1887

Chapter 24 : De Novo Purine Nucleotide Synthesis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

De Novo Purine Nucleotide Synthesis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap24-1.gif /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap24-2.gif

Abstract:

This chapter reviews current understanding of de novo purine nucleotide synthesis in ,with emphasis on recent developments in understanding gene organization and regulation and on the distinctive structural features of two enzymes of the pathway. Genes for de novo purine nucleotide synthesis are found in four positions on the chromosome. The possible role of gene overlaps is discussed in this chapter. Addition of purine compounds to the growth medium represses the levels of enzymes involved in de novo purine nucleotide synthesis. Adenosine or guanosine repress enzyme levels in the pathway to IMP in mutants unable to interconvert adenine and guanine nucleotides, whereas synthesis of purA-encoded adenylosuccinate synthetase and guaB-encoded IMP dehydrogenase is repressed specifically by adenosine and guanosine, respectively. Limitation of the growth rate resulting from starvation for guanine nucleotides is known to initiate sporulation. Information about the enzymes in the pathway for de novo purine nucleotide synthesis from is limited. Judging from deduced sequence similarities to genes, most enzymes in the pathway are likely similar to those from . There are, however, distinctive features for glutamine PRPP amidotransferase a n d 5'-phosphoribosyl- Af-formylglycinamidine (FGAM) synthetase.

Citation: Zalkin H. 1993. De Novo Purine Nucleotide Synthesis, p 335-341. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch24

Key Concept Ranking

Gene Expression and Regulation
0.8498199
0.8498199
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Pathway for de novo purine nucleotide synthesis. 5'-Phosphoribosyl-5-aminoimidazole (AIR) is a branch point for the synthesis of thiamine. Step 5 in the histidine biosynthetic pathway generates 5-phosphoribosyl-4-carboxamide-5-aminoimidazole (AICAR) as a by-product Thick arrows designate multistep pathways. Abbreviations: GAR, 5'-phosphoribosyl-l-glycinamide; FGAR, 5'-phosphoribosylformylglycinamide; 5'-CAIR, 5'-phosphoribosyl-5-aniinoimidazole-4-carboxylate; SAICAR, 5 '-phosphoribosyl-4-(-succinocarboxamide)-5-aminoimidazole; FAICAR, 5'-phosphoribosyl-4-carboxamide-5-fonnamidoimidazole; SAMP, adenylosuccinate.

Citation: Zalkin H. 1993. De Novo Purine Nucleotide Synthesis, p 335-341. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Schematic representation of a termination-antitermination model for regulation of the operon. The first line shows the region of DNA between the promoter and the first structural gene. Dyad symmetries are indicated by arrows and letters. The second line shows the prematurely terminated mRNA. Hairpin C:D followed by several uridylate residues is the terminator. A hypothetical guanine-activated regulatory protein, shown as a circle, is bound to segment A. The third line shows the antitermination secondary structure that leads to transcription of coding-length mRNA. Taken from reference 54 with permission.

Citation: Zalkin H. 1993. De Novo Purine Nucleotide Synthesis, p 335-341. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Alignment of and glutamine PRPP amidotransferase segments. The alignment shows sequences at the NH terminus and the four cysteinyl ligands to the 4Fe-4S cluster in the enzyme. Cysis the NH-terminal residue in mature enzymes. Cysteinyl ligands are shaded in grey. Numbers for the COOH termini are at the right.

Citation: Zalkin H. 1993. De Novo Purine Nucleotide Synthesis, p 335-341. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818388.chap24
1. Abedin, Z.,, J. M. Lopez,, and E. Freese. 1983. Induction of bacterial differentiation by adenine- and adenosine-analogs and inhibitors of nucleic acid synthesis. Nucleosides Nucleotides 2: 257 274.
2. Alba, A.,, and K. Mizobuchi. 1989. Nucleotide sequence analysis of genes purH and purD involved in the de novo purine nucleotide biosynthesis of Escherichia coli. J. Biol. Chem. 264: 21239 21246.
2a.. Babitzke, P.,, and C. Yanofsky. 1992. Reconstitution of Bacillus subtilis trp attenuation in vitro with TRAP, the trp RNA-binding attenuation protein. Proc. Natl. Acad. Set. USA 90: 133 137.
3. Bachmann, B. J. 1990. Linkage map of Escherichia coli K-12, edition 8. Microbiol. Rev. 34: 130 197.
4. Bae, Y. M.,, E. Holmgren,, and I. P. Crawford. 1989. Rhizobium meliloti anthranilate synthase gene: cloning, sequence and expression in Escherichia coli. J. Bacteriol. 171: 3471 3478.
5. Brey, R. N.,, C. D. B. Banner,, and J. B. Wolf. 1986. Cloning of multiple genes involved with cobalamin (vitamin B 12) biosynthesis in Bacillus megaturium. J. Bacteriol. 167: 623 630.
6. Chen, Z.,, G. Zhou,, A. Gavalas,, J. E. Dixon,, and H. Zalkin. Unpublished data.
7. Debarbouille, M.,, M. Araaud,, A. Fouet,, A. Kiler,, and G. Rapoport. 1990. The sacT gene regulating the sacPA operon in Bacillus subtilis shares strong homology with transcriptional antiterminators. J. Bacteriol. 172: 3966 3973.
8. Ebbole, D. J.,, and H. Zalkin. 1987. Cloning and characterization of a 12-gene cluster from Bacillus subtilis encoding nine enzymes for de novo purine nucleotide synthesis. J. Biol. Chem. 262: 8274 8287.
9. Ebbole, D. J.,, and H. Zalkin. 1988. Detection of pur operon-attenuated mRNA and accumulated degradation intermediates in Bacillus subtilis. J. Biol. Chem. 263: 10894 10902.
10. Ebbole, D. J.,, and H. Zalkin. 1989. Interaction of a putative repressor protein with an extended control region of the Bacillus subtilis pur operon. J. Biol. Chem. 264: 3553 3561.
11. Ebbole, D. J.,, and H. Zalkin. 1989. Bacillus subtilis pur operon expression and regulation. J. Bacteriol. 171: 2136 2141.
12. Gollnick, P.,, S. Ishino,, M. I. Kuroda,, D. J. Henner,, and C. Yanofsky. 1990. The mtr locus is a two-gene operon required for transcription attenuation in the trp operon of Bacillus subtilis. Proc. Natl. Acad. Sci. USA 87: 8726 8730.
13. Grandoni, J. A.,, R. L. Switzer,, C. A. Makaroff,, and H. Zalkin. 1989. Evidence that the iron-sulfur cluster of Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase determines stability of the enzyme to degradation in vivo. J. Biol. Chem. 264: 6058 6064.
13a.. Gu, Z.-M.,, D. W. Martindale,, and B. H. Lee. 1992. Isolation and complete sequence of the purL gene encoding FGAM synthase II in Lactobacillus casei. Gene 119: 123 126.
14. He, B.,, A. Shiau,, K. Y. Choi,, H. Zalkin,, and J. M. Smith. 1990. Genes of the Escherichia coli pur regulon are negatively controlled by a repressor-operator interaction. J. Bacteriol. 172: 4555 4562.
15. Henner, D. J.,, L. Band,, and H. Shimotsu. 1984. Nucleotide sequence of the Bacillus subtilti tryptophan operon. Gene (Amsterdam) 34: 169 177.
16. Houman, F.,, M. R. Diaz-Torres,, and A. Wright. 1990. Transcriptional antitermination in the bgl operon of E. coli is modulated by a specific RNA binding protein. Cell 62: 1143 1163.
17. Hove-Jensen, B.,, K. W. Harlow,, C. J. King,, and R. L. Switzer. 1986. Phosphoribosylpyrophosphate synthetase of Escherichia coli. Properties of the purified enzyme and primary structure of the prs gene. J. Biol. Chem. 261: 6765 6771.
18. Ishii, K.,, and I. Shiio. 1972. Improved inosine production and derepression of purine nucleotide biosynthetic enzymes in 8-azaguanine resistant mutants of Bacillus subtilis. Agric. Biol. Chem. 38: 1511 1522.
19. Kanzaki, N.,, and K. Miyagawa. 1990. Nucleotide sequence of the Bacillus subtilis IMP dehydrogenase gene. Nucleic Acids Res. 18: 6710.
20. Leirmo, S.,, C. Harrison,, D. S. Cayley,, R. R. Burgess,, and M. T. Record, Jr. 1987. Replacement of potassium chloride by potassium glutamate dramatically enhances protein-DNA interactions in vitro. Biochemistry 26: 2095 2101.
21. Lopez, J. M.,, C. L. Marks,, and E. Freeze. 1979. The decrease of guanine nucleotides initiates sporulation of Bacillus subtilis. Biochim. Biophys. Acta 587: 238 252.
22. Mackey, C. J.,, R. J. Warburg,, H. O. Halvorson,, and S. A. Zahler. 1984. Genetic and physical analysis of the ilvBC-leu region in Bacillus subtilis. Gene (Amsterdam) 32: 4956.
23. Makaroff, C. A.,, J. L. Paluh,, and H. Zalkin. 1986. Mutagenesis of ligands to the [4Fe-4S] center of Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase. J. Biol. Chem. 261: 11416 11423.
24. Makaroff, C. A.,, H. Zalkin,, R. L. Switzer,, and S. J. Vollmer. 1983. Cloning of the Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase gene in Escherichia coli. Nucleotide sequence determination and properties of the plasmid-encoded enzyme. J. Biol. Chem. 258: 10586 10593.
25. Mantsala, P.,, and H. Zalkin. 1984. Glutamine amidotransferase function. Replacement of the active site cysteine in glutamine phosphoribosylpyrophosphate amidotransferase by site-directed mutagenesis. J. Biol. Chem. 259: 14230 14236.
26. Mantsala, P.,, and H. Zalkin. 1992. Cloning and sequence of Bacillus subtilis pur A and guaA involved in the conversion of IMP to AMP and GMP. J. Bacteriol. 174: 1883 1890.
27. Martin-Verstraete, I.,, M. Debarbouille,, A. Klier,, and G. Rapoport. 1990. Levanase operon of Bacillus subtilis includes a fructose-specific phosphotransferase system regulating the expression of the operon. J. Mol. Biol. 214: 657 671.
28. Messenger, L. J.,, and H. Zalkin. 1979. Glutamine phosphoribosylpyrophosphate amidotransferase from Escherichia coli. Purification and properties. J. Biol. Chem. 254: 3382 3392.
29. Miller, P.,, A. Rablnowitz,, and H. Taber. 1988. Molecular cloning and preliminary genetic analysis of the men gene cluster of Bacillus subtilis. J. Bacteriol. 170: 2735 2741.
30. Mltani, T.,, J. E. Heinze,, and E. Freese. 1977. Induction of sporulation in Bacillus subtilis by decoyinine or hadacidin. Biochem. Biophys. Res. Commun. 77: 1118 1125.
31. Miyagawa, K.,, H. Kimura,, K. Nakahama,, M. Kikuchi,, M. Doi,, S. Aklyama,, and Y. Nakao. 1986. Cloning of the Bacillus subtilis IMP dehydrogenase gene and its application to increased production of guanosine. Bio/Technology 4: 225 228.
32. Mountain, A.,, J. McChesney,, M. C. M. Smith,, and S. Baumberg. 1986. Gene sequence encoding early enzymes of arginine synthesis within a cluster in Bacillus subtilis, as revealed by cloning in Escherichia coli. J. Bacteriol. 165: 1026 1028.
33. Nishikawa, H.,, H. Momose,, and I. Shiio. 1967. Regulation of purine nucleotide synthesis in Bacillus subtilis. II. Specificity of purine derivatives for enzyme repression. J. Biochem. 62: 92 98.
34. Oliver, G.,, G. Gosset,, R. Sanchez-Pescador,, E. Lozoya,, C. M. Ku,, N. Flores,, B. Becerril,, F. Valle,, and F. Bolivar. 1987. Determination of the nucleotide sequence for the glutamate synthase structural genes of Escherichia coli K-12. Gene 60: 1 11.
35. Oppenheim, D.,, and C. Yanofsky. 1980. Translational coupling during expression of the tryptophan operon of Escherichia coli. Genetics 95: 785 795.
35a.. Otridge, J.,, and P. Gollnick. 1992. MtrB from Bacillus subtilis binds specifically to trp leader RNA in a tryptophan-dependent manner. Proc. Natl. Acad. Set. USA 90: 128 132.
36. Petersen, C. 1989. Long range translational coupling in the rplJL-rpoBC operon of Escherichia coli. J. Mol. Biol. 206: 323 332.
37. Piggot, P. J.,, and J. Hoch. 1985. Revised genetic linkage map of Bacillus subtilis. Microbiol. Rev. 49: 158 179.
38. Quinn, C. L.,, B. T. Stephenson,, and R. L. Switzer. 1991. Functional organization and nucleotide sequence of the Bacillus subtilis pyrimidine biosynthetic operon. J. Biol. Chem. 266: 9113 9127.
39. Rolfes, R. J.,, and H. Zalkin. 1990. Purification of the Escherichia coli purine regulon repressor and identification of corepressors. J. Bacteriol. 172: 5637 5642.
40. Rolfes, R. J.,, and H. Zalkin. 1990. Autoregulation of Escherichia coli purR requires two control sites downstream of the promoter. J. Bacteriol. 172: 5758 5766.
41. Sampel, G.,, and K. Mizobuchi. 1989. The organization of the purL gene encoding 5'-phosphoribosylformylglycinamide amidotransferase of Escherichia coli. J. Biol. Chem. 264: 21230 21238.
42. Saxild, H. H.,, and P. Nygaard. 1988. Gene-enzyme relationships of the purine biosynthetic pathway in Bacillus subtilis. Mol. Gen. Genet. 211: 160 167.
43. Saxild, H. H.,, and P. Nygaard. 1991. Regulation of levels of purine biosynthetic enzymes in Bacillus subtilis: effects of changing purine nucleotide pools. J. Gen. Microbiol. 137: 2387 2394.
44. Shimotsu, H.,, M. Kuroda,, C. Yanofsky,, and D. J. Henner. 1986. Novel form of transcription attenuation regulates expression of the Bacillus subtilis tryptophan operon. J. Bacteriol. 166: 461 471.
45. Simmer, J. P.,, R. E. Kelly,, A. G. Rinker, Jr.,, J. L. Scully,, and D. R. Evans. 1990. Mammalian carbamyl phosphate synthetase (CPS). cDNA sequence and evolution of the CPS domain of the Syrian hamster multifunctional protein CAD. J. Biol. Chem. 265: 10395 10402.
46. Slock, J.,, D. P. Stahly,, C.-Y. Han,, E. W. Six,, and I. P. Crawford. 1990. An apparent Bacillus subtilis folic acid biosynthetic operon containing pab, an amphibolic trpG gene, a third gene required for synthesis of para-aminobenzoic acid, and the dihydropteroate synthase gene. J. Bacteriol. 172: 7211 7226.
46a.. Smith, J. L. Personal communication.
47. Souclet, J.-L.,, M. A. Hermodson,, and H. Zalkin. 1988. Mutational analysis of the glutamine phosphoribosylpyrophosphate amidotransferase pro-peptide. J. Biol. Chem. 263: 3323 3327.
48. Swltzer, R. L., 1989. Regulation of bacterial glutamine phosphoribosylpyrophosphate amidotransferase, p. 129 151. In G. Herve (ed.), Allosteric Enzymes. CRC Press, Boca Raton, Fla.
49. Velazquez, L.,, L. Camarena,, J. L. Reyes,, and F. Bastarrachea. 1991. Mutations affecting the Shine-Dalgarno sequences of the untranslated regions of the Escherichia coli gltBDF operon. J. Bacteriol. 173: 3261 3264.
50. Vollmer, S. J.,, R. L. Switzer,, and P. J. Debrunner. 1983. Oxidation-reduction properties of the iron-sulfur cluster in Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase. J. Biol. Chem. 258: 14284 14293.
51. Vollmer, S. J.,, R. L. Switzer,, M. A. Hermodson,, and H. Zalkin. 1983. The glutamine-utilizing site of Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase. J. Biol. Chem. 258: 10582 10585.
52. Wong, J. Y.,, D. A. Bernlohr,, C. L. Turnbough,, and R. L. Switzer. 1981. Purification and properties of glutamine phosphoribosylpyrophosphate amidotransferase from Bacillus subtilis. Biochemistry 20: 5669 5674.
53. Wong, J. Y.,, E. Meyer,, and R. L. Switzer. 1977. Glutamine phosphoribosylpyrophosphate amidotransferase from Bacillus subtilis. A novel iron-sulfur protein. J. Biol. Chem. 252: 7424 7426.
54. Zalkin, H.,, and D. J. Ebbole. 1988. Organization and regulation of genes encoding biosynthetic enzymes in Bacillus subtilis. J. Biol. Chem. 263: 1595 1598.
55. Zhou, G.,, J. E. Dixon,, and H. Zalkin. 1990. Cloning and expression of avian glutamine phosphoribosylpyrophosphate amidotransferase. Conservation of a bacterial propeptide sequence supports a role for posttranslational processing. J. Biol. Chem. 265: 21152 21159.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error