Chapter 21 : Biosynthesis of Arginine, Proline, and Related Compounds

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Biosynthesis of Arginine, Proline, and Related Compounds, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap21-1.gif /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap21-2.gif


General aspects of arginine and proline metabolism in prokaryotes have been covered in various reviews. But studies with gram-positive bacteria are regrettably fragmentary. and probably other species of catabolize arginine via 4-guanidinobutyramide and 4-guanidinobutyrate. It has been reported that possesses two P5C dehydrogenases, whose synthesis is controlled by arginine or proline. The cyclodeaminase reaction, which yields proline from ornithine in species, seems to function primarily for ornithine catabolism rather than proline biosynthesis. The -- clusters from and were first cloned in by selecting for complementation of arginine auxotrophs. A significant finding was that where as mutations in , , or have no effect on levels of the biosynthetic enzymes, mutations lead to simultaneous loss of repressibility of the biosynthetic enzymes and of inducibility of the catabolic enzymes, with the implication that these two controls share at least one common component. Mutations to proline auxotrophy map at a further locus, ; these mutants do not respond to arginine, possibly because in spp., levels of arginase are low and show only weak inducibility by arginine. Arginine, like many aminoacids, is a precursor of many of the secondary metabolites (including antibiotics) elaborated by spp. An intriguing connection between proline catabolism and transport and the production of a secondary metabolite, undecylprodigiosin, of which proline is a precursor, was found in .

Citation: Baumberg S, Klingel U. 1993. Biosynthesis of Arginine, Proline, and Related Compounds, p 299-306. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch21

Key Concept Ranking

Acetyl Coenzyme A
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Pathways of arginine, proline, and polyamine metabolism in and =, pathways found in both organisms; —, pathways found only in Numbered enzymes mediating the various steps are listed in Table 1 . The following pathways are referred to in this chapter but not indicated in this figure: the ornithine cyclase pathway of proline biosynthesis and catabolism spp.) and the guanidinobutyrate pathway of arginine catabolism spp.).

Citation: Baumberg S, Klingel U. 1993. Biosynthesis of Arginine, Proline, and Related Compounds, p 299-306. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Atkinson, M. R.,, and S. H. Fisher. 1990. Identification of genes and gene products whose expression is activated during nitrogen-limited growth in Bacillus subtilis. J. Bacteriol. 173:2327.
2. Bachmann, B. J. 1990. Linkage map of Escherichia coli K-12, edition 8. Microbiol. Rev. 54:130197.
3. Baumberg, S.,, and C. R. Harwood. 1979. Carbon and nitrogen repression of arginine catabolic enzymes in Bacillus subtilis. J. Bacteriol. 137:189196.
4. Baumberg, S.,, H. Kriigel,, and D. Noack (ed.). 1991. Genetics and Product Formation in Streptomyces. Plenum Press, New York.
5. Birch, A.,, A. Hausler,, M. Vogtli,, W. Krek,, and R. Hiitter. 1989. Extremely large chromosomal deletions are intimately involved in genetic instability and genomic rearrangements in Streptomyces glaucescens. Mol. Gen. Genet. 217:447458.
6. Broman, K.,, N. Lauwers,, V. Stalon,, and J. M. Wiame. 1978. Oxygen and nitrate in utilization by Bacillus licheniformis of the arginase and arginine deiminase routes of arginine catabolism and other factors affecting their synthesis. J. Bacteriol. 135:920927.
7. Costilow, R. N.,, and L. Laycock. 1969. Reactions involved in the conversion of ornithine to proline in clostridia. J. Bacteriol. 100:622667.
8. Cunin, R., 1983. Regulation of arginine biosynthesis in prokaryotes, p. 5379. In K. M. Hermann, and R. L. Sommerville (ed.), Biotechnology Series 3: Amino Acid Biosynthesis and Genetic Regulation. Addison-Wesley, New York.
9. Cunin, R.,, T. Eckhardt,, J. Piette,, A. Boyen,, A. Pierard,, and N. Glansdorff. 1983. Molecular basis for modulated regulation of gene expression in the arginine regulon of Escherichia coli K12. Nucleic Acids Res. 11:50075019.
10. Cunin, R.,, N. Glansdorff,, A. Pierard,, and V. Stalon. 1986. Biosynthesis and metabolism of arginine in bacteria. Microbiol. Rev. 50:314352.
11. Czaplewskl, L. G.,, A. K. North,, M. C. M. Smith,, S. Baumberg,, and P. G. Stockley. 1992. Purification and initial characterization of AhrC: the regulator of arginine metabolism genes in Bacillus subtilis. Mol. Microbiol. 6:267275.
12. Davis, R. H. 1986. Compartmental and regulatory mechanisms in the arginine pathways of Neurospora crassa and Saccharomyces cerevisiae. Microbiol. Rev. 50:280313.
13. Débarbouilé, M.,, I. Martin-Verstraete,, F. Kunst,, and G. Rapoport. 1991. The Bacillus subtilis sigL gene encodes an equivalent of σ54 from gram negative bacteria. Proc. Natl. Acad. Sci. USA 88:90929096.
14. De Hauwer, G.,, R. Lavalle,, and J. M. Wiame. 1964. Etude de la pyrroline dehydrogenase et de la regulation du catabolisme de l'arginine et de la proline chez Bacillus subtilis. Biochim. Biophys. Acta 81:257269.
15. Deutscher, M. P.,, and A. Kornberg. 1968. Biochemical studies of bacterial sporulation and germination. VIII. Patterns of enzyme development during growth and sporulation of Bacillus subtilis. J. Biol. Chem. 243:46534660.
15a.. Devine, K.,, and M. O'Reilly. Personal communication.
16. Glansdorff, N., 1987. Biosynthesis of arginine and polyamines, p. 321344. In F. C. Neidhart,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, H. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C.
17. Harwood, C. R. 1974. Genetic control of arginine enzymes in the bacterium Bacillus subtilis. Ph.D. thesis, University of Leeds, Leeds, United Kingdom.
18. Harwood, C. R.,, and S. Baumberg. 1977. Arginine hydroxamate-resistant mutants of Bacillus subtilis with altered control of arginine metabolism. J. Gen. Microbiol. 100:177188.
19. Hindle, Z. 1990. A study of genes of arginine biosynthesis from Streptomyces. Ph.D. thesis, University of Leeds, Leeds, United Kingdom.
20. Hoch, S. O.,, C. Anagnostopoulos,, and I. P. Crawford. 1969. Enzymes of the tryptophan operon of Bacillus subtilis. Biochem. Biophys. Res. Commun. 35:838844.
21. Hood, D. W.,, R. Heldstra,, U. K. Swoboda,, and D. A. Hodgson. 1992. Molecular genetic analysis of proline and tryptophan biosynthesis in Streptomyces coelicolor A3 (2): interaction between primary and secondary metabolism—a review. Gene 115:512.
21a.. Hop wood, D. A. Personal communication.
22. Hopwood, D. A.,, M. J. Bibb,, K. F. Chater,, T. Kieser,, C. J. Bruton,, H. M. Kieser,, D. J. Lydiate,, C. P. Smith,, J. M. Ward,, and H. Schrempf. 1985. Genetic Manipulation of Streptomyces: a Laboratory Manual. The John Innes Foundation, Norwich, United Kingdom.
23. Hutson, J. Y.,, and M. Downing. 1968. Pyrimidine biosynthesis in Lactobacillus leichmannii. J. Bacteriol. 96: 12491254.
24. Issaly, I. M.,, and A. S. Issaly. 1974. Control of ornithine carbamoyltransferase by arginase in Bacillus subtilis. Eur. J. Biochem. 49:485495.
25. Itoh, Y.,, and H. Matsumoto. 1992. Mutations affecting regulation of the anabolic argF and the catabolic am genes in Pseudomonas aeruginosa PAO. Mol. Gen. Genet. 231:417425.
26. Kisumi, M.,, J. Kato,, M. Suguira,, and I. Chibata. 1971. Production of L-arginine by arginine hydroxamate-resistant mutants of Bacillus subtilis. Appl. Microbiol. 22:987991.
26a.. Klingel, U. Unpublished data.
27. Laishley, E. J.,, and R. W. Bernlohr. 1968. Regulation of arginine and proline catabolism in Bacillus licheniformis. J. Bacteriol. 96:322329.
28. Lim, D.,, J. D. Oppenheim,, T. Eckhardt,, and W. K. Maas. 1987. Nucleotide sequence of the argR gene of Escherichia coli K12 and isolation of its product, the arginine repressor. Proc. Natl. Acad. Set. USA 84:66976701.
28a.. Ludovice, M.,, P. Carrachas,, and P. Liras. Personal communication.
29. Mahler, I.,, J. Neumann,, and J. Marmur. 1963. Studies of genetic units controlling arginine biosynthesis in Bacillus subtilis. Biochim. Biophys. Acta 72:6979.
30. Mann, N. H.,, A. Mountain,, R. N. Munton,, M. C. M. Smith,, and S. Baumberg. 1984. Transcription analysis of a Bacillus subtilis arg gene following cloning in Escherichia colt in an initially unstable hybrid plasmid. Mol. Gen. Genet. 197:7581.
31. Martin, P. R.,, and M. H. Mulks. 1992. Molecular characterization of the argJ mutation in Neisseria gonorrhoeae strains with requirements for arginine, hypoxanthine, and uracil. Infect. Immun. 60:970975.
32. Martin, P. R.,, and M. H. Mulks. 1992. Sequence analysis and complementation studies of the argJ gene encoding ornithine acetyltransferase from Neisseria gonorrhoeae. J. Bacteriol. 174:26942701.
33. Messenguy, F.,, and J. M. Wiame. 1969. The control of ornithine transcarbamylase activity by arginase in Saccharomyces cerevisiae. FEBS Lett. 3:4749.
34. Mountain, A.,, and S. Baumberg. 1980. Map locations of some mutations conferring resistance to arginine hydroxamate in Bacillus subtilis 168. Mol. Gen. Genet. 178:691701.
35. Mountain, A.,, and S. Baumberg. 1984. Bacillus subtilis 168 mutants resistant to arginine hydroxamate in the presence of ornithine or citrulline. J. Gen. Microbiol. 130:12471252.
36. Mountain, A.,, N. H. Mann,, R. N. Munton,, and S. Baumberg. 1984. Cloning a Bacillus subtilis restriction fragment complementing auxotrophic mutants of eight Escherichia colt genes of arginine biosynthesis. Mol. Gen. Genet. 197:8289.
37. Mountain, A.,, J. McChesney,, M. C. M. Smith,, and S. Baumberg. 1986. Gene sequence within a cluster in Bacillus subtilis encoding early enzymes of arginine synthesis as revealed by cloning in Escherichia coli. J. Bacteriol. 165:10261028.
38. Mountain, A.,, M. C. M. Smith,, and S. Baumberg. 1990. Nucleotide sequence of the Bacillus subtilis argF gene encoding ornithine carbamoyltransferase. Nucleic Acids Res. 18:4594.
39. Neway, J. O.,, and R. L. Switzer. 1983. Purification, characterization, and physiological function of Bacillus subtilis ornithine carbamoyltransferase. J. Bacteriol. 155:512521.
40. Neway, J. O.,, and R. L. Switzer. 1983. Degradation of ornithine transcarbamylase in sporulating Bacillus subtilis cells. J. Bacteriol. 155:522530.
41. North, A. K. 1989. Analysis of a putative cloned arg repressor gene from Bacillus subtilis. Ph.D. thesis, University of Leeds, Leeds, United Kingdom.
42. North, A. K.,, M. C. M. Smith,, and S. Baumberg. 1989. Nucleotide sequence of a Bacillus subtilis arginine regulatory gene and homology of its product to the Escherichia coli arginine repressor. Gene 80:2938.
43. Ottow, J. C. G. 1974. Arginine dihydrolase activity in species of the genus Bacillus revealed by thin-layer chromatography. J. Gen. Microbiol. 84:209213.
44. Padilla, G.,, Z. Hindle,, R. Callis,, A. Corner,, M. Ludovice,, P. Liras,, and S. Baumberg,. 1991. The relationship between primary and secondary metabolism in streptomycetes, p. 3545. In S. Baumberg,, H. Kriigel,, and D. Noack (ed.), Genetics and Product Formation in Streptomyces. Plenum Press, New York.
45. Paulus, T. J.,, and R. L. Switzer. 1979. Characterization of pyrimidine-repressible and arginine-repressible carbamoylphosphate synthetases from Bacillus subtilis. J. Bacteriol. 137:8291.
46. PieYard, A., 1983. Evolution des systemes de synthese et d'utilisation du carbamoylphosphate, p. 5561. In G. Herve (ed.), L'Evolution des Proteines. Masson, Paris.
47. Pittard, A. J.,, and B. E. Davidson. 1991. TyrR protein of Escherichia coli and its role as repressor and activator. Mol. Microbiol. 5:15851592.
48. Potvin, B.,, and H. Gooder. 1975. Carbamylphosphate synthesis in Bacillus subtilis. Biochem. Genet. 13:125143.
49. Prozesky, O. W.,, W. O. K. Grabnow,, S. van der Merwe,, and J. N. Coetzee. 1973. Arginine cluster in Proteus-Providence group. J. Gen. Microbiol. 77:237240.
49a.. Rudd, B. A. M. Personal communication.
50. Sakanyan, V.,, A. Kochikyan,, I. Mett,, C. Legrain,, D. Charlier,, A. Plirard,, and N. Glansdorff. 1992. A re-examination of the pathway for ornithine biosynthesis in a thermophilic and two mesophilic Bacillus species. J. Gen. Microbiol. 138:125130.
51. Sakanyan, V. A.,, A. S. Hoysepyan,, I. L. Mett,, A. V. Kochikyan,, and P. K. Petrosan. 1990. Molecular cloning and structural-functional analysis of the arginine biosynthesis genes of the thermophilic bacterium Bacillus stearothermophilus. Genetika 26:19151925.
52. Schreier, H. J.,, T. M. Smith,, and R. M. Bernlohr. 1982. Regulation of nitrogen catabolism in Bacillus sp. J. Bacteriol. 151:971975.
52a.. Smith, M. C. M. Unpublished data.
53. Smith, M. C. M.,, L. Czaplewskl,, A. K. North,, S. Baumberg,, and P. G. Stockley. 1989. Sequences required for regulation of arginine biosynthesis promoters are conserved between Bacillus subtilis and Escherichia coli. Mol. Microbiol. 3:2328.
54. Smith, M. C. M., A. Mountain, and S. Baumberg. 1986. Cloning in Escherichia coli of a Bacillus subtilis arginine repressor gene through its ability to confer structural stability on a fragment carrying genes of arginine biosynthesis. Mol. Gen. Genet. 205:176182.
55. Smith, M. C. M.,, A. Mountain,, and S. Baumberg. 1986. Sequence analysis of the Bacillus subtilis argC promoter region. Gene 49:5360.
56. Smith, M. C. M.,, A. Mountain,, and S. Baumberg. 1990. Nucleotide sequence of the Bacillus subtilis argC gene encoding N-acetylglutamate-gamma-semialdehyde dehydrogenase. Nucleic Acids Res. 18:4595.
56a.. Soutar, A. Unpublished results.
57. Stalon, V., 1985. Evolution of arginine metabolism, p. 227308. In H. K. Schleifer, and E. Stackebrandt (ed.), Evolution of Procaryotes. Academic Press, Inc., New York.
58. Stirling, C. J.,, G. Szatmari,, G. Stewart,, M. C. M. Smith,, and D. J. Sherrat. 1988. The arginine repressor is essential for plasmid-stabilising site-specific recombination of the ColEl cer locus. EMBO J. 7:43894395.
59. Tabor, C. W.,, and H. Tabor. 1985. Polyamines in microorganisms. Microbiol. Rev. 49:8199.
60. Thoai, N. V.,, F. Thome-Beau,, and A. Olomucki. 1966. Induction et specificity des enzymes de la nouvelle voie catabolique de l'arginine. Biochim. Biophys. Acta 115:7380.
61. Tricot, C.,, V. Stalon,, and C. Legrain. 1991. Isolation and characterization of Pseudomonas putida mutants affected in arginine, ornithine and citrulline catabolism: function of the arginine oxidase and arginine succinyl-transferase pathways. J. Gen. Microbiol. 137:29112918.
62. Udaka, S. 1966. Pathway-specific pattern of control of arginine biosynthesis in bacteria. J. Bacteriol. 91:617621.
62a.. Vernon, D. I.,, and S. Baumberg. Unpublished data.
63. Vogel, R. H.,, and H. J. Vogel. 1963. Acetylated intermediates of arginine synthesis in Bacillus subtilis. Biochim. Biophys. Acta 69:174176.
64. Zeller, A.,, L. S. Van Orden,, and A. Vogtll. 1954. Enzymology of mycobacteria. VII. Degradation of guanidine derivatives. J. Biol. Chem. 209:429455.


Generic image for table
Table 1

Enzyme reactions of arginine, proline, and polyamine metabolism as numbered in Fig. 1

Citation: Baumberg S, Klingel U. 1993. Biosynthesis of Arginine, Proline, and Related Compounds, p 299-306. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch21

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error