1887

Chapter 22 : Biosynthesis of the Branched-Chain Amino Acids

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Biosynthesis of the Branched-Chain Amino Acids, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap22-1.gif /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap22-2.gif

Abstract:

Branched-chain amino acid biosynthesis has been most thoroughly characterized in ; hence, most of the information in this chapter is from studies of . The novel mechanisms for biosynthesis in other gram-positive genera are also described. In addition, the organization of the genes responsible for isoleucine, valine, and leucine biosynthesis and proposed regulatory mechanisms for expression of those genes is elucidated and compared with those for the corresponding genes in the gram-negative bacterium . The chapter illustrates the major pathways for the synthesis of the branched-chain amino acids in vegetatively growing cells. In some of the intermediates in branched-chain amino acid biosynthesis, specifically the branched-chain keto acids, are the immediate precursors of synthesis of the branched-chain fatty acids that are an integral part of the cell membrane. The chapter also talks about the regulation of and gene expression. A brief overview of what occurs in is presented first, and then what occurs in is described. The genetic organization and regulation of the and genes are significantly different in grampositive and gram-negative bacteria. As in , cells increase expression of the and genes when there is a need for the branched-chain amino acids. Much more investigation is needed before the complete story of branched-chain amino acid biosynthesis in the gram-positive bacteria is known.

Citation: Fink P. 1993. Biosynthesis of the Branched-Chain Amino Acids, p 307-317. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch22

Key Concept Ranking

Branched-Chain Amino Acid Biosynthesis
0.5102595
Transcription Start Site
0.4444845
0.5102595
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Biosynthetic pathways for isoleucine, valine, and leucine formation in . Enzymes catalyzing the reactions and genes encoding the enzymes are indicated.

Citation: Fink P. 1993. Biosynthesis of the Branched-Chain Amino Acids, p 307-317. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Comparison of deduced amino acid sequences of the (), biosynthetic (), and E. coli biodegradative () threonine deaminases. C1 to C5 and R1 to R7 are the catalytic and regulatory domains, respectively, described by Taillon et al. ( ).

Citation: Fink P. 1993. Biosynthesis of the Branched-Chain Amino Acids, p 307-317. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Maps of the and chromosomes showing the locations of genes that function during branched-chain amino acid biosynthesis.

Citation: Fink P. 1993. Biosynthesis of the Branched-Chain Amino Acids, p 307-317. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Nucleotide sequence of the upstream regulatory region of the gene. Underlined sequences represent the -35 and -10 segments of the promoter, +1 indicates the transcription start site, and dots signify the Shine-Dalgarno site before the ATG start of the ilvB open reading frame. Arrowheads indicate regions of inverted repeats occurring in transcripts that originate at the promoter. These sequences can form potential stem-and-loop structures A:B and C:D (shown in Fig. 5 ).

Citation: Fink P. 1993. Biosynthesis of the Branched-Chain Amino Acids, p 307-317. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Predicted secondary structure of the terminator that occurs in the untranslated leader transcript upstream of the gene cluster. Structure shown is the hairpin A:B, the terminator, which was identified in Fig. 4 . C and D represent inverted repeats (arrows) that are capable of base pairing and might interfere with the terminator structure. The base change that occurs in segment A of one mutant, , is indicated.

Citation: Fink P. 1993. Biosynthesis of the Branched-Chain Amino Acids, p 307-317. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Nucleotide sequence of the DNA upstream of the gene. Dots indicate the Shine-Dalgarno site preceding the ATG start codon. Arrowheads indicate a region of DNA that can potentially form a stem-and-loop structure. Codons in the amino-terminal end of the coding region that are specific for leucine are underlined.

Citation: Fink P. 1993. Biosynthesis of the Branched-Chain Amino Acids, p 307-317. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818388.chap22
1. Alexander-Caudle, C.,, L. M. Latinwo,, and J. H. Jackson. 1990. Acetohydroxy acid synthase activity from a mutation at ilvF in Escherichia coli K-12. J. Bacteriol. 172: 30603065.
2. Armpriester, J. M.,, and P. S. Fink. 1990. DNA sequence analysis of the ilvA gene from Bacillus subtilis 168, abstr. H-208, p. 189. Abstr. 90th Gen. Meet. Am. Soc. Microbiol. 1990.
3. Armpriester, J. M.,, and P. S. Fink. Submitted for publication.
4. Bachmann, B. J. 1990. Linkage map of Escherichia coli K-12, edition 8. Microbiol. Rev. 54:130197.
5. Barat, M.,, C. Anagnostopqulos,, and A.-M. Schneider. 1965. Linkage relationships of genes controlling isoleucine, valine and leucine biosynthesis in Bacillus subtilis. J. Bacteriol. 90:357369.
6. Berg, C. M.,, L. Liu,, N. B. Vartak,, W. A. Whalen,, and B. Wang,. 1990. The branched chain amino acid transaminase genes and their products in Escherichia coli, p. 131162. In Z. Barak,, D. M. Chipman,, and J. V. Schloss (ed.). Biosynthesis of Branched Chain Amino Acids. VCH Publishers, New York.
7. Berg, C. M.,, W. A. Whalen,, and L. B. Archambault. 1983. Role of alanine-valine transaminase in Salmonella typhimurium and analysis of an avtA::Tn5 mutant. J. Bacteriol. 155:10091014.
8. Buchanan, B. B. 1969. Role of ferredoxin in the synthesis of α-ketobutyrate from propionyl coenzyme A and carbon dioxide by enzymes from photosynthetic and non-photosynthetic bacteria. J. Biol. Chem. 244:42184223.
9. Calvo, J. M., 1983. Leucine biosynthesis in prokaryotes, p. 267284. In K. M. Herrmann, and R. L. Somerville (ed.), Amino Acid Biosynthesis and Genetic Regulation. Addison-Wesley, London.
10. Canard, B.,, and S. T. Cole. 1989. Genome organization of the anaerobic pathogen Clostridium perfringens. Proc. Natl. Acad. Sci. USA 86:66766680.
11. Cox, J. L.,, B. J. Cox,, V. Fidanza,, and D. H. Calhoun. 1987. The complete nucleotide sequence of the ilvGMEDA cluster oiEscherichia coli K-12. Gene 56:185198.
12. Daniel, J.,, E. Joseph,, and A. Danchin. 1984. Role of 2-ketobutyrate as an alarmone in E. coli K-12: inhibition of adenylate cyclase activity mediated by the phos-phoenolpyruvate:glucose phosphotransferase transport system. Mol. Gen. Genet. 193:467472.
13. Datta, P.,, T. Goss,, J. Omnaas,, and R. Patil. 1987. Covalent structure of biodegradative threonine dehydratase of Escherichia coli: homology with other dehydratases. Proc. Natl. Acad. Sci. USA 84:393397.
14. Dean, D. H.,, and D. R. Zeigler. 1989. Bacillus Genetic Stock Center Strains and Data, 4th ed. Bacillus Genetic Stock Center, The Ohio State University.
15. DeFelice, M.,, C. T. Lago,, C. H. Squires,, and J. M. Calvo. 1982. Acetohydroxy acid synthase isozymes of Escherichia coli and Salmonella typhimurium. Ann. Microbiol. (Paris) 133A:251256.
16. Dol, R. H.,, I. Kaneko,, and R. T. Igarashi. 1968. Pattern of valine transfer ribonucleic acid of Bacillus subtilis under different growth conditions. J. Biol. Chem. 243:945951.
17. Efstathiou, I.,, and N. Traiffant. 1986. Cloning of Clostridium acetobutylicum genes and their expression in Escherichia coli and Bacillus subtilis. Mol. Gen. Genet. 204:317321.
18. Garbe, J. C.,, G. F. Hess,, M. A. Franzen,, and P. S. Vary. 1984. Genetics of leucine biosynthesis in Bacillus megaterium QM B1551. J. Bacterial. 157:454459.
19. Gelfand, D. H.,, and R. A. Steinberg. 1977. Escherichia coli mutants deficient in the aspartate and aromatic amino acid aminotransferases. J. Bacteriol. 130:441444.
19a.. Godon, J.-J.,, M.-C. Chopin,, and S. D. Ehrllch. 1992. Branched-chain amino acid biosynthesis genes in Lactococcus lactis subsp. lactis. J. Bacteriol. 174:65806589.
20. Goldstein, B. J.,, and S. A. Zahler. 1976. Uptake of branched-chain α-keto acids in Bacillus subtilis. J. Bacteriol. 127:667670.
21. Gottschalk, G. 1979. Bacterial Metabolism, p. 138139. Springer-Verlag, New York.
22. Grandoni, J. A.,, J. M. Calvo,, and S. A. Zahler. 1991. Transcriptional regulation of the ilv-leu operon of Bacillus subtilis, abstr. H-70, p. 166. Abstr. 91st Gen. Meet. Am. Soc. Microbiol. 1991.
23. Harms, E.,, E. Higgens,, J. W. Chen,, and H. E. Umbarger. 1988. Translational coupling between the ilvD and ilvA genes of Escherichia coli. J. Bacteriol. 170:47984807.
24. Hatfield, G. W.,, and H. E. Umbarger. 1970. Threonine deaminase from Bacillus subtilis. I. Purification of the enzyme. J. Biol. Chem. 245:17361741.
25. Hatfield, G. W.,, and H. E. Umbarger. 1970. Threonine deaminase from Bacillus subtilis. II. The steady state kinetic properties. J. Biol. Chem. 245:17421747.
25a.. Henkln, T. M.,, F. J. Grundy,, W. L. Nicholson,, and G. H. Chambliss. 1991. Mol. Microbiol. 5:575584.
26. Hercomb, J.,, G. Thierbach,, S. Baumberg,, and J. H. Parish. 1987. Cloning, characterization and expression in Escherichia coli of a leucine biosynthetic gene from Streptomyces rochet. J. Gen. Microbiol. 133:317322.
27. Holtzclaw, W. D.,, and L. F. Chapman. 1975. Degradative acetolactate synthase of Bacillus subtilis: purification and properties. J. Bacteriol. 121:917922.
28. Holtzclaw, W. D.,, and L. F. Chapman. 1977. A new assay for transaminase C. Anal. Biochem. 83:162167.
29. Ishii, K.,, T. Kudo,, H. Honda,, and L. Horikoshi. 1983. Molecular cloning of /3-isopropylmalate dehydrogenase from Clostridium butyricum M588. Agric. Biol. Chem. 43:23132317.
30. Johnson, D. I.,, and R. L. Somerville. 1983. Evidence that repression mechanisms can exert control over the thr, leu, and ilv operons of Escherichia coli K-12. J. Bacteriol. 155:4955.
31. Johnson, D. I.,, and R. L. Somervllle. 1984. New regulatory genes involved in the control of transcription initiation at the thr and ilv promoters in Escherichia coli K-12. Mol. Gen. Genet. 193:7076.
32. Kaneda, T. 1973. Biosynthesis of branched long-chain fatty acids from the related short-chain α-keto acid substrates by a cell-free system of Bacillus subtilis. Can. I. Microbiol. 19:8796.
33. Lamb, D. H.,, and K. F. Bott. 1979. Inhibition of Bacillus subtilis growth and sporulation by threonine. J. Bacteriol. 137:213220.
34. Landlck, R.,, and C. Yanofsky,. 1987. Transcription attenuation, p. 12761301. In F. C. Neidhardt,, J. L. Ingraham,, J. L. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 2. American Society for Microbiology, Washington, D.C.
35. Lawther, R. P.,, and G. W. Hatfield. 1980. Multivalent translational control of transcription termination at attenuator of ilvGEDA operon of Escherichia coli K-12. Proc. Natl. Acad. Sci. USA 77:18621866.
36. Lawther, R. P.,, R. C. Wek,, J. M. Lopes,, R. Perlera,, B. E. Taillon,, and G. W. Hatfield. 1987. The complete nucleotide sequence of the ilvGMEDA operon of Escherichia coli K-12. Nucleic Acids Res. 15:21372155.
37. Lessle, T. G.,, and C. B. Thorne,. 1976. Unusual mutations affecting branched-chain amino acid biosynthesis in Bacillus lichenifomtis, p. 91100. In D. Schlessinger (ed.), Microbiology—1976. American Society for Microbiology, Washington, D.C.
38. Lopes, J. M.,, and R. P. Lawther. 1986. Analysis and comparison of the internal promoter, pE, of the ilvGMEDA operons of Escherichia coli K-12 and Salmonella typhimurium. Nucleic Acids Res. 14:27792796.
39. Lopes, J. M.,, and R. P. Lawther. 1989. Physical identification of an internal promoter, ilvAp, in the distal portion of the ilvGMEDA operon. Gene 76:255269.
40. Lowe, P. N.,, J. A. Hodgson,, and R. N. Perham. 1983. Dual role of a single multienzyme complex in the oxidative decarboxylation of pyruvate and branched-chain 2-oxo acids in Bacillus subtilis. Biochem. J. 215:133140.
41. Luchansky, J. B.,, and P. A. Pattee. 1984. Isolation of transposon Tn557 insertions near chromosomal markers of interest in Staphylococcus aureus. J. Bacteriol. 159: 894899.
42. Mackey, C. J.,, and S. A. Zahler. 1982. Insertion of bacteriophage SP/3 into the citF gene of Bacillus subtilis and specialized transduction of the ilvBC-leu genes. J. Bacteriol. 151:12221229.
43. Monticello, D. J.,, and R. N. Costilow. 1982. Interconver-sion of valine and leucine by Clostridium sporogenes. J. Bacteriol. 152:946949.
44. Monticello, D. J.,, R. S. Hadioetomo,, and R. N. Costilow. 1984. Isoleucine synthesis by Clostridium sporogenes from propionate or α-methylbutyrate. J. Gen. Microbiol. 130:309318.
45. Nargang, F. E.,, C. S. Subrahmanyam,, and H. E. Umbarger. 1980. Nucleotide sequence of ilvGEDA operon attenuator region of Escherichia coli. Proc. Natl. Acad. Sci. USA 77:18231827.
46. Ohyama, K.,, I. Kaneko,, T. Yamakawa,, and T. Watanabe. 1977. Alteration in two enzymatically active forms of valyl-tRNA synthetase during the sporulation of Bacillus subtilis. J. Biochem. 81:15711574.
47. Oultram, J. D.,, H. Peck,, J. K. Brehm,, D. E. Thompson,, T. J. Swinfield,, and N. P. Minton. 1988. Introduction of genes from leucine biosynthesis from Clostridium pasteurianum into C. acetobutylicum by cointegrate conjugal transfer. Mol. Gen. Genet. 214:177179.
48. Parsot, C. 1986. Evolution of biosynthetic pathways: a common ancestor for threonine synthetase, threonine dehydratase and D-serine dehydratase. EMBOJ. 5:30133019.
49. Pattee, P. A.,, T. Schutzbank,, H. D. Kay,, and M. H. Laughlin. 1974. Genetic analysis of the leucine biosynthetic genes and their relationship to the ilv gene cluster. Ann. N.Y. Acad. Sci. 236: 175186.
50. Perham, R. N.,, and P. N. Lowe. 1988. Isolation and properties of the branched-chain 2-keto acid and pyruvate dehydrogenase multienzyme complex from Bacillus subtilis. Methods Enzymol. 166:330342.
51. Piggot, P., 1989. Revised genetic map of Bacillus subtilis 168, p. 141. In I. Smith,, R. Slepecky,, and P. Setlow (ed.), Regulation of Prokaryotic Development. American Society for Microbiology, Washington, D.C.
52. Rudman, D.,, and A. Meister. 1953. Transamination in Escherichia coli. J. Biol. Chem. 200:591604.
53. Schildkraut, I.,, and S. Greer. 1973. Threonine synthetase-catalyzed conversion of phosphohomoserine to α-ketobutyrate in Bacillus subtilis. J. Bacteriol. 115:777785.
54. Shameshima, J. H.,, R. C. Wek,, and G. W. Hatfield. 1989. Overlapping transcription and termination of the convergent ilvA and ilvY genes of Escherichia coli. J. Biol. Chem. 264:12241231.
55. Skarstedt, M. T.,, and S. B. Greer. 1973. Threonine synthetase of Bacillus subtilis: the nature of an associated dehydratase activity. J. Biol. Chem. 248:10321044.
56. Squires, C. H.,, M. DeFelice,, J. Devereux,, and J. M. Calvo. 1983. Molecular structure of ilvIH and its evolutionary relationship to ilvG in Escherichia coli K-12. Nucleic Acids Res. 11:52995313.
57. Steiglitz, B. I.,, and J. M. Calvo. 1974. Distribution of the isopropylmalate pathway to leucine among diverse bacteria. J. Bacteriol. 118:935941.
58. Taillon, B. E.,, R. Little,, and R. P. Lawther. 1988. Analysis of the functional domains of biosynthetic threonine deaminase by comparison of the amino acid sequences of three wild-type alleles to the amino acid sequence of biodegradative threonine deaminase. Gene 63:245252.
59. Temeyer, K. B.,, and L. F. Chapman. 1983. Suppression of an ilvA mutation in Bacillus subtilis. Mol. Gen. Genet. 192:198203.
60. Umbarger, H. E., 1983. The biosynthesis of isoleucine and valine and its regulation, p. 245266. In K. M. Herrmann, and R. L. Sommerville (ed.), Amino Acid Biosynthesis and Genetic Regulation. Addison-Wesley, London.
61. Umbarger, H. E.,, and B. Brown. 1957. Threonine deamination in Escherichia coli. II. Evidence for two L-threonine deaminases. J. Bacteriol. 73:105112.
62. Vandeyar, M. A. 1987. Ph.D. thesis. Cornell University, Ithaca, N.Y.
63. Ward, J. B., Jr.,, and S. A. Zahler. 1973. Genetic studies of leucine biosynthesis in Bacillus subtilis. J. Bacteriol. 116:719726.
64. Ward, J. B., Jr.,, and S. A. Zahler. 1973. Regulation of leucine biosynthesis in Bacillus subtilis. J. Bacteriol. 116:727735.
65. Wek, R. C.,, and G. W. Hatfield. 1986. Nucleotide sequence and in vivo expression of the ilvY and ilvC genes in Escherichia coli K-12. Transcription from divergent overlapping promoters. J. Biol. Chem. 261:24412450.
66. Wek, R. C.,, and G. W. Hatfield. 1986. Examination of the promoter Pe in the ilvGMEDA operon of E. coli K-12. Nucleic Acids Res. 14:27632777.
67. Wek, R. C.,, C. A. Hauser,, and G. W. Hatfield. 1985. The nucleotide sequence of the ilvBN operon of Escherichia coli: sequence homologies of the acetohydroxy acid synthase isozymes. Nucleic Acids Res. 13:39954010.
68. Wessler, S. R.,, and J. M. Calvo. 1981. Control of leu operon expression in Escherichia coli by a transcription attenuation mechanism. J. Mol. Biol. 149:579597.
69. Willecke, K.,, and A. B. Pardee. 1971. Fatty acid requiring mutant of Bacillus subtilis defective in branched chain ketoacid dehydrogenase. J. Biol. Chem. 246:52645272.
70. Yanofsky, C. 1988. Transcription attenuation. J. Biol. Chem. 263:609612.
71. Zahler, S. A. (Cornell University). 1982. Personal communication.
72. Zahler, S. A.,, L. G. Benjamin,, B. S. Glatz,, P. F. Winter,, and B. J. Goldstein,. 1976. Genetic mapping of alsA, abR, thyA, kauA, and citD markers in Bacillus subtilis, p. 3543. In D. Schlessinger (ed.), Microbiology—1976. American Society for Microbiology, Washington, D.C.
73. Zalkin, H.,, and D. J. Ebbole. 1988. Organization and regulation of genes encoding biosynthetic enzymes in Bacillus subtilis. J. Biol. Chem. 263:15951598.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error