem. 53: 41 48.
130. Shimotsu, H.,, M. I. Kuroda,, C. Yanofsky,, and D. J. Henner. 1986. Novel form of transcription attenuation regulates expression of the Bacillus subtilis tryptophan operon. J. Bacteriol. 166: 461 471.
131. Skarstedt, M. T.,, and S. B. Greer. 1973. Threonine synthetase of Bacillus subtilis. The nature of an associated dehydratase activity. J. Biol. Chem. 248: 1032 1044.
132. Stahly, D. P. 1969. Dihydrodipicolinate synthase of Bacillus licheniformis. Biochim. Biophys. Acta 191: 439 451.
133. Stahly, D. P.,, and R. W. Bernlohr. 1967. Control of aspartokinase during development of Bacillus licheniformis. Biochim. Biophys. Acta 146: 467 476.
134. Stragier, P.,, F. Richaud,, F. Borne,, and J. C. Patte. 1983. Regulation of diaminopimelate decarboxylase synthesis in Escherichia coli. I. Identification of a lysR gene encoding an activator of the lysA gene. J. Mol. Biol. 168: 307 320.
135. Sundharadas, G.,, and C. Gilvarg. 1967. Biosynthesis of α,ε-diaminopimelic acid in Bacillus megaterium. J. Biol. Chem. 242: 3983 3988.
136. Sung, M. H.,, K. Tanizawa,, H. Tanaka,, S. Kuramitsu,, H. Kagamiyama,, K. Hlrotsu,, A. Okamoto,, T. Higuchi,, and K. Soda. 1991. Thermostable aspartate aminotransferase from a thermophilic Bacillus species. Gene cloning, sequence determination, and preliminary X-ray characterization. J. Biol. Chem. 266: 2567 2572.
137. Sung, M. H.,, K. Tanizawa,, H. Tanaka,, S. Kuramitsu,, H. Kagamiyama,, and K. Soda. 1990. Purification and characterization of thermostable aspartate aminotransferase from a thermophilic Bacillus species. J. Bacteriol. 172: 1345 1351.
138. Thierbach, G.,, J. Kalinowski,, B. Bachmann,, and A. Pühler. 1990. Cloning of a DNA fragment from Corynebacterium glutamicum conferring aminoethyl cysteine resistance and feedback resistance to aspartokinase. Appl. Microbiol. Biotechnol. 32: 443 448.
139. Tosaka, O.,, and K. Taklnami. 1978. Pathway and regulation of lysine biosynthesis in Brevibacterium lactofermentum. Agric. Biol. Chem. 42: 95 100.
140. Trach, K.,, and J. A. Hoch. 1989. The Bacillus subtilis spoOB stage 0 sporulation operon encodes an essential GTP-binding protein. J. Bacteriol. 171: 1362 1371.
141. Vapnek, D.,, and S. Greer. 1971. Suppression by dere-pression in threonine dehydratase-deficient mutants of Bacillus subtilis. J. Bacteriol. 106: 615 625.
142. Vapnek, D.,, and S. Greer. 1971. Minor threonine dehydratase encoded within the threonine synthetic region of Bacillus subtilis. J. Bacteriol. 106: 983 993.
143. Vold, B.,, J. Szulmajster,, and A. Carbone. 1975. Regulation of dihydrodipicolinate synthase and aspartate kinase in Bacillus subtilis. J. Bacteriol. 121: 970 974.
144. Ward, J. B. 1975. Peptidoglycan synthesis in L-phase variants of Bacillus subtilis and Bacillus licheniformis. J. Bacteriol. 124: 668 678.
145. Webster, F. H.,, and R. V. Lechowlch. 1970. Partial purification and characterization of dihydrodipicolinic acid synthetase from sporulating Bacillus megaterium. J. Bacteriol. 101: 118 126.
146. Weinberger, S.,, and C. Gilvarg. 1970. Bacterial distribution of the use of succinyl and acetyl blocking groups in diaminopimelic acid biosynthesis. J. Bacteriol. 101: 323 324.
147. White, P. J. 1983. The essential role of diaminopimelate dehydrogenase in the biosynthesis of lysine by Bacillus sphaericus. J. Gen. Microbiol. 129: 739 749.
148. White, P. J.,, B. Lejeune,, and E. Work. 1969. Assay and properties of diaminopimelate epimerase from Bacillus megaterium. Biochem. J. 113: 589 601.
149. Wyman, A.,, and H. Paulus. 1975. Purification and properties of homoserine transacetylase from Bacillus polymyxa. J. Biol. Chem. 250: 3897 3903.
150. Wyman, A.,, E. Shelton,, and H. Paulus. 1975. Regulation of homoserine transacetylase in whole cells of Bacillus polymyxa. J. Biol. Chem. 250: 3904 3908.
151. Wyrick, P. B.,, M. McConnell,, and H. J. Rogers. 1973. Genetic transfer of the stable L form state to intact bacterial cells. Nature (London) 244: 505 507.
152. Wyrick, P. B.,, and H. J. Rogers. 1973. Isolation and characterization of cell-wall defective variants of Bacillus subtilis and Bacillus licheniformis. J. Bacteriol. 116: 456 465.
153. Yamakura, F.,, Y. Ikeda,, K. Kimura,, and T. Sasakawa. 1974. Partial purification and some properties of pyruvate-aspartic semialdehyde condensing enzyme from sporulating Bacillus subtilis. J. Biochem. 76: 611 621.
154. Yamamoto, J.,, M. Shimizu,, and K. Yamane. 1991. Molecular cloning and analysis of nucleotide sequence of the Bacillus subtilis lysA gene region using B. subtilis phage vectors and a multi-copy plasmid, pUBHO. Ague. Biol. Chem. 55: 1615 1626.
155. Yamane, K.,, Y. Takeichi,, T. Masuda,, F. Kawamura,, and H. Saito. 1982. Construction and physical map of a Bacillus subtilis specialized transducing phage pi 1 containing Bacillus subtilis lys + gene. J. Gen. Appl. Microbiol. 28: 417 428.
156. Yeggy, J. P.,, and D. P. Stahly. 1980. Sporulation and regulation of homoserine dehydrogenase in Bacillus subtilis. Can. J. Microbiol. 26: 1386 1391.
157. Yeh, E. C.,, and W. Steinberg. 1978. The effect of gene position, gene dosage and a regulatory mutation on the temporal sequence of enzyme synthesis accompanying outgrowth of Bacillus subtilis spores. Mol. Gen. Genet. 158: 287 296.
158. Yeh, P.,, A. M. SIcard,, and A. J. Sinskey. 1988. General organization of the genes specifically involved in the diaminopimelate-lysine biosynthetic pathway of Corynebacterium glutamicum. Mol. Gen. Genet. 212: 105 111.
159. Yeh, P.,, A. M. Sicard,, and A. J. Sinskey. 1988. Nucleotide sequence of the lysS gene of Corynebacterium glutamicum and possible mechanisms for modulation of its expression. Mol. Gen. Genet. 212: 112 119.
160. Yugari, Y.,, and C. Gilvarg. 1965. The condensation step in diaminopimelate biosynthesis. J. Biol. Chem. 240: 4710 4716.
161. Zeigler, D. R.,, and H. Paulus. Unpublished data.
162. Zhang, J. J.,, F. M. Hu,, N. Y. Chen,, and H. Paulus. 1990. Comparison of the three aspartokinase isozymes in Bacillus subtilis Marburg and 168. J. Bacteriol. 172: 701 708.
163. Zhang, J. J.,, and H. Paulus. 1990. Desensitization of Bacillus subtilis aspartokinase I to allosteric inhibition by meso-diaminopimelate allows aspartokinase I to function in amino acid biosynthesis during exponential growth. J. Bacteriol. 172: 4690 4693.
164. Zhang, J. J.,, and H. Paulus. Unpublished data.

Tables

Generic image for table
Table 1

Aspartokinase isozymes of

Citation: Paulus H. 1993. Biosynthesis of the Aspartate Family of Amino Acids, p 237-267. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch18
Generic image for table
Table 2

Enzymes of the diaminopimelate-lysine pathway

Citation: Paulus H. 1993. Biosynthesis of the Aspartate Family of Amino Acids, p 237-267. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch18
Generic image for table
Table 3

Enzymes of the threonine-methionme pathway

Citation: Paulus H. 1993. Biosynthesis of the Aspartate Family of Amino Acids, p 237-267. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch18

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error