1887

Chapter 2 :

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap02-1.gif /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap02-2.gif

Abstract:

The classic golden yellow of colonies is caused by carotenoids and develops slowly over several days. is the only species that ferments mannitol anaerobically. The genus contains some 20 distinct species. Two groups of animal-specific, coagulase-variable strains have been granted species status: and . As is generally true of bacteria, staphylococci possess a wide spectrum of variable traits that represent variable genes or variably expressed genes. Study of the genotypic basis of these variable traits has revealed variable genes, such as those carried by plasmids, transposons, and other heterologous genetic elements, and variably expressed genes, such as those belonging to the global regulon. Species-specific surface carbohydrate antigens of and have been identified as teichoic acids. Four different protein hemolysins of are now recognized; all produce clear β-hemolysis, but they differ in RBC species specificity and mechanism of action. A large majority of the toxic shock syndrome (TSST)-1-producing strains have a characteristic biotype that includes sensitivity to typing phage 29 or 52 or both and the presence of chromosomally located resistances to Cd, AsO , and penicillin. During succeeding years, the frequency of resistant strains increased rapidly, and in many clinical settings, multiple antibiotic resistance is now the rule. Even more problematic is the mechanism of pathogenicity of and other opportunistic coagulase-negative species, which have recently equalled and sometimes surpassed as nosocomial pathogens.

Citation: Novick R. 1993. , p 17-33. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch2

Key Concept Ranking

Toxic Shock Syndrome Toxin 1
0.51072276
Gene Expression and Regulation
0.4629679
Bacterial Proteins
0.449529
0.51072276
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Gram stain of exudate containing intracellular and extracellular staphylococci. Magnification, × 650. (From reference with permission.)

Citation: Novick R. 1993. , p 17-33. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Scanning electron photomicrograph of in serum-salts broth. (From reference with permission.)

Citation: Novick R. 1993. , p 17-33. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Dendrogram of phylogenetic relationships based on homologies of 16S rRNA. The scale represents the similarity coefficient (S value; the percentage of shared oligonucleotides in staphylococcal nuclease digests. (From reference with permission.)

Citation: Novick R. 1993. , p 17-33. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Southern blotting with probes for chromosomal transposons. Lanes 4 through 7 in each panel contain 1 restriction digests of chromosomal DNA from TSS-causing strains that are epidemiologically related. Lanes 1 through 3 contain digests of chromosomal DNA from epidemiologically unrelated TSS strains. (A) Probe specific for the β-lactamase gene; (B) probe specific for Tn (C) probe specific for the TSST-1 gene. (From reference with permission.)

Citation: Novick R. 1993. , p 17-33. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

(A) Negatively stained fragment of rabbit RBC lysed with -toxin. Numerous 10-nm ring-shaped structures are seen over the membrane (arrows). (B) Isolated α-toxin hexamers in detergent solution. (C) Lecithin liposomes carrying reincorporated α-toxin hexamers. The hexamers are seen as stubs along the edge of the liposomal membrane and as rings over the membrane (arrows). Characteristically, liposomes that escape incorporation of the toxin are impermeable to the stain (asterisk). (From reference with permission.)

Citation: Novick R. 1993. , p 17-33. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Functional genetic map of pT181. Important restriction sites are given with nucleotide positions. Wavy lines represent known transcripts; solid blocks represent known promoters; heavy lines represent reading frames known to encode proteins; lp, putative leader peptide. Functional elements (in counterclockwise order: cop, copy control; ORI, replication origin; RepC, initiator protein coding sequence; Tet, tetracycline resistance determinant (whether there are one or two genes is still uncertain); t, probable termination signal for RS, recombination site A, promoter; Pre, coding sequence; Cmp, competition determinant; RS, recombination site B; Pal A, palindrome A; and countertranscript promoters.

Citation: Novick R. 1993. , p 17-33. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Map of staphylococcal conjugative plasmid pG0l. Kilobase coordinates begin at 6 o'clock at the single I site (P). Dark arrows are IS-like elements; direction of each arrow indicates the direction of transcription of the single open reading frame on IS, to which these IS-like elements are homologous. Open boxes are antimicrobial resistance genes or the conjugative transfer () region. The arrow at the end of the box designating the trimethoprim resistance gene (Tp) indicates the direction of transcription. The arrow at 5 o'clock indicates the specific RI fragment in which a mobile element encoding penicillinase () inserts. While the element is not present on pG01, its insertion site has been mapped on other homologous conjugative plasmids. Other abbreviations: Gm, gentamicin resistance; Qam, quaternary ammonium-ethidium bromide resistance. Restriction endonuclease cleavage sites are RI (E), II (B), and HI (Bm).

Citation: Novick R. 1993. , p 17-33. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

Maps of cloning vectors useful for (A) pWN1818 ( ). pWN1818 is a promoter-probe vector derived from pA07 ( ), a fusion of () containing the 6.9-kb RI-B fragment of pl258 ( ) to a 0.5-kb segment containing the ColEl origin, ori(E) (12 to 9 o'clock). pC194 (9 to 12 o'clock) was inserted into the unique dIII site of pA07, the promoter was eliminated by 31 digestion, and finally, the pUC18 polylinker (Mc) was inserted as shown ( ). Versions of this vector with stop codons in all three reading frames, with the polylinker in the opposite orientation, or with the Shine-Dalgarno sequence deleted are available. (HindIII), a dIII site that has been filled in and religated; cadA' and asa', truncated and genes; blal, control region with a constitutive mutation. (B) pRN6725 ( ). pRN6725 is a promoter vector derived by inserting the dIII-XI fragment containing the promoter plus two-thirds of the blaZ structural gene into the polylinker region of pRN5543, a pC194 derivative. DNA inserted into the polylinker is transcribed from the promoter, which can be made inducible by providing the repressor in trans. P-bla, -lactamase promoter; blaZ', truncated blaZ; palB, dyad region of unknown function; rep, rep gene of pC194; ori, leading-strand replication origin; cat, Cm gene; palA, lagging-strand replication origin; ori, origin. (C) Protein A fusion vectors pRITl 6 and pRIT21-23. These vectors were constructed by cloning to pEMBL9 a 1.1-kb fragment containing a 3′ truncated gene lacking the coding region for the C-terminal membrane-spanning domain of protein A and containing the pUC18 polylinker sites just 3′ to the fragment. Staphylococcal plasmid pC194 was then inserted between ColEl and regions to give pRIT16, and a transcription termination signal (T) was inserted just past the polylinker region to give pRIT21-23. Cloning to the polylinker in this vector will, if in frame, produce fusion proteins that may be periplasmic in and secreted in (depending on the fused protein). The native promoter is present and is supplemented by the promoter (arrow) ( ). (D) pPL703. This plasmid consists of a 1,250-bp I-II fragment of NCIB8600 DNA inserted between the RI and HI sites of pUB110 by use of ? 21 -bp RI-I fragment from m13mp7 ( ). The promoterless gene resides within the 1,250-bp fragment, and the gene is followed by an efficient transcription termination signal, designated ( ). The pUB 110 portion of pPL703 provides an origin of replication and a neomycin resistance gene (Neo). specifies chloramphenicol acetyltransferase when the gene is transcriptionally activated by inserting a promoter into any of four unique restriction sites 5′ to RI, HI, I, and I. RBS-1, RBS-2, and RBS-3 designate the approximate locations of ribosome-binding sites identified by their complementarity to 26S rRNA. Since the regulatory sequences (→←) are intact, chloramphenicol inducibility is retained. Accordingly, with a promoter-containing derivative of pPL703, cloning of any gene in frame into the coding sequence will result in a chloramphenicol-inducible fusion protein. Reprinted from Lovett et al. ( ) by kind permission from the publishers. Ori, origin.

Citation: Novick R. 1993. , p 17-33. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9
Figure 9

Phage 11 map. Restriction sites indicated were mapped by Bachi ( ), Lofdahl et al. ( ), and Novick et al. ( ). The arrow pointing to II-E indicates the ??? site ( ); kbp refers to the circular scale outside the RI map. Early, head, and tail regions were mapped by suppressor-sensitive mutations ( ), and these regions were correlated with the physical map by cloning ( ) (the shaded fragments cause high-frequency transduction when cloned to a plasmid [see text]) and by analysis of the 11::ρ?258 plasmid-phage recombinant 11 ( ). Temperature-sensitive mutations (ts) isolated by this laboratory (N) (unpublished data), by Cohen et al. (sc) ( ), or by Sjostrom and Philipson (sp) ( ) have been localized by cloning. Capital letters represent genes mapped by complementation of mutants ( ); has been mapped by sequencing of the cloned prophage junctions ( ), and has been mapped by cloning ( ).

Citation: Novick R. 1993. , p 17-33. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818388.chap2
1. Abraham, L. J.,, and J. I. Rood. 1988. The Clostridium perfringens chloramphenicol resistance transposon Tn4451 excises precisely in Escherichia coli. Plasmid 19:164168.
2. Anderson, E. S.,, and R. E. O. Williams. 1956. Bacteriophage typing of enteric pathogens and staphylococcus and its use in epidemiology. J. Clin. Pathol. 9:94127.
3. Argos, P.,, A. Landy,, K. Abremski,, J. B. Egan,, E. Haggard-Ljungquist,, R. H. Hoess,, M. L. Kahn,, B. Kalionis,, S. B. L. Narayana,, L. S. Plerson III,, N. Sternberg,, and J. M. Leong. 1986. The integrase family of site-specific recombínases: regional similarities and global diversity. EMBO J. 5:433440.
4. Asheshov, E. H. 1969. The genetics of penicillinase production in Staphylococcus aureus strain PS80. J. Gen. Microbiol. 59:289301.
5.Bachi, B. 1980. Physical mapping of the Bgl I, Bgl II, Pst I and Eco RI restriction fragments of staphylococcal phage φ11 DNA. Mol. Gen. Genet. 180:391398.
6. Barberis-Maino, L.,, B. Berger-Bachi,, H. Weber,, W. D. Beck,, and F. H. Kayser. 1987. IS431, a staphylococcal insertion sequence-like element related to IS26 from Proteus vulgaris. Gene 59:107113.
7. Bastos, M. C. F.,, and E. Murphy. 1988. Transposon Tn554 encodes three products required for transposition. EMBO J. 7:29352941.
8. Betley, M. J.,, and J. J. Mekalanos. 1985. Staphylococcal enterotoxin A is encoded by phage. Science 229:185187.
9. Bhakdi, S.,, and J. Tranum-Jensen. 1984. Mechanism of complement cytolysis and the concept of channel-forming proteins. Philos. Trans. R. Soc. London Ser. B 306: 311324.
9a. Buchanan, R. E.,, and N. E. Gibbons (ed.). 1974. Bergey's Manual of Determinative Bacteriology. Williams & Wilkins, Baltimore.
10. Chappie, R.,, and P. R. Stewart. 1987. Polypeptide synthesis during lytic induction of phage 11 of Staphylococcus aureus. Virology 68:14011409.
11. Chu, M. C.,, B. N. Kreiswirth,, P. A. Pattee,, R. P. Novick,, M. E. Melish,, and J. J. James. 1988. Association of toxic shock toxin-1 determinant with a heterologous insertion at multiple loci in the Staphylococcus aureus chromosome. Infect. Immun. 56:27022708.
12. Cohen, S.,, H. M. Sweeney,, and S. K. Basu. 1977. Mutations in prophage φ11 that impair the transducibility of their Staphylococcus aureus lysogens for methicillin resistance. J. Bacteriol. 129:237245.
13. Coleman, D. C.,, J. P. Arbuthnott,, H. M. Pomeroy,, and T. H. Birkbeck. 1986. Cloning and expression in Escherichia coli and Staphylococcus aureus of the beta-lysin determinant from Staphylococcus aureus: evidence that bacteriophage conversion of beta-lysin activity is caused by insertional inactivation of the beta-lysin determinant. Microb. Pathog. 1:549564.
14. Dubnau, D. 1984. Translational attenuation: the regulation of bacterial resistance to the macrolide-lincos-amide-streptogramin B antibiotics. Crit. Rev. Biochem. 16:103132.
15. Duvall, E. J.,, N. P. Ambulos, Jr.,, and P. S. Lovett. 1987. Drug-free induction of a chloramphenicol acetyltransferase gene in Bacillus subtilis by stalling ribosomes in a regulatory leader. J. Bacteriol. 169:42354241.
15a. Ehrlich, S. D. Personal communication.
16. Elek, S. O.,, and E. Levy. 1954. The nature of discrepancies between hemolysins in culture filtrates and plate hemolysin patterns of staphylococci. J. Pathol. Bacteriol. 68:3140.
17. Fitton, J. E.,, A. Dell,, and W. V. Shaw. 1980. The amino acid sequence of the delta haemolysin of Staphylococcus aureus. FEBS Lett. 115:209212.
18. Foster, T. J.,, M. O'Reilly,, P. Phonimdaeng,, J. Cooney,, A. H. Patel,, and A. J. Bramley,. 1990. Genetic studies of virulence factors of Staphylococcus aureus. Properties of coagulase and ��-toxin, ��-toxin, �� -toxin and protein A in the pathogenesis of S. aureus infections, p. 403420. In R. P. Novick (ed.), Molecular Biology of the Staphylococci. VCH Publishers, New York.
19. Gennaro, M. L.,, J. Kornblum,, and R. P. Novick. 1987. A site-specific recombination function in Staphylococcus aureus plasmids. J. Bacteriol. 169:26012610.
19a. Gennaro, M. L.,, and R. P. Novick. Unpublished data.
20. Gotz, F.,, J. Zabielski,, L. Philipson,, and M. Lindberg. 1983. DNA homology between the arsenate resistance plasmid pSX267 from Staphylococcus xylosus and the penicillinase plasmid pI258 from Staphylococcus aureus. Plasmid 9:126137.
21. Gray, G. S. 1983. Characterization of plasmids in aminocyclitol-resistant Staphylococcus aureus: electron microscopic and restriction endonuclease analysis. Plasmid 9:159181.
21a. Gruss, A.,, and R. Novick. Unpublished data.
22. Gruss, A.,, H. F. Ross,, and R. P. Novick. 1987. Functional analysis of a palindromic sequence required for normal replication of several staphylococcal plasmids. Proc. Natl. Acad. Sci. USA 84:21652169.
23. Gruss, A. D.,, and S. D. Ehrlich. 1989. The family of highly interrelated single-stranded deoxyribonucleic acid plasmids. Microbiol. Rev. 53:231241.
24. Hartman, B. J.,, and A. Tomasz. 1984. Low-affinity penicillin binding protein associated with ��-Iactam resistance in Staphylococcus aureus. J. Bacteriol. 158: 513516.
24a. Holt, J. G. (ed.). 1984. Bergey's Manual of Systematic Bacteriology. William & Wilkins, Baltimore.
25. Horinouchi, S.,, and B. Weisblum. 1982. Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance. J. Bacteriol. 150:815825.
26. Horinouchi, S.,, and B. Weisblum. 1982. Nucleotide sequence and functional map of pE194, a plasmid that specifies inducible resistance to macrolide, lincosamide, and streptogramin type B antibiotics. J. Bacteriol. 150:804814.
27. Inglis, B.,, H. Waldron,, and P. R. Stewart. 1987. Molecular relatedness of Staphylococcus aureus typing phages measured by DNA hybridization and by high resolution thermal denaturation analysis. Arch. Virol. 93:6980.
28. Inoue, M.,, and S. Mitsuhashi. 1976. Recombination between phage SI and the Tc resistant gene on Staphylococcus aureus plasmid. Virology 72:322329.
29. Iordanescu, S.,, and M. Surdeanu. 1980. New incompatibility groups for S. aureus plasmids. Plasmid 4:256260.
30. Iordanescu, S.,, M. Surdeanu,, P. Della Latta,, and R. Novick. 1978. Incompatibility and molecular relationships between small staphylococcal plasmids carrying the same resistance marker. Plasmid 1:468479.
31. Jones, J.,, S. Yost,, and P. Pattee. 1987. Transfer of the conjugal tetracycline resistance transposon Tn916 from Streptococcus faecalis to Staphylococcus aureus and identification of some insertion sites in the staphylococcal chromosome. J. Bacteriol. 169:21212131.
32. Khan, S. A.,, and R. P. Novick. 1982. Structural analysis of plasmid pSN2 in Staphylococcus aureus: no involvement in enterotoxin B production. J. Bacteriol. 149:642649.
33. Khan, S. A.,, and R. P. Novick. 1983. Complete nucleotide sequence of pT181, a tetracycline resistance plasmid from Staphylococcus aureus. Plasmid 10:151159.
34. Koepsel, R. R.,, R. W. Murray,, W. D. Rosenblum,, and S. A. Khan. 1985. The replication initiator protein of plasmid pT181 has sequence-specific endonuclease and topoisomerase-like activities. Proc. Natl. Acad. Sci. USA 82:68456849.
35. Kondo, I.,, S. Itoh,, and Y. Yoshizawa. 1981. Staphylococcal phages mediating the lysogenic conversion of staphylokinase. Zentralbl. Bakteriol. Suppl. 10:357362.
36. Kornblum, J.,, B. Kreiswirth,, S. J. Projan,, H. Ross,, and R. P. Novick,. 1990. agr: a polycistronic locus regulating exoprotein synthesis in Staphylococcus aureus, p. 373402. In R. P. Novick (ed.). Molecular Biology of the Staphylococci. VCH Publishers, New York.
36a. Kornblum, J.,, and R. P. Novick. Unpublished data.
36b. Kreiswirth, J.,, J. Kornblum,, R. D. Arbeit,, W. Eisner,, J. N. Maslow,, A. McGeer,, D. E. Low,, and R. P. Novick. 1993. Evidence for a clonal origin of methicillin resistance in S. aureus. Science 259:227230.
37. Krelswirth, B.,, S. Lofdahl,, M. Betley,, M. O'Reilly,, P. Schlievert,, M. Bergdoll,, and R. P. Novick. 1983. The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature (London) 305:709712.
38. Krelswirth, B. N.,, G. R. Kravitz,, P. M. Schlievert,, and R. P. Novick. 1986. Nosocomial transmission of a strain of Staphylococcus aureus causing toxic shock syndrome. Ann. Intern. Med. 105:704707.
39. Kretschmer, P. J.,, and J. B. Egan. 1975. Genetic map of the staphylococcal bacteriophage φ11. J. Virol. 16:642651.
39a. Lacks, S. A.,, P. Lopez,, B. Greenberg,, and M. Espinosa. 1986. Identification and analysis of genes for tetracycline resistance and replication functions in the broad-host-range plasmid pLSl. J. Mol. Biol. 4:753765.
40. Lampson, B. C.,, and J. T. Parisi. 1986. Naturally occurring Staphylococcus epidermidis plasmid expressing constitutive macrolide-lincosamide-streptogramin B resistance contains a deleted attenuator. J. Bacteriol. 166:479483.
41. Lee, C. Y.,, and J. J. Iandolo. 1986. Lysogenic conversion of staphylococcal lipase caused by insertion of the bacteriophage phage L54a genome into the lipase structural gene. J. Bacteriol. 166:385391.
42. Lee, C. Y.,, and J. J. Iandolo. 1986. Integration of staphylococcal phage L54a occurs by site-specific recombination: structural analysis of the attachment sites. Proc. Natl. Acad. Sci. USA 83:54745478.
43. Lee, C. Y.,, and J. J. Iandolo. 1988. Structural analysis of staphylococcal bacteriophage phi 11 attachment sites. J. Bacteriol. 170:24092411.
44. Lindberg, M.,, K. Jonsson,, H. Muller,, H. Jonsson,, C. Signas,, M. Hook,, R. Raja,, G. Raucci,, and G. M. Anan-tharamaiah,. 1990. Fibronectin-binding proteins in S. aureus, p. 327356. In R. P. Novick (ed.), The Molecular Biology of the Staphylococci. VCH Publishers, New York.
45. Lindquist, S.,, M. Galleni,, F. Lindberg,, and S. Normark. 1989. Signalling proteins in enterobacterial AmpC ��-lactamase regulation. Mol. Microbiol. 3:10911102.
46. Lofdahl, S.,, J. Zabielski,, and L. Philipson. 1981. Structure and restriction enzyme maps of the circularly permuted DNA of staphylococcal bacteriophage φ11. J. Virol. 37:784794.
47. Lovett, P. S.,, D. M. Williams,, E. J. Duvall,, and S. Mongkilsuk,. 1984. Chloramphenicol inducibility of foreign gene expression in B. subtilis, p. 275283. In A. T. Ganesan, and J. A. Hoch (ed.), Genetics and Biotechnology of Bacilli, vol. 1. Academic Press, Inc., New York.
48. Ludwig, W.,, K. Schleifer,, G. E. Fox,, E. Seewaldt,, and E. Stackebrandt. 1981. A phylogenetic analysis of staphylococci, Peptococcus saccharolyticus and Micrococcus mucilaginosus. J. Gen. Microbiol. 125:357366.
49. Lyon, B. R.,, M. T. Gillespie,, and R. A. Skurray. 1987. Detection and characterization of IS256, an insertion sequence in Staphylococcus aureus. J. Gen. Microbiol. 133:30313038.
50. Lyon, B. R.,, and R. Skurray. 1987. Antimicrobial resistance of Staphylococcus aureus: genetic basis. Microbiol. Rev. 51:88134.
51. Matthews, P. R.,, B. Inglis,, and P. R. Stewart,. 1990. Clustering of resistance genes in the mec region of the chromosome of S. aureus, p. 6983. In R. P. Novick (ed.). Molecular Biology of the Staphylococci. VCH Publishers, New York.
52. McKenzie, T.,, T. Hoshino,, T. Tanaka,, and N. Sueoka. 1986. The nucleotide sequence of pUBl 10: some salient features in relation to replication and its regulation. Plasmid 15:93103.
53. Milk, J. T.,, Y. Tsai,, M. Kendrick,, R. K. Hickman,, and E. H. Kaes. 1985. Control of production of toxic-shock-syndrome toxin-1 (TSST-1) by magnesium ion. J. Infect. Dis. 151:11581161.
54. Mongkolsuk, S.,, Y. Chiang,, R. B. Reynolds,, and P. S. Lovett. 1983. Restriction fragments that exert promoter activity during post-exponential phase growth of B. subtilis. J. Bacteriol. 155:13991406.
55. Monod, M.,, C. Denoya,, and D. Dubnau. 1986. Sequence and properties of pIM13, a macrolide-lincosamidestreptogramin B resistance plasmid from Bacillus subtilis. J. Bacteriol. 167:138147.
56. Muller, R. E.,, T. Ano,, T. Imanaka,, and S. Alba. 1986. Complete nucleotide sequences of Bacillus plasmids pUB110dB, pRBHl and its copy mutants. Mol. Gen. Genet. 202:169171.
56a. Murphy, E. Personal communication.
57. Murphy, E. 1983. Inhibition of Tn554 transposition: deletion analysis. Plasmid 10:260269.
58. Murphy, E., 1989. Transposable elements in gram-positive bacteria, p. 269288. In D. E. Berg,, and M. M. Howe (ed.), Mobile DNA. American Society for Microbiology, Washington, D.C.
59. Murphy, E.,, L. Huwyler,, and M. Bastos. 1985. Trans-poson Tn554: complete nucleotide sequence and isolation of transposition-defective and antibiotic-sensitive mutants. EMBO J. 4:33573365.
60. Murphy, E.,, and S. Lofdahl. 1984. Transposition of Tn554 does not generate a target duplication. Nature (London) 307:292294.
61. Murphy, E.,, and R. Novick. 1980. Site-specific recombination between plasmids of Staphylococcus aureus. J. Bacteriol. 141:316326.
62. Murphy, E.,, and R. P. Novick. 1979. Physical mapping of S. aureus penicillinase plasmid pI524: characterization of an invertible region. Mol. Gen. Genet. 175:1930.
63. Murphy, E.,, S. Phillips,, I. Edelman,, and R. P. Novick. 1981. Tn554: isolation and characterization of plasmid insertions. Plasmid 5:292305.
64. Nilsson, B.,, L. Abrahmsen,, and M. Uhlen. 1985. Immobilization and purification of enzymes with staphylococcal protein A gene fusion vectors. EMBO J. 4:10751080.
65. Novick, R. 1967. Properties of a cryptic high-frequency transducing phage in Staphylococcus aureus. Virology 33:155166.
65a. Novick, R. P. Unpublished data.
65b. Novick, R. P. 1978. The mechanism of translocation in bacteria. Brookhaven Symp. Biol. 29:272276.
66. Novick, R. P. 1989. Staphylococcal plasmids and their replication. Annu. Rev. Microbiol. 43:537565.
66a. Novick, R. P. (ed.). 1990. Molecular Biology of the Staphylococci. VCH Publishers, New York.
67. Novick, R. P.,, G. K. Adler,, S. J. Projan,, S. Carleton,, S. Highlander,, A. Gruss,, S. A. Khan,, and S. Iordanescu. 1984. Control of pT181 replication. I. The pT181 copy control function acts by inhibiting the synthesis of a replication protein. EMBO J. 3:23992405.
68. Novick, R. P.,, I. Edelman,, and S. Lofdahl. 1986. Small Staphylococcus aureus plasmids are transduced as linear multimers which are formed and resolved by replicative processes. J. Mol. Biol. 192:209220.
69. Novick, R. P.,, I. Edelman,, M. D. Schwesinger,, D. Gruss,, E. C. Swanson,, and P. A. Pattee. 1979. Genetic translocation in Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 76:400404.
70. Novick, R. P.,, S. Iordanescu,, S. J. Projan,, J. Kornblum,, and I. Edelman. 1989. pT181 plasmid replication is regulated by a countertranscript-driven transcriptional attenuator. Cell 59:395404.
71. Novick, R. P.,, E. Murphy,, T. J. Gryczan,, E. Baron,, and I. Edelman. 1979. Penicillinase plasmids of Staphylococcus aureus: restriction-deletion maps. Plasmid 2:109129.
72. Novick, R. P.,, S. J. Projan,, W. Rosenblum,, and I. Edelman. 1984. Staphylococcal plasmid cointegrates are formed by host- and phage-mediated general rec systems that act on short regions of homology. Mol. Gen. Genet. 195:374377.
73. Novick, R. P.,, and C. Roth. 1968. Plasmid-linked resistance to inorganic salts in Staphylococcus aureus. J. Bacteriol. 95:13351342.
74. Oka, A.,, N. Nomura,, M. Hiroyuki,, and K. Sugimoto. 1979. Nucleotide sequence of small ColEl derivatives: structure of the regions essential for autonomous replication and colicin El immunity. Mol. Gen. Genet. 172:151159.
75. Oskouian, B.,, E. L. Rosey,, F. B. Breidt, Jr.,, and G. C. Stewart,. 1991. The lactose operon of S. aureus, p. 99112. In R. P. Novick (ed.), The Molecular Biology of the Staphylococci. VCH Publishers, New York.
76. Patel, A. H.,, J. Kornblum,, B. Kreiswirth,, R. P. Novick,, and T. J. Foster. 1992. Regulation of the protein A-en-coding gene in Staphylococcus aureus. Gene 114:2534.
76a. Pattee, P. Personal communication.
77. Pattee, P. A.,, H. Lee,, and J. P. Bannantine,. 1990. Genetic and physical mapping of the chromosome of Staphylococcus aureus, p. 4158. In R. P. Novick (ed.). Molecular Biology of the Staphylococci. VCH Publishers, New York.
78. Peyru, G.,, L. F. Wexler,, and R. P. Novick. 1969. Naturally-occurring penicillinase plasmids in Staphylococcus aureus. J. Bacteriol. 98:215221.
78a. Primrose, S. B.,, and S. D. Ehrlich. 1981. Isolation of plasmid deletion mutants and study of their instability. Plasmid 6:193201.
79. Projan, S. J.,, and R. P. Novick. 1988. Comparative analysis of five related staphylococcal plasmids. Plasmid 19:203221.
80. Ranellin, D. M.,, C. L. Jones,, M. B. Johns,, G. J. Mussey, and Khan. 1985. Molecular cloning of staphylococcal enterotoxin B gene in Escherichia coli and Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 82:58505854.
81. Recsei, P.,, A. Gruss,, and R. Novick. 1987. Cloning, sequence, and expression of the lysostaphin gene from Staphylococcus simulans. Proc. Natl. Acad. Sci. USA 84:11271131.
82. Rees, P. J.,, and B. A. Fry. 1981. The morphology of staphylococcal bacteriophage K and DNA metabolism in infected Staphylococcus aureus. J. Gen. Virol. 53:293307.
83. Rowland, S. J.,, and K. G. Dyke. 1989. Characterization of the staphylococcal ��-lactamase transposon Tn552. EMBOJ. 8:27612773.
84. Ruby, C.,, and R. P. Novick. 1975. Plasmid interactions in Staphylococcus aureus. Nonadditivity of compatible plasmid DNA pools. Proc. Natl. Acad. Sci. USA 72:50315035.
85. Sako, T.,, S. Sawaki,, T. Sakurai,, S. Ito,, Y. Yoshizawa,, and I. Kondo. 1983. Cloning and expression of the staphylokinase gene of Staphylococcus aureus in Escherichia coli. Mol. Gen. Genet. 190:271277.
86. Schaefler, S. 1982. Bacteriophage-mediated acquisition of antibiotic resistance by Staphylococcus aureus type 88. Antimicrob. Agents Chemother. 21:460467.
87. Scheifele, D. W.,, G. L. Bjornson,, R. A. Dyer,, and J. E. Dimmick. 1987. Delta-like toxin produced by coagulase-negative staphylococci is associated with neonatal necrotizing enterocolitis. Infect. Immun. 55:22682273.
87a. Sheehan, D. Personal communication.
88. Sheehy, R. J.,, and R. P. Novick. 1975. Studies on plasmid replication. IV. Replicative intermediates. J. Mol. Biol. 93:237253.
89. Silver, S.,, and R. A. Laddaga,. 1990. Molecular genetics of heavy metal resistance systems of Staphylococcus plasmids, p. 531549. In R. P. Novick (ed.). Molecular Biology of the Staphylococci. VCH Publishers, New York.
90. Sjostrom, J.,, and L. Philipson. 1974. Role of the φ11 phage genome in competence of Staphylococcus aureus. J. Bacteriol. 119:1932.
91. Smith, R. M.,, J. T. Parisi,, L. Vlcal,, and J. N. Baldwin. 1977. Nature of the genetic determinant controlling encapsulation in Staphylococcus aureus Smith. Infect. Immun. 17:231234.
92. Thomas, W. D., Jr.,, and G. L. Archer. 1989. Identification and cloning of the conjugative transfer region of the Staphylococcus aureus plasmid pG0l. J. Bacteriol. 171:684691.
93. Townsend, D. E.,, S. Bolton,, N. Ashdown,, D. I. Annear,, and W. B. Grubb. 1986. Conjugative, staphylococcal plasmids carrying hitch-hiking transposons similar to Tn554: intra- and interspecies dissemination of erythromycin resistance. Ausi. I. Expression Biol. Med. Sci. 64:367379.
94. Tzagoloff, H.,, and R. P. Novick. 1977. Geometry of cell division in Staphylococcus aureus. J. Bacteriol. 129:343350.
95. Vandenesch, F.,, J. Kornblum,, and R. P. Novick. 1991. A temporal signal, independent of agr, is required for hla but not spa transcription in Staphylococcus aureus. I. Bacteriol. 173:63136320.
96. Wadstrom, T.,, J. Erdei,, M. Paulsson,, and A. S. Naidu,. 1990. Binding of collagen and vitronectin to S. aureus and coagulase-negative staphylococci (CNS), p. 357371. In R. P. Novick (ed.), Molecular Biology of the Staphylococci. VCH Publishers, New York.
97. Wang, P.,, S. J. Projan,, K. Leason,, and R. P. Novick. 1987. Translational fusion with a secretory enzyme as an indicator. J. Bacteriol. 169:30823087.
97a. Watanakunakorn, C.,, R. J. Fass,, A. S. Klainer,, and M. Hamburger. 1971. Light and scanning-beam electron microscopy of wall-defective Staphylococcus aureus induced by lysostaphin. Infect. Immun. 4:7378.
98. Weber, D. A.,, and R. V. Goering. 1988. Tn4201, a β-lactamase transposon in Staphylococcus aureus. Anti-microb. Agents Chemother. 32:11641169.
99. Weinstein, R. A.,, S. A. Kabins,, C. Nathans,, H. M. Sweeney,, H. W. Jaffe,, and S. Cohen. 1982. Gentamicin-resistant staphylococci as hospital flora: epidemiology and resistance plasmids. J. Infect. Dis. 145:374382.
99a. White, A.,, and G. F. Grooks,. 1977. Furunculosis, pyoderma, and impetigo, p. 785793. In P. D. Hoeprich (ed.), Infectious Diseases, 2nd ed. Harper & Row, Hag-erstown, Md.
100. Wiley, B. B.,, and M. Rogolsky. 1977. Molecular and serological differentiation of staphylococcal exfoliative toxin synthesized under chromosomal and plasmid control. Infect. Immun. 18:487494.
101. Williams, D. M.,, J. Duvall,, and P. S. Lovett. 1981. Cloning restriction fragments that promote expression of a gene in Bacillus subtilis. J. Bacteriol. 146:11621165.
102. Wyman, L.,, R. V. Goering,, and R. P. Novick. 1974. Genetic control of chromosomal and plasmid recombination in Staphylococcus aureus. Genetics 76:681702.
103. Wyman, L.,, and R. P. Novick. 1974. Studies on plasmid replication. IV. Complementation of replication-defective mutants by an incompatibility-deficient plasmid. Mol. Gen. Genet. 135:149161.
104. Youngman, P. Personal communication.

Tables

Generic image for table
Table 1

Accessory genetic traits in

Citation: Novick R. 1993. , p 17-33. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch2
Generic image for table
Table 2

Staphylococcal plasmids

Citation: Novick R. 1993. , p 17-33. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch2
Generic image for table
Table 3

Cloning vectors

Citation: Novick R. 1993. , p 17-33. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch2
Generic image for table
Table 4

Transposon delivery vectors

Citation: Novick R. 1993. , p 17-33. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch2

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error