1887

Chapter 19 : Biosynthesis of Aromatic Amino Acids

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Biosynthesis of Aromatic Amino Acids, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap19-1.gif /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap19-2.gif

Abstract:

The genes and operons responsible for aromatic amino acid biosynthesis are organized differently in different bacterial species, reflecting different evolutionary histories and possibly the functional and regulatory constraints experienced by each species. This chapter describes the genes, enzymes, and reactions of aromatic amino acid biosynthesis in . The chromosomal locations of the various operons are summarized in this chapter. The chapter also presents current understanding of regulation of aromatic amino acid metabolism in this . It compares the structural, functional, and regulatory features of aromatic amino acid metabolism in with that of . In early in vivo studies of aromatic amino acid biosynthesis in , it was observed that histidine, tyrosine, or tryptophan synthesis influenced the cellular levels of enzymes involved in the biosynthesis of the three amino acids ((phenylalanine, tyrosine, and tryptophan). forms a permease that transports phenyl alanine and tyrosine but not tryptophan or any other amino acid. Transport of phenylalanine and tyrosine by this system has been shown to be competitive.

Citation: Henner D, Yanofsky C. 1993. Biosynthesis of Aromatic Amino Acids, p 269-280. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch19

Key Concept Ranking

Aromatic Amino Acids
0.60402936
Aromatic Amino Acid Biosynthesis
0.5336286
Gene Expression and Regulation
0.43460122
Transcription Start Site
0.4320774
0.60402936
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Genes, reactions, and enzymes of the common aromatic pathway culminating in the synthesis of chorismate, the precursor of phenylalanine, tyrosine, and tryptophan. Structures of the compounds depicted in Fig. 1 through 4 can be found in Pittard ( ).

Citation: Henner D, Yanofsky C. 1993. Biosynthesis of Aromatic Amino Acids, p 269-280. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Genes, reactions, and enzymes of the phenylalanine pathway. αKG, α-ketoglutarate.

Citation: Henner D, Yanofsky C. 1993. Biosynthesis of Aromatic Amino Acids, p 269-280. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Genes, reactions, and enzymes of the tyrosine pathway.αKG, α-ketoglutarate.

Citation: Henner D, Yanofsky C. 1993. Biosynthesis of Aromatic Amino Acids, p 269-280. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Genes, reactions, and enzymes of the tryptophan pathway. PRPP, 5′-phosphoryl-l-pyrophosphate.

Citation: Henner D, Yanofsky C. 1993. Biosynthesis of Aromatic Amino Acids, p 269-280. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Metabolic and regulatory interactions involving the folate operon, operon, and aromatic tryptophan supraoperon. Heavy arrows indicate metabolic pathways converting chorismate to each of its end products. Lighter arrows designate genes that encode enzymes involved in synthesis of the various metabolites. The polypeptide participates in the biosynthesis of both tryptophan and -aminobenzoic acid, a component of folic acid. Both and encode enzymes involved in phenylalanine and tyrosine syntheses. Dotted arrows indicate sites of action of the MtrB polypeptide in the respective transcripts. The transcription regulation site preceding and the translation regulation site preceding are designated by shaded boxes. The locations of known promoters for these opérons are indicated by P'. Transcription is from left to right within each operon shown. Additional information is provided in the text.

Citation: Henner D, Yanofsky C. 1993. Biosynthesis of Aromatic Amino Acids, p 269-280. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Model of regulation of transcription termination at the attenuator located immediately distal to the promoter in the supraoperon of The alternative terminator and antiterminator RNA structures and the proposed mechanism of action of the tryptophan-activated MtrB protein are indicated. A and B denote RNA segments that form the antiterminator hairpin, and C and D denote RNA segments that form the terminator structure. Since stems B and C overlap by 4 nucleotides (arrows B and C), formation of antiterminator and terminator structures is mutually exclusive.

Citation: Henner D, Yanofsky C. 1993. Biosynthesis of Aromatic Amino Acids, p 269-280. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818388.chap19
1. Babitzke, P.,, P. Gollnlck,, and C. Yanofsky. 1992. The mtrAB operon of Bacillus subtilis encodes GTP cyclohydrolase I (MtrA), an enzyme involved in folic acid biosynthesis, and MtrB, regulator of tryptophan biosynthesis. J. Bacteriol. 174:20592064.
2. Band, L.,, H. Shlmotsu,, and D. J. Henner. 1984. Nucleotide sequence of the Bacillus subtilis trpE and trpD genes. Gene 27:5565.
2a. Bentley, R. 1990. The shikimate pathway—a metabolic tree with many branches. Crit. Rev. Biochem. Mol. Biol. 25:307384.
2b. Byng, G. S.,, J. F. Kane,, and R. A. Jensen. 1982. Diversity in the routing and regulation of complex biochemical pathways as indicators of microbial relatedness. Crit. Rev. Microbiol. 9:227252.
3. Camakarls, H.,, and J. Pittard,. 1983. Tyrosine biosynthesis, p. 339350. In K. M. Herrmann, and R. L. Somerville (ed.), Amino Acids: Biosynthesis and Genetic Regulation. Addison Wesley Publishing Co., Reading, Mass.
4. Carlton, B. C.,, and D. D. Whitt. 1969. The isolation and genetic characterization of mutants of the tryptophan system of Bacillus subtilis. Genetics 62:445460.
5. Chapman, L. F.,, and E. W. Nester. 1968. Common element in the repression control of enzymes of histidine and aromatic amino acid biosynthesis in Bacillus subtilis. J. Bacteriol. 96:16581663.
6. Coats, J. H.,, and E. W. Nester. 1967. Regulation reversal mutation: characterization of end product-activated mutants of Bacillus subtilis. J. Biol. Chem. 242:49484955.
7. Crawford, I. P. 1989. Evolution of a biosynthetic pathway: the tryptophan paradigm. Annu. Rev. Microbiol. 43:567600.
8. D'Ambroslo, S. M.,, G. I. Glover,, S. O. Nelson,, and R. A. Jensen. 1973. Specificity of the tyrosine-phenylalanine transport system in Bacillus subtilis. J. Bacteriol. 115: 673681.
9. Ebbole, D. J.,, and H. Zalkln. 1987. Cloning and characterization of a 12-gene cluster from Bacillus subtilis encoding nine enzymes for de novo purine nucleotide synthesis. J. Biol. Chem. 262:82748287.
9a. Fazel, A. M.,, J. R. Bowen,, and R. A. Jensen. 1980. Arogenate (pretyrosine) is an obligatory intermediate of L-tyrosine biosynthesis: confirmation in a microbial mutant. Proc. Natl. Acad. Sci. USA 77:12701273.
10. Garner, C.,, and K. M. Herrmann,. 1983. Biosynthesis of phenylalanine, p. 339350. In K. M. Herrmann, and R. L. Somerville (ed.), Amino Acids: Biosynthesis and Genetic Regulation. Addison Wesley Publishing Co., Reading, Mass.
11. Gollnlck, P.,, S. Ishino,, M. I. Kuroda,, D. J. Henner,, and C. Yanofsky. 1990. The mtr locus is a two-gene operon required for transcription attenuation in the trp operon of Bacillus subtilis. Proc. Natl. Acad. Sci. USA 87:87268730.
12. Gray, J. V.,, B. Golinelli-Pimpaneau,, and J. R. Knowles. 1990. Monofunctional chorismate mutase from Bacillus subtilis: purification of the protein, molecular cloning of the gene, and overexpression of the gene product in Escherichia coli. Biochemistry 29:376383.
13. Henner, D. J.,, L. Band,, G. Flaggs,, and E. Chen. 1986. The organization and nucleotide sequence of the Bacillus subtilis hisH, tyrA and aroE genes. Gene 49:147152.
14. Henner, D. J.,, L. Band,, and H. Shimotsu. 1984. Nucleotide sequence of the Bacillus subtilis tryptophan operon. Gene 34:169177.
15. Henner, D. J.,, P. Gollnlck,, and A. Moir,. 1990. Analysis of an 18 kilobase pair region of the Bacillus subtilis chromosome containing the mtr and gerC opérons and the aro-trp-aro supraoperon, p. 657666. In H. Heslot,, J. Davies,, J. Florent,, L. Bobichon,, G. Durand,, and L. Penasse (ed.), 6th International Symposium on Genetics of Industrial Microorganisms. Société Française de Microbiologie, Strasbourg, France.
16. Hoch, J. A.,, and E. W. Nester. 1973. Gene-enzyme relationships of aromatic acid biosynthesis in Bacillus subtilis. J. Bacteriol. 116:5966.
17. Hoch, S. O. 1974. Mapping of the 5-methyItryptophan resistance locus in Bacillus subtilis. J. Bacteriol. 117:315317.
18. Hoch, S. O.,, C. Anagnostopoulos,, and I. P. Crawford. 1969. Enzymes of the tryptophan operon of Bacillus subtilis. Biochem. Biophys. Res. Commun. 35:838844.
19. Hoch, S. O.,, and I. P. Crawford. 1973. Enzymes of the tryptophan pathway in three Bacillus species. J. Bacteriol. 116:685693.
20. Hoch, S. O.,, C. W. Roth,, I. P. Crawford,, and E. W. Nester. 1971. Control of tryptophan biosynthesis by the methyltryptophan resistance gene in Bacillus subtilis. J. Bacteriol. 105:3845.
21. Huang, L.,, A. L. Montoya,, and E. W. Nester. 1974. Characterization of the functional activities of the subunits of 3-deoxy-D-arabinoheptulosonate 7-phosphate synthetase-chorismate mutase from Bacillus subtilis 168. J. Biol. Chem. 249:44734479.
22. Huang, L.,, W. M. Nakatsukasa,, and E. Nester. 1974. Regulation of aromatic amino acid biosynthesis in Bacillus subtilis 168: purification, characterization and subunit structure of the bifunctional enzyme 3-deoxy-D-arabinoheptulosonate 7-phosphate synthetase-chorismate mutase. J. Biol. Chem. 249:44674472.
23. Hyde, C. C.,, S. A. Ahmed,, E. A. Padlan,, E. W. Miles,, and D. R. Davies. 1988. Three-dimensional structure of the tryptophan synthase α2β2 multienzyme complex from Salmonella typhimurium. J. Biol. Chem. 263:1785717871.
24. Ito, J.,, E. C. Cox, and C. Yanofsky. 1969. Anthranilate synthase, an enzyme specified by the tryptophan operon of Escherichia coli: purification and characterization of component I. J. Bacteriol. 97:725733.
24a. Jensen, R. A. Personal communication.
25. Jensen, R. A. 1969. Antimetabolite action of 5-methyl-tryptophan in Bacillus subtilis. J. Bacteriol. 97:15001501.
25a. Jensen, R. A. 1969. Metabolic interlock: regulatory interactions exerted between biochemical pathways. J. Biol. Chem. 244:28162823.
25b. Jensen, R. A., 1992. An emerging outline of the evolutionary history of aromatic amino acid biosynthesis, p. 205236. In R. P. Mortlock (ed.), The Evolution of Metabolic Function, in press. Telford Press, West Caldwell, N.J.
26. Jensen, R. A.,, T. A. d'Amato,, and L. I. Hochstein. 1988. An extreme-halophile archaebacterium possesses the interlock type of prephenate dehydratase characteristic of the gram-positive eubacteria. Arch. Microbiol. 149:365371.
26a. Jensen, R. A.,, and E. W. Nester. 1965. The regulatory significance of intermediary metabolites: control of aromatic acid biosynthesis by feedback inhibition in Bacillus subtilis. J. Mol. Biol. 12:468481.
27. Kane, J. F. 1977. Regulation of a common amidotrans-ferase subunit. J. Bacteriol. 132:419425.
28. Kane, J. F.,, W. M. Holmes,, and R. A. Jensen. 1972. Metabolic interlock: the dual function of a folate pathway gene as an extra-operonic gene of tryptophan biosynthesis. J. Biol. Chem. 247:15871596.
29. Kane, J. F.,, and R. A. Jensen. 1970. Enzyme induction in the tryptophan biosynthetic pathway in Bacillus subtilis. Biochem. Biophys. Res. Commun. 38:11611167.
30. Kane, J. F.,, and R. A. Jensen. 1970. The molecular aggregation of anthranilate synthase in Bacillus subtilis. Biochem. Biophys. Res. Commun. 41:328333.
31. Kane, J. F.,, and R. A. Jensen. 1970. Metabolic interlock: the influence of histidine on tryptophan biosynthesis in Bacillus subtilis. J. Biol. Chem. 245:23842390.
32. Kane, J. F.,, S. L. Stenmark,, D. H. Calhoun,, and R. A. Jensen. 1971. Metabolic interlock: the role of the subordinate type of enzyme in the regulation of a complex pathway. J. Biol. Chem. 246:43084318.
33. Kaplan, J. B.,, P. Goncharoff,, A. Selbold,, and B. P. Nichols. 1984. The nucleotide sequence of the Acinetobacter calcoaceticus trpGDC gene cluster. Mol. Biol. Evol. 1:456472.
34. Kaplan, J. B.,, W. K. Merkel,, and B. P. Nichols. 1985. Evolution of glutamine amidotransferase genes: nucleotide sequences of the pabA genes from Salmonella typhimurium, Klebsiella aerogenes and Serratia marcescens. J. Mol. Biol. 183:327340.
35. Kaplan, J. B.,, and B. P. Nichols. 1983. Nucleotide sequence of Escherichia coli pabA and its evolutionary relationship to trp(G)D. J. Mol. Biol. 168:451468.
36. Kothe, G.,, P. Gollnlck,, and C. Yanofsky. Unpublished data.
37. Kuroda, M. I.,, D. Henner,, and C. Yanofsky. 1988. exacting sites in the transcript of the Bacillus subtilis trp operon regulate expression of the operon. J. Bacteriol. 170:30803088.
38. Kuroda, M. I.,, H. Shimotsu,, D. J. Henner,, and C. Yanofsky. 1986. Regulatory elements common to the Bacillus pumilus and Bacillus subtilis trp opérons. J. Bacteriol. 167:792798.
39. Landlck, R.,, and C. Yanofsky,. 1987. Transcription attenuation, p. 12761301. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 2. American Society for Microbiology, Washington, D.C.
40. Llewellyn, D. J.,, A. Daday,, and G. D. Smith. 1980. Evidence for an artificially evolved bifunctional 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase-chorismate mutase in Bacillus subtilis. J. Biol. Chem. 255:20772084.
41. Lorence, J. H.,, and E. W. Nester. 1967. Multiple molecular forms of chorismate mutase in Bacillus subtilis. Biochemistry 6:15411552.
41a. Matsui, K.,, K. Sano,, and E. Ohtsubo. 1986. Complete nucleotide and deduced amino acid sequences of the Brevibacterium lactofermentum tryptophan operon. Nucleic Acids Res. 14:1011310114.
42. Miele, L.,, R. Stettler,, R. Banholzer,, M. Kotlk,, and T. Leislnger. 1991. Tryptophan gene cluster of Methanobacterium thermoautotrophicum Marburg: molecular cloning and nucleotide sequence of a putative trpEGCFBAD operon. J. Bacteriol. 173:50175023.
43. Miozzari, G.,, and C. Yanofsky. 1979. Gene fusion during the evolution of the trp operon in Enterobacteriaceae. Nature (London) 277:486489.
44. Nakatsukasa, W. M.,, and E. W. Nester. 1972. Regulation of aromatic amino acid biosynthesis in Bacillus subtilis 168. 1. Evidence for and characterization of a trifunctional enzyme complex. J. Biol. Chem. 247:59725979.
45. Nasser, D.,, and E. W. Nester. 1967. Aromatic amino acid biosynthesis: gene-enzyme relationships in Bacillus subtilis. J. Bacteriol. 94:17061714.
46. Nester, E. W. 1968. Cross pathway regulation: effect of histidine on the synthesis and activity of enzymes of aromatic acid biosynthesis in Bacillus subtilis. J. Bacteriol. 96:16491657.
47. Nester, E. W.,, B. Dale,, A. Montoya,, and B. Void. 1974. Cross pathway regulation of tyrosine and histidine synthesis in Bacillus subtilis. Biochim. Biophys. Ada 361:5972.
48. Nester, E. W.,, and R. A. Jensen. 1966. Control of aromatic acid biosynthesis in Bacillus subtilis: sequential feedback inhibition. J. Bacteriol. 91:15941598.
49. Nester, E. W.,, R. A. Jensen,, and D. S. Nasser. 1969. Regulation of enzyme synthesis in the aromatic amino acid pathway of Bacillus subtilis. J. Bacteriol. 97:8390.
50. Nester, E. W.,, J. H. Lorence,, and D. S. Nasser. 1967. An enzyme aggregate involved in the biosynthesis of aromatic amino acids in Bacillus subtilis. Its possible function in feedback regulation. Biochemistry 6:15531562.
51. Nester, E. W.,, and A. L. Montoya. 1976. An enzyme common to histidine and aromatic amino acid biosynthesis in Bacillus subtilis. J. Bacteriol. 126:699705.
52. Nester, E. W.,, M. Schafer,, and J. Lederberg. 1963. Gene linkage in DNA transfer: a cluster of genes concerned with aromatic biosynthesis in Bacillus subtilis. Genetics 48:529551.
53. Nichols, B. P.,, A. M. Selbold,, and S. Z. Doktor. 1989. para-aminobenzoate synthesis from chorismate occurs in two steps. J. Biol. Chem. 264:85978601.
54. Piggot, P. J.,, and J. A. Hoch. 1985. Revised genetic linkage map of Bacillus subtilis. Microbiol. Rev. 49:158179.
55. Plttard, A. J., 1987. Biosynthesis of the aromatic amino acids, p. 368394. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C.
56. Priestle, J. P.,, M. G. Gratter,, J. L. White,, M. G. Vincent,, M. Kanla,, E. Wilson,, T. S. Jardetsky,, K. Klrschner,, and J. N. Jansonius. 1987. Three-dimensional structure of the bifunctional enzyme N-(5'-phosphoribosyl)anthranilate isomerase-indole-3-glycerol-phosphate synthase from Escherichia coli. Proc. Natl. Acad. Sci. USA 84:56905694.
57. Rebello, J. L.,, and R. A. Jensen. 1970. Metabolic interlock: the multi-metabolite control of prephenate dehydratase activity in Bacillus subtilis. J. Biol. Chem. 245: 37383744.
58. Roth, C. W.,, and E. W. Nester. 1971. Coordinate control of tryptophan, histidine and tyrosine enzyme synthesis in Bacillus subtilis. J. Mol. Biol. 62:577589.
58a. Sano, K.,, and K. Matsui. 1987. Structure and function of the trp operon control regions of Brevibacterium lactofermentum, a glutamic-acid-producing bacterium. Gene 53:191200.
59. Schechtman, M. G.,, and C. Yanofsky. 1983. Structure of the trifunctional trp-1 gene from Neurospora crassa and its aberrant expression in Escherichia coli. J. Mol. Appl. Genet. 2:8993.
60. Shimotsu, H.,, and D. J. Henner. 1984. Characterization of the Bacillus subtilis tryptophan promoter region. Proc. Natl. Acad. Sci. USA 81:63156319.
61. Shimotsu, H.,, M. I. Kuroda,, C. Yanofsky,, and D. J. Henner. 1986. Novel form of transcription attenuation regulates expression of the Bacillus subtilis tryptophan operon. J. Bacteriol. 166:461471.
62. Slock, J.,, D. P. Stahly,, C.-Y. Han,, E. W. Six,, and I. P. Crawford. 1990. An apparent Bacillus subtilis folic acid biosynthetic operon containing pab, an amphibolic trpG gene, a third gene required for synthesis of para-amino-benzoic acid, and the dihydropteroate synthase gene. J. Bacteriol. 172:72117226.
63. Steinberg, W. 1974. Temperature-induced derepression of tryptophan biosynthesis in a tryptophanyl-transfer ribonucleic acid synthetase mutant of Bacillus subtilis. J. Bacteriol. 117:10231034.
64. Weigent, D. A.,, and E. W. Nester. 1976. Regulation of histidinol phosphate aminotransferase synthesis by tryptophan in Bacillus subtilis.J. Bacteriol. 128:202211.
65. Whitt, D. D.,, and B. C. Carlton. 1968. Characterization of mutants with single and multiple defects in the tryptophan biosynthetic pathway in Bacillus subtilis. J. Bacteriol. 96:12731280.
66. Yanofsky, C.,, and I. P. Crawford,. 1987. The tryptophan operon, p. 14531472. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 2. American Society for Microbiology, Washington, D.C.
67. Yanofsky, C.,, and J. Ito. 1966. Nonsense codons and polarity in the tryptophan operon. J. Mol. Biol. 21:313334.
68. Yanofsky, C.,, T. Platt,, I. P. Crawford,, B. P. Nichols,, G. E. Christie,, H. Horowitz,, M. vanCleemput,, and A. M. Wu. 1981. The complete nucleotide sequence of the tryptophan operon of Escherichia coli. Nucleic Acids Res. 9:66476668.
69. Zalkin, H., 1980. Anthranilate synthase: relationships between bifunctional and monofunctional enzymes, p. 123149. In H. Bisswanger, and E. Schmincke-Ott (ed.), Multifunctional Enzymes. John Wiley & Sons, Inc., New York.

Tables

Generic image for table
Table 1

Locations of operons involved in aromatic amino acid biosynthesis

Citation: Henner D, Yanofsky C. 1993. Biosynthesis of Aromatic Amino Acids, p 269-280. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch19

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error