1887

Chapter 26 : Purine and Pyrimidine Salvage Pathways

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Purine and Pyrimidine Salvage Pathways, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap26-1.gif /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap26-2.gif

Abstract:

The first complete purine nucleotide formed in the purine biosynthetic pathway is IMP, which is converted to AMP and GMP via two separate pathways. The pathways by which purine bases and ribonucleosides are metabolized in are discussed. Different species of gram-positive bacteria show great variations in their abilities to metabolize bases and nucleosides. Our knowledge of purine salvage reactions and transport systems in is to a great extent based on studies of mutants defective in enzymic reactions. The pathways by which pyrimidine bases and nucleosides are converted to the nucleotide level vary among the different bacteria studied. The pathways by which thymine and pyrimidine deoxyribonucleosides are metabolized is dealt in detail. Mutants defective in pyrimidine salvage enzymes and transport functions can be isolated by selecting for resistance to pyrimidine analogs. The isolation and characterization of mutant strains defective in purine and pyrimidine metabolism have been powerful tools in the identification of the pathways of purine and pyrimidine metabolism and their regulation. The choice between purine salvage and degradation must be subjected to metabolic control.

Citation: Nygaard P. 1993. Purine and Pyrimidine Salvage Pathways, p 359-378. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch26

Key Concept Ranking

Gene Expression and Regulation
1.348907
DNA Synthesis
1.0152214
Nucleic Acids
0.89180464
Nucleotides and Nucleosides
0.8752949
RNA
0.67808384
1.348907
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Pathways of ATP and GTP synthesis from purine bases and nucleosides in . Individual reactions are identified by gene symbols. AICA, aminoimidazolecarboxamide; AICAR, AICA ribonucleotide; FAICAR, formamidoimidazolecarboxamide ribonucleotide; sAMP, adenylosuccinate; , AICAR transformylase; , adenylosuccinate synthetase; , adenylosuccinate lyase; , IMP dehydrogenase; , GMP synthetase; , GMP reductase; , adenine phosphoribosyltransferase; , xanthine phosphoribosyltransferase; , hypoxanthine (guanine) phosphoribosyltransferase; , deoxycytidine (adenosine) kinase; , adenosine phosphorylase; , adenine deaminase; , guanosine (inosine) phosphorylase.

Citation: Nygaard P. 1993. Purine and Pyrimidine Salvage Pathways, p 359-378. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Pathways of UTP and CTP synthesis from pyrimidine bases and nucleosides in . Individual reactions are identified by the corresponding gene symbols, , orotate phosphoribosyltransferase; , orotidylate decarboxylase; , uracil phosphoribosyltransferase; , pyrimidine nucleoside phosphorylase; , uridine (cytidine) kinase; , cytidine deaminase; , pyrimidine ribonucleoside monophosphate kinase; , CTP synthetase.

Citation: Nygaard P. 1993. Purine and Pyrimidine Salvage Pathways, p 359-378. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Pyrimidine deoxyribonucleotide synthesis in . Individual reactions are identified by gene symbols. , CTP synthetase; nrd, ribonucleotide reductase; , dCMP deaminase; and , thymidylate synthase; , deoxycytidine kinase; , cytidine (deoxycytidine) deaminase; , thymidine kinase; , pyrimidine nucleoside phosphorylase.

Citation: Nygaard P. 1993. Purine and Pyrimidine Salvage Pathways, p 359-378. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Metabolism of inosine and uridine in exponentially growing cells. C-labeled nucleoside (100 nmol/ml) was added at time zero. At different times thereafter, samples of the culture were analyzed for the distribution of label in the culture. Symbols: ■, label incorporated into whole cells; ●, inosine; ▲, hypoxanthine; ○, uridine; △, uracil. OD, optical density at 436 nm.

Citation: Nygaard P. 1993. Purine and Pyrimidine Salvage Pathways, p 359-378. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Effects of adenine and guanosine on purine salvage and levels of a purine biosynthetic enzyme in wild-type . Cells were grown with C-labeled purines, and the contribution from the exogenous source to RNA nucleotides was calculated. Symbols: □, adenine; ■, guanosine; ▨, levels of glycinamide ribonucleotide synthetase. 100% ∼ 24 nmol/min/mg of protein.

Citation: Nygaard P. 1993. Purine and Pyrimidine Salvage Pathways, p 359-378. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Effects of uracil on pyrimidine salvage and levels of a pyrimidine biosynthetic enzyme in wild-type . Cells were grown with C-labeled uracil, and the contribution from the exogenous source to RNA nucleotides was calculated (□). ▨, levels of aspartate transcarbamylase. 100% ∼ 77 nmol/min/mg of protein.

Citation: Nygaard P. 1993. Purine and Pyrimidine Salvage Pathways, p 359-378. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818388.chap26
1. Asahi, S., M. Dol, Y. Tsunemi, and S. J. Akiyma. 1989. Regulation of pyrimidine nucleotide biosynthesis in cytidine deaminase-negative mutants of Bacillus subtilis. Agric. Biol. Chem. 53:97102.
2. Ashley, G. W.,, G. Harris,, and J. A. Stubbe. 1986. The mechanism of Lactobacillus leichmannii ribonucleotide reductase. Evidence for 3' carbon-hydrogen bond cleavage and a unique role for coenzyme B12. J. Biol. Chem. 261:39583964.
3. Aullng, G.,, and B. Moss. 1984. Metabolism of pyrimidine bases and nucleosides in the coryneform bacteria Brevibacterium ammoniagenes, and Micrococcus luteus. J. Bacteriol. 158:733736.
4. Aullng, G.,, H. Prelle,, and H. Diekmann. 1982. Incorporation of deoxyribonucleosides into DNA of coryneform bacteria and the relevance of deoxyribonucleoside kinases. Eur. J. Biochem. 121:365370.
5. Avraham, Y.,, N. Grossowlcz,, and J. Yashphe. 1991. Regulation of the synthesis and activity of thymidine phosphorylase in Lactobacillus casei. FEMS Microbiol. Lett. 82:287292.
6. Avraham, Y.,, J. Yashphe,, and N. Grossowlcz. 1988. Thymidine phosphorylase and uridine phosphorylase of Lactobacillus casei. FEMS Microbiol. Lett. 56:2934.
7. Beaman, T. C.,, A. D. Hitchins,, K. Ochi,, N. Vasantha,, T. Endo,, and E. Freese. 1983. Specificity and control of uptake of purines and other compounds in Bacillus subtilis. J. Bacteriol. 156:11071117.
8. Beck, W. S.,, and M. Levin. 1963. Purification, kinetics, and repression control of bacterial trans-N-deoxyribosylase. J. Biol. Chem. 238:702709.
9. Bedard, J.,, and G. M. Lefebvre,. 1989. L-Alanine and inosine enhancement of glucose triggering in Bacillus megaterium spores, p. 760763. In H. O. Halvorson,, R. Hanson,, and L. L. Campbell (ed.), Spores V. American Society for Microbiology, Washington, D.C.
10. Berlin, R. D. 1969. Adenylate pyrophosphorylase: purification, reaction sequence, and inhibition by sodium ion. Arch. Biochem. Biophys. 134:120129.
11. Berlin, R. D.,, and E. R. Stadtman. 1966. A possible role of purine nucleotide pyrophosphorylases in the regulation of purine uptake by Bacillus subtilis. J. Biol. Chem. 241:26792686.
12. Blakley, R. L. 1978. Ribonucleoside triphosphate reductase from Lactobacillus leichmannii. Methods Enzymol. 51:246259.
13. Cardinaud, R. 1978. Nucleoside deoxyribosyltransferase from Lactobacillus helveticus. Methods Enzymol. 51:446455.
14. Carson, D. A.,, D. B. Wasson,, and E. Beutler. 1984. Antileukemic and immunosuppressive activity of 2-chloro-2'-deoxyadenosine. Proc. Natl. Acad. Sci. USA 81:22322236.
15. Chawdhrl, R. F.,, D. W. Hutchinson,, and A. O. Richards. 1991. Nucleoside deoxyribosyltransferase and inosine phosphorylase activity in lactic acid bacteria. Arch. Microbiol. 155:409411.
16. Cook, W. J.,, S. A. Short,, and S. E. Eallck. 1990. Crystallization and preliminary X-ray investigation of recombinant Lactobacillus leichmannii nucleoside deoxyribosyltransferase. J. Biol. Chem. 265:26822683.
17. Crusberg, T. C.,, R. Leary,, and R. L. Kisliuk. 1970. Properties of thymidylate synthetase from dichloromethotrexate-resistant Lactobacillus casei. J. Biol. Chem. 245:52925296.
18. Dandanell, G.,, and K. Hammer. 1991. deoPl promoter and operator mutants in Escherichia coli: isolation and characterization. Mol. Microbiol. 5:23712376.
19. Deibel, M. R., Jr.,, and D. H. Ives. 1978. Deoxynucleoside kinases from Lactobacillus acidophilus R-26. Methods Enzymol. 51:346354.
20. Demaln, A. L.,, and D. Hendlin. 1967. Phosphohydrolases of a Bacillus subtilis mutant accumulating inosine and hypoxanthine. J. Bacteriol. 9:6674.
21. Demain, A. L.,, and H. T. Shigeura. 1968. Dependence of diaminopurine utilization on the mutational site of purine auxotrophy in Bacillus subtilis. J. Bacteriol. 95: 555571.
22. Deutscher, M. P.,, and A. Kornberg. 1968. Biochemical studies of bacterial sporulation and germination. VIII. Patterns of enzyme development during growth and sporulation of Bacillus subtilis. J. Biol. Chem. 243:46534660.
23. Dhariwal, K. R.,, N. Vasantha,, and E. Freese. 1982. Partial nucleotide limitation induces phosphodiesterase I and 5'-nucleotidase in Bacillus subtilis. J. Bacteriol. 149:11461149.
24. Dot, M.,, S. Asahi,, Y. Tsunemi,, and S. J. Akiyami. 1989. Mechanism of uridine production by Bacillus subtilis mutants. Appl. Microbiol. Technol. 30:234238.
25. Doi, M.,, Y. Tsunemi,, S. Asahi,, S. J. Aklyama,, and Y. Nakao. 1988. Bacillus subtilis mutants producing uridine in high yields. Agric. Biol. Chem. 52:14791484.
26. Dürre, P.,, and J. R. Andreesen. 1983. Purine and glycine metabolism by purinolytic Clostridia. J. Bacteriol. 154: 192199.
27. Ebbole, D. J.,, and H. Zalkln. 1987. Cloning and characterization of a 12-gene cluster from Bacillus subtilis encoding nine enzymes for de novo purine nucleotide synthesis. J. Biol. Chem. 262:82748287.
28. Ellasson, R.,, M. Fontecave,, H. JSrnvall,, M. Krook,, E. Pontis,, and P. Reichard. 1990. The anaerobic ribonucleoside triphosphate reductase from Escherichia coli requires S-adenosylmethionine as a cofactor. Proc. Natl. Acad. Sci. USA 87:33143318.
29. Elmerich, C.,, and J. P. Aubert,. 1975. Involvement of glutamine synthetase and the purine nucleotide pathway in repression of bacterial sporulation, p. 385390. In P. Gerhardt,, R. N. Costilow,, and H. L. Sadoff (ed.), Spores VI. American Society for Microbiology, Washington, D.C.
30. Endo, T.,, B. Uratani,, and E. Freese. 1983. Purine salvage pathways of Bacillus subtilis and effect of guanine on growth of GMP reductase mutants. J. Bacteriol. 155:169179.
31. Engelbrecht, H. L. 1972. Time course of purine nucleoside phosphorylase occurrence in sporulation of Bacillus cereus. J. Bacteriol. 111:3336.
32. Felicioll, R. A.,, S. Senesi,, F. Marmocchi,, G. Falcone,, and P. L. Ipata. 1973. Nucleoside phosphomonoesterases during growth cycle of Bacillus subtilis. Biochemistry 12:547552.
33. Freese, E. 1989. Control of differentiation by GTP. Nucleosides Nucleotides 8:975978.
34. Freese, E.,, J. Heinze,, T. Mitani,, and E. B. Freese,. 1978. Limitation of nucleotides induces sporulation, p. 277285. In G. Chambliss, and J. C. Vary (ed.), Spores VII. American Society for Microbiology, Washington, D.C.
35. Freese, E.,, J. E. Heinze,, and E. M. Galliers. 1979. Partial purine deprivation causes sporulation of Bacillus subtilis in the presence of excess ammonia, glucose, and phosphate. J. Gen. Microbiol. 115:193205.
36. Fucik, V.,, A. Kloudova,, and A. Holy. 1974. Transport of nucleosides in Bacillus subtilis: the effect of purine nucleosides on the cytidine-uptake. Nucleic Acids Res. 1:639644.
37. Gabiellieri, E.,, S. Bernini,, L. Piras,, P. Cioni,, E. Balestreri,, G. Cerugnani,, and R. Felicioll. 1986. Purification, stability and kinetic properties of highly purified adenosine deaminase from Bacillus cereus NCIB 8122. Biochim. Biophys. Acta 884:490496.
38. Gardner, R.,, and A. Romberg. 1967. Biochemical studies of bacterial sporulation and germination. V. Purine nucleoside phosphorylase of vegetative cells and spores of Bacillus cereus. J. Biol. Chem. 242:23832388.
39. Gould, G. W.,, and G. J. Dring,. 1972. Biochemical mechanisms of spore germination, p. 401408. In H. O. Halvorson,, R. Hanson,, and L. L. Campbell (ed.). Spores V. American Society for Microbiology, Washington, D.C.
40. Goulian, M.,, and W. S. Beck. 1966. Variations of intracellular deoxyribosyl compounds in deficiencies of vitamin B12, folic acid and thymine. Biochim. Biophys. Acta 129:336349.
41. Goulian, M.,, and W. S. Beck. 1966. Purification and properties of cobamide-dependent ribonucleotide reductase from Lactobacillus leichmannii. J. Biol. Chem. 242:42334242.
42. Grigorieva, T. M.,, Y. V. Smirnov,, and V. V. Sukhodolets. 1978. Thymine auxotrophs and secondary mutations decreasing the growth requirement for thymine in Bacillus thuringiensis. Genetika 14:13101318.
43. Grigorieva, T. M.,, and V. V. Sukhodolets. 1979. Regulation of pyrimidine nucleoside phosphorylase activity in Bacillus thuringiensis var. galleriae. I. Change of the activity under the effect of exogenous nucleosides in thymine auxotrophs and mutants for drm and dra genes. Genetika 15:11591168.
44. Grigorieva, T. M.,, and V. V. Sukhodolets. 1979. Regulation of pyrimidine nucleoside in Bacillus thuringiensis var. galleriae. II. The induction of the enzyme activity at different growth stages of bacterial cells. Genetika 15: 11691176.
45. Guha, S. 1984. Effects of 5-azacytidine on DNA methylation and on the enzymes of de novo pyrimidine biosynthesis in Bacillus subtilis Marburg strain. Eur. J. Biochem. 145:99106.
46. Hammer-Jespersen, K., 1983. Nucleoside catabolism, p. 203258. In A. Munch-Petersen (ed.), Metabolism of Nucleotides, Nucleosides and Nucleobases in Microorganisms. Academic Press, London.
47. Haneda, K.,, and R. Kodaira. 1987. Mechanism of adenosine production by xanthine-requiring mutants derived from a Bacillus strain. J. Ferment. Technol. 65: 145151.
48. Henderson, J. F. 1980. Inhibition of microbial growth by naturally-occurring purine bases and nucleosides. Pharmacol. Ther. 8:605627.
49. Henderson, J. F.,, F. W. Scott,, and J. K. Lowe. 1980. Toxicity of naturally occurring purine deoxyribonucleosides. Pharmacol. Ther. 8:573604.
50. Hersfield, M. S.,, and N. M. Kredich. 1978. S-Adenosylhomocysteine hydrolase is an adenosine-binding protein: a target for adenosine toxicity. Science 202:757760.
51. Hitzeman, R. A.,, A. R. Price,, J. Neuhard,, and H. Mellgaard,. 1978. Deoxyribonucleoside triphosphates and DNA polymerase in bacteriophage PBS 1-infected Bacillus subtilis, p. 255266. In J. Molineux, and M. Kohiyama (ed.), DNA Synthesis Present and Future. Plenum Press, New York.
52. Hoch, J. A.,, and C. Anagnostopoulos. 1970. Chromosome location and properties of radiation sensitivity mutations in Bacillus subtilis. J. Bacteriol. 103:295301.
53. Hori, N.,, M. Watanabe,, Y. Yamazaki,, and Y. Mikami. 1989. Purification and characterization of thermostable purine nucleoside phosphorylase of Bacillus stearothermophilus JTS 859. Agric. Biol. Chem. 53:22052210.
54. Hori, N.,, M. Watanabe,, Y. Yamazaki,, and Y. Mikami. 1989. Purification and characterization of second thermostable purine nucleoside phosphorylase of Bacillus stearothermophilus JTS 859. Agric. Biol. Chem. 53:32193224.
55. Hori, N.,, M. Watanabe,, Y. Yamazaki,, and Y. Mikami. 1990. Purification and characterization of thermostable pyrimidine phosphorylase from Bacillus stearothermophilus JTS 859. Agric. Biol. Chem. 54:763768.
56. Ikeda, S.,, and D. H. Ives. 1985. Multisubstrate analogs for deoxynucleoside kinases. J. Biol. Chem. 260:1265912664.
57. Ipata, P. L.,, S. Gini,, and M. G. Tozzi. 1985. In vitro 5-phosphoribosyl 1-pyrophosphate-independent salvage biosynthesis of ribo- and deoxyriboadenine nucleotides in Bacillus cereus. Biochim. Biophys. Acta 842: 8489.
58. Ipata, P. L.,, F. Sgarrella,, R. Catalani,, and M. G. Tozzi. 1983. Induction of phosphoribomutase in Bacillus cereus growing on nucleosides. Biochim. Biophys. Acta 755:253256.
59. Ipata, P. L.,, F. Sgarrella,, and M. G. Tozzi. 1985. Mechanisms of exogenous purine nucleotide utilization in Bacillus cereus. Curr. Top. Cell. Regul. 26:419432.
60. Ishil, K.,, and I. Shiio. 1970. Regulation of purine ribonucleotide synthesis by end product inhibition. III. Effect of purine nucleotides on succino-AMP synthetase of Bacillus subtilis. J. Biochem. 68:171176.
61. Mill, K.,, and I. Shiio. 1972. Improved inosine production and derepression of purine nucleotide biosynthetic enzymes in 8-azaguanine resistant mutants of Bacillus subtilis. Agric. Biol. Chem. 36:15111522.
62. Ishii, K.,, and I. Shiio. 1973. Regulation of purine nucleotide biosynthesis in Bacillus subtilis. Agric. Biol. Chem. 37:287300.
63. Iwakura, M.,, M. Kawata,, K. Tsuda,, and T. Tanaka. 1988. Nucleotide sequence of the thymidylate synthase B and dihydrofolate reductase genes contained in one Bacillus subtilis operon. Gene 64:920.
64. Jensen, K. F. 1978. Two purine nucleoside phosphorylases in Bacillus subtilis. Purification and some properties of the adenosine-specific phosphorylase. Biochim. Biophys. Acta 525:346356.
65. Jensen, K. F.,, J. C. Leer,, and P. Nygaard. 1973. Thymine utilization in Escherichia coli K12 on the role of deoxyribose 1-phosphate and thymidine phosphorylase. Eur. J. Biochem. 40:345354.
66. Jensen, K. F.,, and P. Nygaard. 1975. Purine nucleoside phosphorylase from Escherichia coli and Salmonella typhimurium. Purification and some properties. Eur. J. Biochem. 51:253265.
67. Kanzakl, N.,, and K. Miyagawa. 1990. Nucleotide sequence of the Bacillus subtilis IMP dehydrogenase gene. Nucleic Acids Res. 18:6710.
68. Kloudova, A.,, and V. Fucik. 1974. Transport of nucleosides in Bacillus subtilis: characteristics of cytidine-uptake. Nucleic Acids Res. 1:629638.
69. Kredich, N. M.,, and D. W. Martin, Jr. 1977. Role of S-adenosylhomocysteine in adenosine-mediated toxicity in cultured mouse T-lymphoma cells. Cell 12:931938
70. Krenitzky, T. A.,, S. M. Nell,, and R. L. Miller. 1970. Guanine and xanthine phosphoribosyltransfer activities of Lactobacillus casei and Escherichia coli. Their relationship to hypoxanthine and adenine phosphoribosyl transfer activities. J. Biol. Chem. 245:26052611.
71. Kuninaka, A., 1986. Nucleic acids, nucleotides, and related compounds, p. 71114. In H. J. Rehm, and G. Reed (ed.), Biotechnology. VCH Verlagsgesellschaft, Weinheim, Germany.
72. Leung, H. B.,, and V. L. Schramm. 1980. Adenylate degradation in Escherichia coli. The role of AMP nucleosidase and properties of the purified enzyme. J. Biol. Chem. 255:1086710874.
73. Levisohn, S.,, and A. I. Aronson. 1967. Regulation of extracellular protease production in Bacillus cereus. J. Bacteriol. 93:10231030.
74. Lopez, J. M.,, A. Dromerick,, and E. Freese. 1981. Response of guanosine 5'-triphosphate concentration to nutritional changes and its significance for Bacillus subtilis sporulation. J. Bacteriol. 146:14471449.
75. Lopez, J. M.,, C. L. Marks,, and E. Freese. 1979. The decrease of guanine nucleotides initiates sporulation of Bacillus subtilis. Biochim. Biophys. Acta 587:238252.
76. Magasanik, B., 1962. Biosynthesis of purine and pyrimidine nucleotides, p. 295334. In J. C. Gunsalus, and R. Y. Stanier (ed.), The Bacteria, vol. 3. Academic Press, Inc., New York.
77. Mager, J.,, and B. Magasanik. 1960. Guanosine 5'-phosphate reductase and its role in the interconversion of purine nucleotides. J. Biol. Chem. 235:14741478.
78. Mathews, K. C. (ed.). 1971. Bacteriophage Biochemistry. Van Nostrand Reinhold Co., New York.
79. Maznitsa, I. I.,, A. A. Nudler,, and G. I. Bourd. 1990. A pleiotropic mutation affecting purine metabolism in Bacillus subtilis. FEMS Microbiol. Lett. 72:173176.
80. Maznitsa, I.I.,, V. V. Sukhodolets,, and L. S. Ukhabotina. 1983. Cloning of Bacillus subtilis 168 genes compensating the defect of mutations for thymidine phosphorylase and uridine phosphorylase in Escherichia coli cells. Genetika 19:881887.
81. McIvor, R. S.,, R. M. Wohlhueter,, and P. G. W. Plagemann. 1983. Uracil phosphoribosyltransferase from Acholeplasma laidlawii: partial purification and kinetic properties. J. Bacteriol. 156:192197.
82. Mehra, R. K.,, and W. T. Drabble. 1981. Dual control of the gua operon of Escherichia coli K12 by adenine and guanine nucleotides. J. Gen. Microbiol. 123:2737.
83. Meng, L.M.,, M. Kilstrup,, and P. Nygaard. 1990. Auto-regulation of PurR repressor synthesis and involvement of purR in the regulation of purB, purC, purL, purMN and guaBA expression in Escherichia coli. Eur. J. Biochem. 187:373379.
84. Meng, L. M.,, and P. Nygaard. 1990. Identification of hypoxanthine and guanine as the corepressors for the purine regulon genes of Escherichia coli. Mol. Microbiol. 4:21872192.
85. Meyer, E.,, and R. L. Switzer. 1979. Regulation of Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase activity by end products. J. Biol. Chem. 254:53975402.
86. Mitani, T.,, J. E. Heinze,, and E. Freese. 1977. Induction of sporulation in Bacillus subtilis by deocyinine or hadacidin. Biochem. Biophys. Res. Commun. 77:11181125.
87. Mitchell, A.,, and L. R. Finch. 1977. Pathways of nucleotide biosynthesis in Mycoplasma mycoides subsp. mycoides. J. Bacteriol. 130:10471054.
88.. Mitchell, C.,, and J. C. Vary. 1989. Proteins that interact with GTP during sporulation of Bacillus subtilis. J. Bacteriol. 171:29152918.
89. Miyagawa, K.,, N. Kanzaki,, H. Kimura,, Y. Sumino,, S. Akiyama,, and Y. Nakao. 1989. Increased inosine production by a Bacillus subtilis xanthine-requiring mutant derived by insertional inactivation of the IMP dehydrogenase gene. Biotechnology 7:821824.
90. Miyagawa, K.,, H. Kimura,, K. Nakahama,, M. Kikuchi,, M. Doi,, S. Akiyama,, and Y. Nakao. 1986. Cloning of the Bacillus subtilis IMP dehydrogenase gene and its application to increased production of guanosine. Biotechnology 4:225228.
91. Mellgaard, H. 1980. Deoxyadenosine/deoxycytidine kinase from Bacillus subtilis. J. Biol. Chem. 255:82168220.
92. Mogaard, H.,, and J. Neuhard. 1978. Deoxycytidylate deaminase from Bacillus subtilis. J. Biol. Chem. 253: 35363542.
93. Mellgaard, H.,, and J. Neuhard,. 1983. Biosynthesis of deoxythymidine triphosphate, p. 149201. In A. Munch-Petersen (ed.), Metabolism of Nucleotides, Nucleosides and Nucleobases in Microorganisms. Academic Press, Inc., New York.
94. Momose, H.,, H. Nishikawa,, and N. Katsuya. 1965. Genetic and biochemical studies on 5'-nucleotide fermentation. II. Repression of enzyme formation in purine nucleotide biosynthesis in Bacillus subtilis and derivation of derepressed mutants. J. Gen. Appl. Microbiol. 11:211220.
95. Momose, H.,, H. Nishikawa,, and I. Shiio. 1966. Regulation of purine nucleotide synthesis in Bacillus subtilis. I. Enzyme repression by purine derivatives. J. Biochem. 59:325331.
96. Munch-Petersen, A.,, and B. Mygind,. 1983. Transport of nucleic acid precursors, p. 259305. In A. Munch-Petersen (ed.), Metabolism of Nucleotides, Nucleosides and Nucleobases in Microorganisms. Academic Press, Inc., New York.
97. Myoda, T. T.,, and V. L. Funanage. 1985. Coregulation of dihydrofolate reductase and thymidylate synthase B in Bacillus subtilis. Biochim. Biophys. Acta 824:99103.
98. Myoda, T. T.,, S. V. Lowther,, V. L. Funanage,, and F. E. Young. 1984. Cloning and mapping of the dihydrofolate reductase gene of Bacillus subtilis. Gene 29:135143.
99. Neuhard, J., 1983. Utilization of preformed pyrimidine bases and nucleosides, p. 95148. In A. Munch-Petersen (ed.). Metabolism of Nucleotides, Nucleosides and Nucleobases in Microorganisms. Academic Press, Inc., New York.
100. Neuhard, J.,, and P. Nygaard,. 1987. Purines and pyrimidines, p. 445473. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C.
101. Neuhard, J.,, A. R. Price,, L. Schack,, and E. Thomassen. 1978. Two thymidylate synthetases in Bacillus subtilis. Proc. Natl. Acad. Set. USA 75:11941198.
102. Nijkamp, H. J. J.,, and P. G. DeHaan. 1967. Genetic and biochemical studies of the guanosine 5'-monophosphate pathway in Escherichia coli. Biochim. Biophys. Acta 145:3140.
103. Nilsson, D.,, and P. S. Andersen. Unpublished observations.
104. Nishikawa, H.,, H. Momose,, and I. Shiio. 1967. Regulation of purine nucleotide synthesis in Bacillus subtilis. II. Specificity of purine derivatives for enzyme repression. J. Biochem. 62:9298.
105. Nishikawa, H.,, H. Momose,, and I. Shiio. 1968. Pathway of purine nucleotide synthesis in Bacillus subtilis. J. Biochem. 63:149155.
106. Nygaard, P. Unpublished observations.
107. Nygaard, P., 1983. Utilization of preformed purine bases and nucleosides, p. 2793. In A. Munch-Petersen (ed.). Metabolism of Nucleotides, Nucleosides and Nucleobases in Microorganisms. Academic Press, Inc., New York.
108. Nygaard, P.,, P. Duckert,, and H. H. Saxild,. 1988. Purine gene organization and regulation in Bacillus subtilis, p. 5761. In M. M. Zukowski,, A. T. Ganesan,, and J. A. Hoch (ed.). Genetics and Biotechnology of Bacilli, vol. 3. Academic Press, Inc., New York.
109. Ochi, K. 1987. Changes in nucleotide pools during sporulation of Streptomyces griseus in submerged culture. J. Gen. Microbiol. 133:27872795.
110. Ochi, K.,, and E. Freese. 1982. A decrease in S-adenosylmethionine synthetase activity increases the probability of spontaneous sporulation. J. Bacteriol. 152:400410.
111. Ochi, K.,, J. Kandala,, and E. Freese. 1982. Evidence that Bacillus subtilis sporulation induced by the stringent response is caused by a decrease in GTP and GDP. J. Bacteriol. 150:704711.
112. Ogata, K., 1975. The microbial production of nucleic acid-related compounds, p. 209247. In D. Perlman (ed.). Applied Microbiology. Academic Press, Inc., New York.
113. Ohno, M., 1980. Nucleosides, p. 73130. In H. Umezawa (ed.), Anticancer Agents Based on Natural Product Models. Academic Press, Inc., New York.
114. Orengo, A.,, and S.-H. Kobayashi. 1978. Uridine-cytidine kinase from Novikoff ascites rat tumor and Bacillus stearothermophilus. Methods Enzymol. 51:299305.
115. Ozaki, H.,, and I. Shiio. 1979. Two cytoplasmic 5'-nucleotidases of Bacillus subtilis K. J. Biochem. 85: 10831089.
116. Paulus, T. J.,, T. J. McGarry,, P. G. Shekelle,, S. Rosenzweig,, and R. L. Switzer. 1982. Coordinate synthesis of the enzymes of pyrimidine biosynthesis in Bacillus subtilis. J. Bacteriol. 149:775778.
117. Paulus, T. J.,, and R. L. Switzer. 1979. Characterization of pyrimidine-repressible and arginine-repressible carbamylphosphate synthetase from Bacillus subtilis. J. Bacteriol. 137:8291.
118. Piggot, P. J.,, M. Amjad,, J.-J. Wu,, H. Sandoval,, and J. Castro,. 1990. Genetic and physical maps of Bacillus subtilis 168, p. 493543. In C. R. Harwood, and S. M. Cutting (ed.), Molecular Biology Methods for Bacillus. John Wiley & Sons, Ltd., Chichester, United Kingdom.
119. Pinter, K.,, V. J. Davisson,, and D. V. Santi. 1988. Cloning, sequencing, and expression of the Lactobacillus casei thymidylate synthase gene. DNA 7:235241.
120. Powell, J. W.,, and J. T. Wachsman. 1973. Evidence for four deoxynucleoside kinase activities in extracts of Lactobacillus leichmannii. Appl. Microbiol. 25:869872.
121. Preston, R. A.,, and H. A. Douthit. 1988. Functional relationships between l- and d-alanine, inosine and NH4C1 during germination of spores of Bacillus cereus T. J. Gen. Microbiol. 134:30013010.
122. Price, A. R., 1976. Bacteriophage-induced inhibitor of a host enzyme, p. 290294. In D. Schlessinger (ed.), Microbiology—1976. American Society for Microbiology, Washington, D.C.
123. Price, A. R. 1978. Deoxythymidylate phosphohydrolase from PBS2 phage-infected Bacillus subtilis. Methods Enzymol. 51:185290.
124. Price, A. R.,, and J. Frato. 1975. Bacillus subtilis deoxyuridinetriphosphatase and its bacteriophage PBS2-induced inhibitor. J. Biol. Chem. 250:88048811.
125. Quirk, S.,, and M. J. Bessman. 1991. dGTP triphosphohydrolase, a unique enzyme confined to members of the family Enterobacteriaceae. J. Bacteriol. 173:66656669.
126. Reichard, P. 1988. Interactions between deoxyribonucleotide and DNA synthesis. Annu. Rev. Biochem. 57: 349374.
127. Rima, B. K.,, and J. Takahashi. 1977. Metabolism of pyrimidine bases and nucleosides in Bacillus subtilis. J. Bacteriol. 129:574579.
128. Rima, B. K.,, and J. Takahashi. 1978. Deoxyribonucleoside-requiring mutants of Bacillus subtilis. J. Gen. Microbiol. 107:139145.
129. Rinehart, K. V.,, and J. C. Copeland. 1973. Evidence that thymine is not a normal metabolite in wild-type Bacillus subtilis. Biochim. Biophys. Acta 294:17.
130. Rolfes, R. J.,, and H. Zalkln. 1990. Purification of the Escherichia coli purine regulon repressor and identification of corepressors. J. Bacteriol. 172:56375642.
131. Roscoe, D. H.,, and R. G. Tucker. 1966. The biosynthesis of 5-hydroxy-methyldeoxyuridylic acid in bacteriophage-infected Bacillus subtilis. Virology 29:157166.
132. Rumyantseva, E. V.,, V. V. Sukhodolets,, and Y. V. Smirnov. 1979. Isolation and characterization of mutants for genes of nucleoside catabolism in Bacillus subtilis. Genetika 15:594604.
133. Sacks, L. E.,, and P. A. Thompson,. 1975. Influence of methylxanthines on sporulation of Clostridium perfringens cells, p. 341345. In P. Gerhardt,, R. N. Costilow,, and H. L. Sadoff (ed.), Spores VI. American Society for Microbiology, Washington, D.C.
134. Sakai, T.,, T.-S. Yu,, and S. Omata. 1976. Distribution of enzymes related to cytidine degradation in bacteria. Agric. Biol. Chem. 40:18931895.
135. Santangelo, J. D.,, D. T. Jones,, and D. R. Woods. 1989. Comparison of nucleoside triphosphate levels in the wild-type strain with those in sporulation-dehcient and solvent-deficient mutants of Clostridium acetobutylicum P262. J. Gen. Microbiol. 135:711719.
136. Saunders, P. P.,, B. A. Wilson,, and G. F. Saunders. 1969. Purification and comparative properties of a pyrimidine nucleoside phosphorylase from Bacillus stearothermophilus. J. Biol. Chem. 244:36913697.
137. Saxild, H. H.,, and P. Nygaard. 1987. Genetic and physiological characterization of Bacillus subtilis mutants resistant to purine analogs. J. Bacteriol. 169:29772983.
138. Saxild, H. H.,, and P. Nygaard. 1988. Gene-enzyme relationships of the purine biosynthetic pathway in Bacillus subtilis. Mol. Gen. Genet. 211:160167.
139. Saxild, H. H.,, and P. Nygaard. 1991. Regulation of levels of purine biosynthetic enzymes in Bacillus subtilis: effects of changing purine nucleotide pools. J. Gen. Microbiol. 137:23872394.
140. Schiefer-UUrich, H.,, and J. R. Andreesen. 1985. Peptostreptococcus bamesae sp. nov., a gram-positive, anaerobic, obligately purine utilizing coccus from chicken feces. Arch. Microbiol. 143:2631.
141. Schiefer-UUrich, H.,, R. Wagner,, P. Durre,, and J. R. Andreesen. 1984. Comparative studies on physiology and taxonomy of obligately purinolytic Clostridia. Arch. Microbiol. 138:345353.
142. Schimpff-Weiland, G.,, H. Follmann,, and G. Aiding. 1981. A new manganese-activated ribonucleotide reductase found in gram-positive bacteria. Biochem. Biophys. Res. Commun. 102:12761282.
143. Schrader, W. P.,, and J. S. Anderson. 1978. Membrane-bound nucleotidase of Bacillus cereus. J. Bacteriol. 133: 576583.
144. Sedmak, J.,, and R. Ramaley. 1971. Purification and properties of Bacillus subtilis nucleoside diphosphokinase. J. Biol. Chem. 246:53655372.
145. Sekar, V.,, S. P. Wilson,, and J. H. Hageman. 1981. Induction of Bacillus subtilis sporulation by nucleosides: inosine appears to be a sporogen. J. Bacteriol. 145:489493.
146. Senesi, S.,, G. Cercignani,, G. Freer,, G. Batoni,, S. Barnini,, and F. Ota. 1991. Structural and stereospecific requirements for the nucleoside-triggered germination of Bacillus cereus spores. J. Gen. Microbiol. 137:399404.
147. Senesi, S.,, G. Falcone,, P. L. Ipata,, and R. A. Felicioli. 1974. Inhibition of phosphodiesterases from Bacillus subtilis by nucleoside triphosphates. Biochemistry 13: 50085011.
148. Senesi, S.,, R. A. Felicioli,, P. L. Ipata,, and G. Falcone,. 1975. Regulation of polyribonucleotide turnover in vegative cells and spores of Bacillus subtilis, p. 265270. In P. Gerhardt,, R. N. Costilow,, and H. L. Sadoff (ed.). Spores VI. American Society for Microbiology, Washington, D.C.
149. Sergott, R.C,, L. J. Debeer,, and M. J. Bessman. 1971. On the regulation of a bacterial deoxycytidylate deaminase. J. Biol. Chem. 246:77557758.
150. Setlow, P. 1973. Deoxyribonucleic acid synthesis and deoxynucleotide metabolism during bacterial spore germination. J. Bacteriol. 114:10991107.
151. Setlow, P., 1974. Energy and small-molecule metabolism during germination of Bacillus spores, p. 443450. In P. Gerhardt,, R. N. Costilow,, and H. L. Sadoff (ed.), Spores VI. American Society for Microbiology, Washington, D.C.
152. Setlow, P.,, and A. Kornberg. 1970. Biochemical studies of bacterial sporulation and germination. XXIII. Nucleotide metabolism during spore germination. J. Biol. Chem. 245:36453652.
153. Sharpe, M. E. ,1981. The genus Lactobacillus, p. 16531679. In P. S. Mortimer,, H. Stolp,, H. G. Triiper,, A. Balows,, and H. G. Schlegel (ed.). The prokaryotes, vol. 2. Springer-Verlag, New York.
154. Shibata, H.,, N. Ohnishi,, K. Takeda,, H. Fukunaga,, K. Shimamura,, E. Yasunobu,, and I. Tani. 1986. Germination of Bacillus cereus spores induced by purine ribosides and their analogs: effects of modification of base and sugar moieties of purine nucleosides on germination-inducing activity. Can. J. Microbiol. 32:186189.
155. Shiio, I.,, and H. Ozaki. 1978. Cellular distribution and some properties of 5' nucleotidases in Bacillus subtilis K. J. Biochem. 83:409421.
156. Shimizu, S.,, T. Abe,, and H. Yamada. 1988. Distribution of methylthioadenosine phosphorylase in eubacteria. FEMS Microbiol. Lett. 51:177180.
157. Shlomal, J.,, and A. Kornberg. 1978. Deoxyuridine triphosphatase of Escherichia coli. Purification, properties, and use as reagent to reduce uracil incorporation into DNA. J. Biol. Chem. 253:33053312.
158. Smar, M.,, S. A. Short,, and R. Wolfenden. 1991. Lyase activity of nucleoside 2-deoxyribosyltransferase: transient generation of ribal and its use in the synthesis of 2'-deoxynucleosides. Biochemistry 30:79087912.
159. Segaard-Andersen, L.,, H. Pedersen,, B. Hoist,, and P. Valentln-Hansen. 1991. A novel function of the cAMP-CPR complex in Escherichia coli: cAMP-CRP functions as an adaptor for the CytR repressor in the deo operon. Mol. Microbiol. 5:969975.
160. Sonensheln, A. L., 1985. Recent progress in metabolic regulation of sporulation, p. 185193. In J. A. Hoch, and P. Setlow (ed.), Molecular Biology of Microbial Differentiation. American Society for Microbiology, Washington, D.C.
161. Sonenshein, A. L., 1989. Metabolic regulation of sporulation and other stationary-phase phenomena, p. 109130. In I. Smith,, R. A. Slepecky,, and P. Setlow (ed.), Regulation of Procaryotic Development. American Society for Microbiology, Washington, D.C.
162. Song, B. H.,, and J. Neuhard. 1989. Chromosomal location, cloning and nucleotide sequence of the Bacillus subtilis cdd gene encoding cytidine/deoxycytidine deaminase. Mol. Gen. Genet. 216:462468.
163. Stubbe, J. A. 1990. Ribonucleotide reductases: amazing and confusing. J. Biol. Chem. 265:53295332.
164. Suhadolnlk, R. J. 1979. Nucleosides as Biological Probes. John Wiley & Sons, Inc., New York.
165. Sukhodolets, V. V. Personal communication.
166. Sukhodolets, V. V.,, Y. Flyakh, and E. V. Rumyantseva. 1983. Mapping of mutations in genes for nucleoside catabolism on the Bacillus subtilis chromosome. Genetika 19:221226.
167. Takagi, Y.,, and B. L. Horecker. 1957. Purification and properties of a bacterial riboside hydrolase. J. Biol. Chem. 225:7786.
168. Tesfa-Selase, F.,, and W. T. Drabble. 1990. Regulation of the gua operon of Escherichia coli by the DnaA protein. Mol. Gen. Genet. 231:256264.
169. Teuber, M.,, and A. Gels,. 1981. The family Streptococcaceae (nonmedical aspects), p. 16141630. In P. S. Mortimer,, H. Stolp,, H. G. Truper,, A. Balows,, and H. G. Schlegel (ed.), The prokaryotes, vol. 2. Springer-Verlag, New York.
170. Tomati, F.,, and I. Takahashi,. 1976. Changes in enzyme activities in Bacillus subtilis infected with bacteriophage PBS1, p. 315318. In D. Schlessinger (ed.), Microbiology—1976. American Society for Microbiology, Washington, D.C.
171. Tozzl, M. G.,, F. Sgarrella,, D. Barsacchi,, and P. L. Ipata. 1984. Induction of deoxyribose-5-phosphate aldolase of Bacillus cereus by deoxyribonucleosides. Biochem. Int. 9:319325.
172. Tozzi, M. G.,, F. Sgarrella,, and P. L. Ipata. 1981. Induction and repression of enzymes involved exogenous purine compound utilization in Bacillus cereus. Biochim. Biophys. Acta 678:460466.
173. Turnbough, C. L., Jr.,, and R. L. Switzer. 1975. Oxygen-dependent inactivation of glutamine phosphoribosylpyrophosphate amidotransferase in stationary-phase cultures of Bacillus subtilis. J. Bacteriol. 121:108114.
174. Uerkvitz, W. 1974. Trans-N-deoxyribosylase from Lactobacillus helveticus. Crystallization and properties. Eur. J. Biochem. 23:387395.
175. Vachova, L.,, M. Strnadova,, H. Kucerova,, and J. Chaloupka. 1990. Effect of actinomycin D on viability, sporulation and nucleotide pool of Bacillus megaterium. Folia Microbiol. 35:190199.
176. Valentin-Hansen, P.,, H. Alba,, and D. Schumperli. 1982. The structure of tandem regulatory regions in the deo operon of Escherichia coli K12. EMBO J. 1:317322.
177. Vasantha, N.,, E. M. Gathers,, and J. N. Hansen. 1984. Effect of purine and pyrimidine limitations on RNA synthesis in Bacillus subtilis. J. Bacteriol. 158:884889.
178. Vogels, G. D.,, and C. van der Drift. 1976. Degradation of purines and pyrimidines by microorganisms. Bacteriol. Rev. 40:403468.
179. Wabiko, H.,, K. Ochi,, D. M. Nguyen,, E. R. Allen,, and E. Freese. 1988. Genetic mapping and physiological consequences of metE mutations of Bacillus subtilis. J. Bacteriol. 170:27052710.
180. Wachsman, J. T.,, S. Kemp,, and L. Hogg. 1964. Thymineless death in Bacillus megaterium. J. Bacteriol. 87:10791086.
181. Wachsman, J. T.,, and D. D. Morgan. 1971. Deoxynucle oside kinases of Bacillus megaterium. J. Bacteriol. 105: 787792.
182. Waindle, L. M.,, and R. L. Switzer. 1973. Inactivation of aspartic transcarbamylase in sporulating Bacillus subtilis: demonstration of a requirement for metabolic energy. J. Bacteriol. 114:517527.
183. Wainscott, V. J.,, and J. F. Kane,. 1976. Dihydrofolate reductase in Bacillus subtilis, p. 208213. In D. Schlessinger (ed.). Microbiology—1976. American Society for Microbiology, Washington, D.C.
184. Waleh, X. S.,, and J. L. Ingraham. 1976. Pyrimidine ribonucleoside monophosphokinase and the mode of RNA turnover in Bacillus subtilis. Arch. Microbiol. 110: 4954.
185. Watanabe, Y.,, O. Tatsuhiko,, and Y. Tsujisaka. 1976. Changes in the metabolic pathways of hypoxanthine in Streptomyces. J. Gen. Appl. Microbiol. 22:1323.
186. Wheeler, P. R. 1987. Biosynthesis and scavenging of purines by pathogenic mycobacteria including Mycobacterium leprae. J. Gen. Microbiol. 133:29993011.
187. Willing, A.,, H. Follmann,, and G. Aiding. 1988. Ribonucleotide reductase of Brevibacterium ammoniagenes is a manganese enzyme. Eur. J. Biochem. 170:603611.
188. Yau, S.,, and J. T. Wachsman. 1973. The Bacillus megaterium ribonucleotide reductase: evidence for a B12 coenzyme requirement. Mol. Cell. Biochem. 1:101105.
189. Yoshikawa, H.,, and N. Ogasawara. 1991. Structure and function of DnaA and the DnaA-box in eubacteria: evolutionary relationships of bacterial replication origins. Mol. Microbiol. 5:25892597.
190. Zahler, S. A. 1978. An adenine-thiamin auxotrophic mutant of Bacillus subtilis. J. Gen. Microbiol. 107:199201.
191. Zain-ul-Abedin, J. M. Lopez,, and E. Freese. 1983. Induction of bacterial differentiation by adenine and adenosine analogs and inhibitors of nucleic acid synthesis. Nucleoside Nucleotides 2:257274.
192. Zalkin, H.,, and C. D. Truit. 1977. Characterization of the glutamine site of Escherichia coli guanosine 5'-monophosphate synthetase. J. Biol. Chem. 252:54315436.

Tables

Generic image for table
Table 1

Growth of purine and pyrimidine auxotrophic strains of on different purine or pyrimidine compounds

Citation: Nygaard P. 1993. Purine and Pyrimidine Salvage Pathways, p 359-378. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch26
Generic image for table
Table 2

Effects of amino acid starvation on incorporation of bases and nucleosides in ()

Citation: Nygaard P. 1993. Purine and Pyrimidine Salvage Pathways, p 359-378. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch26
Generic image for table
Table 3

Selection of mutants resistant to purine and pyrimidine analogs in

Citation: Nygaard P. 1993. Purine and Pyrimidine Salvage Pathways, p 359-378. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch26
Generic image for table
Table 4

Intracellular amounts of nucleoside triphosphates and PRPP in

Citation: Nygaard P. 1993. Purine and Pyrimidine Salvage Pathways, p 359-378. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch26

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error