1887

Chapter 26 : Purine and Pyrimidine Salvage Pathways

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Purine and Pyrimidine Salvage Pathways, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap26-1.gif /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap26-2.gif

Abstract:

The first complete purine nucleotide formed in the purine biosynthetic pathway is IMP, which is converted to AMP and GMP via two separate pathways. The pathways by which purine bases and ribonucleosides are metabolized in are discussed. Different species of gram-positive bacteria show great variations in their abilities to metabolize bases and nucleosides. Our knowledge of purine salvage reactions and transport systems in is to a great extent based on studies of mutants defective in enzymic reactions. The pathways by which pyrimidine bases and nucleosides are converted to the nucleotide level vary among the different bacteria studied. The pathways by which thymine and pyrimidine deoxyribonucleosides are metabolized is dealt in detail. Mutants defective in pyrimidine salvage enzymes and transport functions can be isolated by selecting for resistance to pyrimidine analogs. The isolation and characterization of mutant strains defective in purine and pyrimidine metabolism have been powerful tools in the identification of the pathways of purine and pyrimidine metabolism and their regulation. The choice between purine salvage and degradation must be subjected to metabolic control.

Citation: Nygaard P. 1993. Purine and Pyrimidine Salvage Pathways, p 359-378. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch26

Key Concept Ranking

Gene Expression and Regulation
1.348907
DNA Synthesis
1.0152214
Nucleic Acids
0.89180464
Nucleotides and Nucleosides
0.8752949
RNA
0.67808384
1.348907
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Pathways of ATP and GTP synthesis from purine bases and nucleosides in . Individual reactions are identified by gene symbols. AICA, aminoimidazolecarboxamide; AICAR, AICA ribonucleotide; FAICAR, formamidoimidazolecarboxamide ribonucleotide; sAMP, adenylosuccinate; , AICAR transformylase; , adenylosuccinate synthetase; , adenylosuccinate lyase; , IMP dehydrogenase; , GMP synthetase; , GMP reductase; , adenine phosphoribosyltransferase; , xanthine phosphoribosyltransferase; , hypoxanthine (guanine) phosphoribosyltransferase; , deoxycytidine (adenosine) kinase; , adenosine phosphorylase; , adenine deaminase; , guanosine (inosine) phosphorylase.

Citation: Nygaard P. 1993. Purine and Pyrimidine Salvage Pathways, p 359-378. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Pathways of UTP and CTP synthesis from pyrimidine bases and nucleosides in . Individual reactions are identified by the corresponding gene symbols, , orotate phosphoribosyltransferase; , orotidylate decarboxylase; , uracil phosphoribosyltransferase; , pyrimidine nucleoside phosphorylase; , uridine (cytidine) kinase; , cytidine deaminase; , pyrimidine ribonucleoside monophosphate kinase; , CTP synthetase.

Citation: Nygaard P. 1993. Purine and Pyrimidine Salvage Pathways, p 359-378. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Pyrimidine deoxyribonucleotide synthesis in . Individual reactions are identified by gene symbols. , CTP synthetase; nrd, ribonucleotide reductase; , dCMP deaminase; and , thymidylate synthase; , deoxycytidine kinase; , cytidine (deoxycytidine) deaminase; , thymidine kinase; , pyrimidine nucleoside phosphorylase.

Citation: Nygaard P. 1993. Purine and Pyrimidine Salvage Pathways, p 359-378. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Metabolism of inosine and uridine in exponentially growing cells. C-labeled nucleoside (100 nmol/ml) was added at time zero. At different times thereafter, samples of the culture were analyzed for the distribution of label in the culture. Symbols: ■, label incorporated into whole cells; ●, inosine; ▲, hypoxanthine; ○, uridine; △, uracil. OD, optical density at 436 nm.

Citation: Nygaard P. 1993. Purine and Pyrimidine Salvage Pathways, p 359-378. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Effects of adenine and guanosine on purine salvage and levels of a purine biosynthetic enzyme in wild-type . Cells were grown with C-labeled purines, and the contribution from the exogenous source to RNA nucleotides was calculated. Symbols: □, adenine; ■, guanosine; ▨, levels of glycinamide ribonucleotide synthetase. 100% ∼ 24 nmol/min/mg of protein.

Citation: Nygaard P. 1993. Purine and Pyrimidine Salvage Pathways, p 359-378. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Effects of uracil on pyrimidine salvage and levels of a pyrimidine biosynthetic enzyme in wild-type . Cells were grown with C-labeled uracil, and the contribution from the exogenous source to RNA nucleotides was calculated (□). ▨, levels of aspartate transcarbamylase. 100% ∼ 77 nmol/min/mg of protein.

Citation: Nygaard P. 1993. Purine and Pyrimidine Salvage Pathways, p 359-378. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818388.chap26
1. Asahi, S., M. Dol, Y. Tsunemi, and S. J. Akiyma. 1989. Regulation of pyrimidine nucleotide biosynthesis in cytidine deaminase-negative mutants of Bacillus subtilis. Agric. Biol. Chem. 53: 97 102.
2. Ashley, G. W.,, G. Harris,, and J. A. Stubbe. 1986. The mechanism of Lactobacillus leichmannii ribonucleotide reductase. Evidence for 3' carbon-hydrogen bond cleavage and a unique role for coenzyme B 12. J. Biol. Chem. 261: 3958 3964.
3. Aullng, G.,, and B. Moss. 1984. Metabolism of pyrimidine bases and nucleosides in the coryneform bacteria Brevibacterium ammoniagenes, and Micrococcus luteus. J. Bacteriol. 158: 733 736.
4. Aullng, G.,, H. Prelle,, and H. Diekmann. 1982. Incorporation of deoxyribonucleosides into DNA of coryneform bacteria and the relevance of deoxyribonucleoside kinases. Eur. J. Biochem. 121: 365 370.
5. Avraham, Y.,, N. Grossowlcz,, and J. Yashphe. 1991. Regulation of the synthesis and activity of thymidine phosphorylase in Lactobacillus casei. FEMS Microbiol. Lett. 82: 287 292.
6. Avraham, Y.,, J. Yashphe,, and N. Grossowlcz. 1988. Thymidine phosphorylase and uridine phosphorylase of Lactobacillus casei. FEMS Microbiol. Lett. 56: 29 34.
7. Beaman, T. C.,, A. D. Hitchins,, K. Ochi,, N. Vasantha,, T. Endo,, and E. Freese. 1983. Specificity and control of uptake of purines and other compounds in Bacillus subtilis. J. Bacteriol. 156: 1107 1117.
8. Beck, W. S.,, and M. Levin. 1963. Purification, kinetics, and repression control of bacterial trans-N-deoxyribosylase. J. Biol. Chem. 238: 702 709.
9. Bedard, J.,, and G. M. Lefebvre,. 1989. L-Alanine and inosine enhancement of glucose triggering in Bacillus megaterium spores, p. 760 763. In H. O. Halvorson,, R. Hanson,, and L. L. Campbell (ed.), Spores V. American Society for Microbiology, Washington, D.C.
10. Berlin, R. D. 1969. Adenylate pyrophosphorylase: purification, reaction sequence, and inhibition by sodium ion. Arch. Biochem. Biophys. 134: 120 129.
11. Berlin, R. D.,, and E. R. Stadtman. 1966. A possible role of purine nucleotide pyrophosphorylases in the regulation of purine uptake by Bacillus subtilis. J. Biol. Chem. 241: 2679 2686.
12. Blakley, R. L. 1978. Ribonucleoside triphosphate reductase from Lactobacillus leichmannii. Methods Enzymol. 51: 246 259.
13. Cardinaud, R. 1978. Nucleoside deoxyribosyltransferase from Lactobacillus helveticus. Methods Enzymol. 51: 446 455.
14. Carson, D. A.,, D. B. Wasson,, and E. Beutler. 1984. Antileukemic and immunosuppressive activity of 2-chloro-2'-deoxyadenosine. Proc. Natl. Acad. Sci. USA 81: 2232 2236.
15. Chawdhrl, R. F.,, D. W. Hutchinson,, and A. O. Richards. 1991. Nucleoside deoxyribosyltransferase and inosine phosphorylase activity in lactic acid bacteria. Arch. Microbiol. 155: 409 411.
16. Cook, W. J.,, S. A. Short,, and S. E. Eallck. 1990. Crystallization and preliminary X-ray investigation of recombinant Lactobacillus leichmannii nucleoside deoxyribosyltransferase. J. Biol. Chem. 265: 2682 2683.
17. Crusberg, T. C.,, R. Leary,, and R. L. Kisliuk. 1970. Properties of thymidylate synthetase from dichloromethotrexate-resistant Lactobacillus casei. J. Biol. Chem. 245: 5292 5296.
18. Dandanell, G.,, and K. Hammer. 1991. deoPl promoter and operator mutants in Escherichia coli: isolation and characterization. Mol. Microbiol. 5: 2371 2376.
19. Deibel, M. R., Jr.,, and D. H. Ives. 1978. Deoxynucleoside kinases from Lactobacillus acidophilus R-26. Methods Enzymol. 51: 346 354.
20. Demaln, A. L.,, and D. Hendlin. 1967. Phosphohydrolases of a Bacillus subtilis mutant accumulating inosine and hypoxanthine. J. Bacteriol. 9: 66 74.
21. Demain, A. L.,, and H. T. Shigeura. 1968. Dependence of diaminopurine utilization on the mutational site of purine auxotrophy in Bacillus subtilis. J. Bacteriol. 95: 555 571.
22. Deutscher, M. P.,, and A. Kornberg. 1968. Biochemical studies of bacterial sporulation and germination. VIII. Patterns of enzyme development during growth and sporulation of Bacillus subtilis. J. Biol. Chem. 243: 4653 4660.
23. Dhariwal, K. R.,, N. Vasantha,, and E. Freese. 1982. Partial nucleotide limitation induces phosphodiesterase I and 5'-nucleotidase in Bacillus subtilis. J. Bacteriol. 149: 1146 1149.
24. Dot, M.,, S. Asahi,, Y. Tsunemi,, and S. J. Akiyami. 1989. Mechanism of uridine production by Bacillus subtilis mutants. Appl. Microbiol. Technol. 30: 234 238.
25. Doi, M.,, Y. Tsunemi,, S. Asahi,, S. J. Aklyama,, and Y. Nakao. 1988. Bacillus subtilis mutants producing uridine in high yields. Agric. Biol. Chem. 52: 1479 1484.
26. Dürre, P.,, and J. R. Andreesen. 1983. Purine and glycine metabolism by purinolytic Clostridia. J. Bacteriol. 154: 192 199.
27. Ebbole, D. J.,, and H. Zalkln. 1987. Cloning and characterization of a 12-gene cluster from Bacillus subtilis encoding nine enzymes for de novo purine nucleotide synthesis. J. Biol. Chem. 262: 8274 8287.
28. Ellasson, R.,, M. Fontecave,, H. JSrnvall,, M. Krook,, E. Pontis,, and P. Reichard. 1990. The anaerobic ribonucleoside triphosphate reductase from Escherichia coli requires S-adenosylmethionine as a cofactor. Proc. Natl. Acad. Sci. USA 87: 3314 3318.
29. Elmerich, C.,, and J. P. Aubert,. 1975. Involvement of glutamine synthetase and the purine nucleotide pathway in repression of bacterial sporulation, p. 385 390. In P. Gerhardt,, R. N. Costilow,, and H. L. Sadoff (ed.), Spores VI. American Society for Microbiology, Washington, D.C.
30. Endo, T.,, B. Uratani,, and E. Freese. 1983. Purine salvage pathways of Bacillus subtilis and effect of guanine on growth of GMP reductase mutants. J. Bacteriol. 155: 169 179.
31. Engelbrecht, H. L. 1972. Time course of purine nucleoside phosphorylase occurrence in sporulation of Bacillus cereus. J. Bacteriol. 111: 33 36.
32. Felicioll, R. A.,, S. Senesi,, F. Marmocchi,, G. Falcone,, and P. L. Ipata. 1973. Nucleoside phosphomonoesterases during growth cycle of Bacillus subtilis. Biochemistry 12: 547 552.
33. Freese, E. 1989. Control of differentiation by GTP. Nucleosides Nucleotides 8: 975 978.
34. Freese, E.,, J. Heinze,, T. Mitani,, and E. B. Freese,. 1978. Limitation of nucleotides induces sporulation, p. 277 285. In G. Chambliss, and J. C. Vary (ed.), Spores VII. American Society for Microbiology, Washington, D.C.
35. Freese, E.,, J. E. Heinze,, and E. M. Galliers. 1979. Partial purine deprivation causes sporulation of Bacillus subtilis in the presence of excess ammonia, glucose, and phosphate. J. Gen. Microbiol. 115: 193 205.
36. Fucik, V.,, A. Kloudova,, and A. Holy. 1974. Transport of nucleosides in Bacillus subtilis: the effect of purine nucleosides on the cytidine-uptake. Nucleic Acids Res. 1: 639 644.
37. Gabiellieri, E.,, S. Bernini,, L. Piras,, P. Cioni,, E. Balestreri,, G. Cerugnani,, and R. Felicioll. 1986. Purification, stability and kinetic properties of highly purified adenosine deaminase from Bacillus cereus NCIB 8122. Biochim. Biophys. Acta 884: 490 496.
38. Gardner, R.,, and A. Romberg. 1967. Biochemical studies of bacterial sporulation and germination. V. Purine nucleoside phosphorylase of vegetative cells and spores of Bacillus cereus. J. Biol. Chem. 242: 2383 2388.
39. Gould, G. W.,, and G. J. Dring,. 1972. Biochemical mechanisms of spore germination, p. 401 408. In H. O. Halvorson,, R. Hanson,, and L. L. Campbell (ed.). Spores V. American Society for Microbiology, Washington, D.C.
40. Goulian, M.,, and W. S. Beck. 1966. Variations of intracellular deoxyribosyl compounds in deficiencies of vitamin B 12, folic acid and thymine. Biochim. Biophys. Acta 129: 336 349.
41. Goulian, M.,, and W. S. Beck. 1966. Purification and properties of cobamide-dependent ribonucleotide reductase from Lactobacillus leichmannii. J. Biol. Chem. 242: 4233 4242.
42. Grigorieva, T. M.,, Y. V. Smirnov,, and V. V. Sukhodolets. 1978. Thymine auxotrophs and secondary mutations decreasing the growth requirement for thymine in Bacillus thuringiensis. Genetika 14: 1310 1318.
43. Grigorieva, T. M.,, and V. V. Sukhodolets. 1979. Regulation of pyrimidine nucleoside phosphorylase activity in Bacillus thuringiensis var. galleriae. I. Change of the activity under the effect of exogenous nucleosides in thymine auxotrophs and mutants for drm and dra genes. Genetika 15: 1159 1168.
44. Grigorieva, T. M.,, and V. V. Sukhodolets. 1979. Regulation of pyrimidine nucleoside in Bacillus thuringiensis var. galleriae. II. The induction of the enzyme activity at different growth stages of bacterial cells. Genetika 15: 1169 1176.
45. Guha, S. 1984. Effects of 5-azacytidine on DNA methylation and on the enzymes of de novo pyrimidine biosynthesis in Bacillus subtilis Marburg strain. Eur. J. Biochem. 145: 99 106.
46. Hammer-Jespersen, K., 1983. Nucleoside catabolism, p. 203 258. In A. Munch-Petersen (ed.), Metabolism of Nucleotides, Nucleosides and Nucleobases in Microorganisms. Academic Press, London.
47. Haneda, K.,, and R. Kodaira. 1987. Mechanism of adenosine production by xanthine-requiring mutants derived from a Bacillus strain. J. Ferment. Technol. 65: 145 151.
48. Henderson, J. F. 1980. Inhibition of microbial growth by naturally-occurring purine bases and nucleosides. Pharmacol. Ther. 8: 605 627.
49. Henderson, J. F.,, F. W. Scott,, and J. K. Lowe. 1980. Toxicity of naturally occurring purine deoxyribonucleosides. Pharmacol. Ther. 8: 573 604.
50. Hersfield, M. S.,, and N. M. Kredich. 1978. S-Adenosylhomocysteine hydrolase is an adenosine-binding protein: a target for adenosine toxicity. Science 202: 757 760.
51. Hitzeman, R. A.,, A. R. Price,, J. Neuhard,, and H. Mellgaard,. 1978. Deoxyribonucleoside triphosphates and DNA polymerase in bacteriophage PBS 1-infected Bacillus subtilis, p. 255 266. In J. Molineux, and M. Kohiyama (ed.), DNA Synthesis Present and Future. Plenum Press, New York.
52. Hoch, J. A.,, and C. Anagnostopoulos. 1970. Chromosome location and properties of radiation sensitivity mutations in Bacillus subtilis. J. Bacteriol. 103: 295 301.
53. Hori, N.,, M. Watanabe,, Y. Yamazaki,, and Y. Mikami. 1989. Purification and characterization of thermostable purine nucleoside phosphorylase of Bacillus stearothermophilus JTS 859. Agric. Biol. Chem. 53: 2205 2210.
54. Hori, N.,, M. Watanabe,, Y. Yamazaki,, and Y. Mikami. 1989. Purification and characterization of second thermostable purine nucleoside phosphorylase of Bacillus stearothermophilus JTS 859. Agric. Biol. Chem. 53: 3219 3224.
55. Hori, N.,, M. Watanabe,, Y. Yamazaki,, and Y. Mikami. 1990. Purification and characterization of thermostable pyrimidine phosphorylase from Bacillus stearothermophilus JTS 859. Agric. Biol. Chem. 54: 763 768.
56. Ikeda, S.,, and D. H. Ives. 1985. Multisubstrate analogs for deoxynucleoside kinases. J. Biol. Chem. 260: 12659 12664.
57. Ipata, P. L.,, S. Gini,, and M. G. Tozzi. 1985. In vitro 5-phosphoribosyl 1-pyrophosphate-independent salvage biosynthesis of ribo- and deoxyriboadenine nucleotides in Bacillus cereus. Biochim. Biophys. Acta 842: 84 89.
58. Ipata, P. L.,, F. Sgarrella,, R. Catalani,, and M. G. Tozzi. 1983. Induction of phosphoribomutase in Bacillus cereus growing on nucleosides. Biochim. Biophys. Acta 755: 253 256.
59. Ipata, P. L.,, F. Sgarrella,, and M. G. Tozzi. 1985. Mechanisms of exogenous purine nucleotide utilization in Bacillus cereus. Curr. Top. Cell. Regul. 26: 419 432.
60. Ishil, K.,, and I. Shiio. 1970. Regulation of purine ribonucleotide synthesis by end product inhibition. III. Effect of purine nucleotides on succino-AMP synthetase of Bacillus subtilis. J. Biochem. 68: 171 176.
61. Mill, K.,, and I. Shiio. 1972. Improved inosine production and derepression of purine nucleotide biosynthetic enzymes in 8-azaguanine resistant mutants of Bacillus subtilis. Agric. Biol. Chem. 36: 1511 1522.
62. Ishii, K.,, and I. Shiio. 1973. Regulation of purine nucleotide biosynthesis in Bacillus subtilis. Agric. Biol. Chem. 37: 287 300.
63. Iwakura, M.,, M. Kawata,, K. Tsuda,, and T. Tanaka. 1988. Nucleotide sequence of the thymidylate synthase B and dihydrofolate reductase genes contained in one Bacillus subtilis operon. Gene 64: 9 20.
64. Jensen, K. F. 1978. Two purine nucleoside phosphorylases in Bacillus subtilis. Purification and some properties of the adenosine-specific phosphorylase. Biochim. Biophys. Acta 525: 346 356.
65. Jensen, K. F.,, J. C. Leer,, and P. Nygaard. 1973. Thymine utilization in Escherichia coli K12 on the role of deoxyribose 1-phosphate and thymidine phosphorylase. Eur. J. Biochem. 40: 345 354.
66. Jensen, K. F.,, and P. Nygaard. 1975. Purine nucleoside phosphorylase from Escherichia coli and Salmonella typhimurium. Purification and some properties. Eur. J. Biochem. 51: 253 265.
67. Kanzakl, N.,, and K. Miyagawa. 1990. Nucleotide sequence of the Bacillus subtilis IMP dehydrogenase gene. Nucleic Acids Res. 18: 6710.
68. Kloudova, A.,, and V. Fucik. 1974. Transport of nucleosides in Bacillus subtilis: characteristics of cytidine-uptake. Nucleic Acids Res. 1: 629 638.
69. Kredich, N. M.,, and D. W. Martin, Jr. 1977. Role of S-adenosylhomocysteine in adenosine-mediated toxicity in cultured mouse T-lymphoma cells. Cell 12: 931 938
70. Krenitzky, T. A.,, S. M. Nell,, and R. L. Miller. 1970. Guanine and xanthine phosphoribosyltransfer activities of Lactobacillus casei and Escherichia coli. Their relationship to hypoxanthine and adenine phosphoribosyl transfer activities. J. Biol. Chem. 245: 2605 2611.
71. Kuninaka, A., 1986. Nucleic acids, nucleotides, and related compounds, p. 71 114. In H. J. Rehm, and G. Reed (ed.), Biotechnology. VCH Verlagsgesellschaft, Weinheim, Germany.
72. Leung, H. B.,, and V. L. Schramm. 1980. Adenylate degradation in Escherichia coli. The role of AMP nucleosidase and properties of the purified enzyme. J. Biol. Chem. 255: 10867 10874.
73. Levisohn, S.,, and A. I. Aronson. 1967. Regulation of extracellular protease production in Bacillus cereus. J. Bacteriol. 93: 1023 1030.
74. Lopez, J. M.,, A. Dromerick,, and E. Freese. 1981. Response of guanosine 5'-triphosphate concentration to nutritional changes and its significance for Bacillus subtilis sporulation. J. Bacteriol. 146: 1447 1449.
75. Lopez, J. M.,, C. L. Marks,, and E. Freese. 1979. The decrease of guanine nucleotides initiates sporulation of Bacillus subtilis. Biochim. Biophys. Acta 587: 238 252.
76. Magasanik, B., 1962. Biosynthesis of purine and pyrimidine nucleotides, p. 295 334. In J. C. Gunsalus, and R. Y. Stanier (ed.), The Bacteria, vol. 3. Academic Press, Inc., New York.
77. Mager, J.,, and B. Magasanik. 1960. Guanosine 5'-phosphate reductase and its role in the interconversion of purine nucleotides. J. Biol. Chem. 235: 1474 1478.
78. Mathews, K. C. (ed.). 1971. Bacteriophage Biochemistry. Van Nostrand Reinhold Co., New York.
79. Maznitsa, I. I.,, A. A. Nudler,, and G. I. Bourd. 1990. A pleiotropic mutation affecting purine metabolism in Bacillus subtilis. FEMS Microbiol. Lett. 72: 173 176.
80. Maznitsa, I.I.,, V. V. Sukhodolets,, and L. S. Ukhabotina. 1983. Cloning of Bacillus subtilis 168 genes compensating the defect of mutations for thymidine phosphorylase and uridine phosphorylase in Escherichia coli cells. Genetika 19: 881 887.
81. McIvor, R. S.,, R. M. Wohlhueter,, and P. G. W. Plagemann. 1983. Uracil phosphoribosyltransferase from Acholeplasma laidlawii: partial purification and kinetic properties. J. Bacteriol. 156: 192 197.
82. Mehra, R. K.,, and W. T. Drabble. 1981. Dual control of the gua operon of Escherichia coli K12 by adenine and guanine nucleotides. J. Gen. Microbiol. 123: 27 37.
83. Meng, L.M.,, M. Kilstrup,, and P. Nygaard. 1990. Auto-regulation of PurR repressor synthesis and involvement of purR in the regulation of purB, purC, purL, purMN and guaBA expression in Escherichia coli. Eur. J. Biochem. 187: 373 379.
84. Meng, L. M.,, and P. Nygaard. 1990. Identification of hypoxanthine and guanine as the corepressors for the purine regulon genes of Escherichia coli. Mol. Microbiol. 4: 2187 2192.
85. Meyer, E.,, and R. L. Switzer. 1979. Regulation of Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase activity by end products. J. Biol. Chem. 254: 5397 5402.
86. Mitani, T.,, J. E. Heinze,, and E. Freese. 1977. Induction of sporulation in Bacillus subtilis by deocyinine or hadacidin. Biochem. Biophys. Res. Commun. 77: 1118 1125.
87. Mitchell, A.,, and L. R. Finch. 1977. Pathways of nucleotide biosynthesis in Mycoplasma mycoides subsp. mycoides. J. Bacteriol. 130: 1047 1054.
88.. Mitchell, C.,, and J. C. Vary. 1989. Proteins that interact with GTP during sporulation of Bacillus subtilis. J. Bacteriol. 171: 2915 2918.
89. Miyagawa, K.,, N. Kanzaki,, H. Kimura,, Y. Sumino,, S. Akiyama,, and Y. Nakao. 1989. Increased inosine production by a Bacillus subtilis xanthine-requiring mutant derived by insertional inactivation of the IMP dehydrogenase gene. Biotechnology 7: 821 824.
90. Miyagawa, K.,, H. Kimura,, K. Nakahama,, M. Kikuchi,, M. Doi,, S. Akiyama,, and Y. Nakao. 1986. Cloning of the Bacillus subtilis IMP dehydrogenase gene and its application to increased production of guanosine. Biotechnology 4: 225 228.
91. Mellgaard, H. 1980. Deoxyadenosine/deoxycytidine kinase from Bacillus subtilis. J. Biol. Chem. 255: 8216 8220.
92. Mogaard, H.,, and J. Neuhard. 1978. Deoxycytidylate deaminase from Bacillus subtilis. J. Biol. Chem. 253: 3536 3542.
93. Mellgaard, H.,, and J. Neuhard,. 1983. Biosynthesis of deoxythymidine triphosphate, p. 149 201. In A. Munch-Petersen (ed.), Metabolism of Nucleotides, Nucleosides and Nucleobases in Microorganisms. Academic Press, Inc., New York.
94. Momose, H.,, H. Nishikawa,, and N. Katsuya. 1965. Genetic and biochemical studies on 5'-nucleotide fermentation. II. Repression of enzyme formation in purine nucleotide biosynthesis in Bacillus subtilis and derivation of derepressed mutants. J. Gen. Appl. Microbiol. 11: 211 220.
95. Momose, H.,, H. Nishikawa,, and I. Shiio. 1966. Regulation of purine nucleotide synthesis in Bacillus subtilis. I. Enzyme repression by purine derivatives. J. Biochem. 59: 325 331.
96. Munch-Petersen, A.,, and B. Mygind,. 1983. Transport of nucleic acid precursors, p. 259 305. In A. Munch-Petersen (ed.), Metabolism of Nucleotides, Nucleosides and Nucleobases in Microorganisms. Academic Press, Inc., New York.
97. Myoda, T. T.,, and V. L. Funanage. 1985. Coregulation of dihydrofolate reductase and thymidylate synthase B in Bacillus subtilis. Biochim. Biophys. Acta 824: 99 103.
98. Myoda, T. T.,, S. V. Lowther,, V. L. Funanage,, and F. E. Young. 1984. Cloning and mapping of the dihydrofolate reductase gene of Bacillus subtilis. Gene 29: 135 143.
99. Neuhard, J., 1983. Utilization of preformed pyrimidine bases and nucleosides, p. 95 148. In A. Munch-Petersen (ed.). Metabolism of Nucleotides, Nucleosides and Nucleobases in Microorganisms. Academic Press, Inc., New York.
100. Neuhard, J.,, and P. Nygaard,. 1987. Purines and pyrimidines, p. 445 473. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C.
101. Neuhard, J.,, A. R. Price,, L. Schack,, and E. Thomassen. 1978. Two thymidylate synthetases in Bacillus subtilis. Proc. Natl. Acad. Set. USA 75: 1194 1198.
102. Nijkamp, H. J. J.,, and P. G. DeHaan. 1967. Genetic and biochemical studies of the guanosine 5'-monophosphate pathway in Escherichia coli. Biochim. Biophys. Acta 145: 31 40.
103. Nilsson, D.,, and P. S. Andersen. Unpublished observations.
104. Nishikawa, H.,, H. Momose,, and I. Shiio. 1967. Regulation of purine nucleotide synthesis in Bacillus subtilis. II. Specificity of purine derivatives for enzyme repression. J. Biochem. 62: 92 98.
105. Nishikawa, H.,, H. Momose,, and I. Shiio. 1968. Pathway of purine nucleotide synthesis in Bacillus subtilis. J. Biochem. 63: 149 155.
106. Nygaard, P. Unpublished observations.
107. Nygaard, P., 1983. Utilization of preformed purine bases and nucleosides, p. 27 93. In A. Munch-Petersen (ed.). Metabolism of Nucleotides, Nucleosides and Nucleobases in Microorganisms. Academic Press, Inc., New York.
108. Nygaard, P.,, P. Duckert,, and H. H. Saxild,. 1988. Purine gene organization and regulation in Bacillus subtilis, p. 57 61. In M. M. Zukowski,, A. T. Ganesan,, and J. A. Hoch (ed.). Genetics and Biotechnology of Bacilli, vol. 3. Academic Press, Inc., New York.
109. Ochi, K. 1987. Changes in nucleotide pools during sporulation of Streptomyces griseus in submerged culture. J. Gen. Microbiol. 133: 2787 2795.
110. Ochi, K.,, and E. Freese. 1982. A decrease in S-adenosylmethionine synthetase activity increases the probability of spontaneous sporulation. J. Bacteriol. 152: 400 410.
111. Ochi, K.,, J. Kandala,, and E. Freese. 1982. Evidence that Bacillus subtilis sporulation induced by the stringent response is caused by a decrease in GTP and GDP. J. Bacteriol. 150: 704 711.
112. Ogata, K., 1975. The microbial production of nucleic acid-related compounds, p. 209 247. In D. Perlman (ed.). Applied Microbiology. Academic Press, Inc., New York.
113. Ohno, M., 1980. Nucleosides, p. 73 130. In H. Umezawa (ed.), Anticancer Agents Based on Natural Product Models. Academic Press, Inc., New York.
114. Orengo, A.,, and S.-H. Kobayashi. 1978. Uridine-cytidine kinase from Novikoff ascites rat tumor and Bacillus stearothermophilus. Methods Enzymol. 51: 299 305.
115. Ozaki, H.,, and I. Shiio. 1979. Two cytoplasmic 5'-nucleotidases of Bacillus subtilis K. J. Biochem. 85: 1083 1089.
116. Paulus, T. J.,, T. J. McGarry,, P. G. Shekelle,, S. Rosenzweig,, and R. L. Switzer. 1982. Coordinate synthesis of the enzymes of pyrimidine biosynthesis in Bacillus subtilis. J. Bacteriol. 149: 775 778.
117. Paulus, T. J.,, and R. L. Switzer. 1979. Characterization of pyrimidine-repressible and arginine-repressible carbamylphosphate synthetase from Bacillus subtilis. J. Bacteriol. 137: 82 91.
118. Piggot, P. J.,, M. Amjad,, J.-J. Wu,, H. Sandoval,, and J. Castro,. 1990. Genetic and physical maps of Bacillus subtilis 168, p. 493 543. In C. R. Harwood, and S. M. Cutting (ed.), Molecular Biology Methods for Bacillus. John Wiley & Sons, Ltd., Chichester, United Kingdom.
119. Pinter, K.,, V. J. Davisson,, and D. V. Santi. 1988. Cloning, sequencing, and expression of the Lactobacillus casei thymidylate synthase gene. DNA 7: 235 241.
120. Powell, J. W.,, and J. T. Wachsman. 1973. Evidence for four deoxynucleoside kinase activities in extracts of Lactobacillus leichmannii. Appl. Microbiol. 25: 869 872.
121. Preston, R. A.,, and H. A. Douthit. 1988. Functional relationships between l- and d-alanine, inosine and NH4C1 during germination of spores of Bacillus cereus T. J. Gen. Microbiol. 134: 3001 3010.
122. Price, A. R., 1976. Bacteriophage-induced inhibitor of a host enzyme, p. 290 294. In D. Schlessinger (ed.), Microbiology—1976. American Society for Microbiology, Washington, D.C.
123. Price, A. R. 1978. Deoxythymidylate phosphohydrolase from PBS2 phage-infected Bacillus subtilis. Methods Enzymol. 51: 185 290.
124. Price, A. R.,, and J. Frato. 1975. Bacillus subtilis deoxyuridinetriphosphatase and its bacteriophage PBS2-induced inhibitor. J. Biol. Chem. 250: 8804 8811.
125. Quirk, S.,, and M. J. Bessman. 1991. dGTP triphosphohydrolase, a unique enzyme confined to members of the family Enterobacteriaceae. J. Bacteriol. 173: 6665 6669.
126. Reichard, P. 1988. Interactions between deoxyribonucleotide and DNA synthesis. Annu. Rev. Biochem. 57: 349 374.
127. Rima, B. K.,, and J. Takahashi. 1977. Metabolism of pyrimidine bases and nucleosides in Bacillus subtilis. J. Bacteriol. 129: 574 579.
128. Rima, B. K.,, and J. Takahashi. 1978. Deoxyribonucleoside-requiring mutants of Bacillus subtilis. J. Gen. Microbiol. 107: 139 145.
129. Rinehart, K. V.,, and J. C. Copeland. 1973. Evidence that thymine is not a normal metabolite in wild-type Bacillus subtilis. Biochim. Biophys. Acta 294: 1 7.
130. Rolfes, R. J.,, and H. Zalkln. 1990. Purification of the Escherichia coli purine regulon repressor and identification of corepressors. J. Bacteriol. 172: 5637 5642.
131. Roscoe, D. H.,, and R. G. Tucker. 1966. The biosynthesis of 5-hydroxy-methyldeoxyuridylic acid in bacteriophage-infected Bacillus subtilis. Virology 29: 157 166.
132. Rumyantseva, E. V.,, V. V. Sukhodolets,, and Y. V. Smirnov. 1979. Isolation and characterization of mutants for genes of nucleoside catabolism in Bacillus subtilis. Genetika 15: 594 604.
133. Sacks, L. E.,, and P. A. Thompson,. 1975. Influence of methylxanthines on sporulation of Clostridium perfringens cells, p. 341 345. In P. Gerhardt,, R. N. Costilow,, and H. L. Sadoff (ed.), Spores VI. American Society for Microbiology, Washington, D.C.
134. Sakai, T.,, T.-S. Yu,, and S. Omata. 1976. Distribution of enzymes related to cytidine degradation in bacteria. Agric. Biol. Chem. 40: 1893 1895.
135. Santangelo, J. D.,, D. T. Jones,, and D. R. Woods. 1989. Comparison of nucleoside triphosphate levels in the wild-type strain with those in sporulation-dehcient and solvent-deficient mutants of Clostridium acetobutylicum P262. J. Gen. Microbiol. 135: 711 719.
136. Saunders, P. P.,, B. A. Wilson,, and G. F. Saunders. 1969. Purification and comparative properties of a pyrimidine nucleoside phosphorylase from Bacillus stearothermophilus. J. Biol. Chem. 244: 3691 3697.
137. Saxild, H. H.,, and P. Nygaard. 1987. Genetic and physiological characterization of Bacillus subtilis mutants resistant to purine analogs. J. Bacteriol. 169: 2977 2983.
138. Saxild, H. H.,, and P. Nygaard. 1988. Gene-enzyme relationships of the purine biosynthetic pathway in Bacillus subtilis. Mol. Gen. Genet. 211: 160 167.
139. Saxild, H. H.,, and P. Nygaard. 1991. Regulation of levels of purine biosynthetic enzymes in Bacillus subtilis: effects of changing purine nucleotide pools. J. Gen. Microbiol. 137: 2387 2394.
140. Schiefer-UUrich, H.,, and J. R. Andreesen. 1985. Peptostreptococcus bamesae sp. nov., a gram-positive, anaerobic, obligately purine utilizing coccus from chicken feces. Arch. Microbiol. 143: 26 31.
141. Schiefer-UUrich, H.,, R. Wagner,, P. Durre,, and J. R. Andreesen. 1984. Comparative studies on physiology and taxonomy of obligately purinolytic Clostridia. Arch. Microbiol. 138: 345 353.
142. Schimpff-Weiland, G.,, H. Follmann,, and G. Aiding. 1981. A new manganese-activated ribonucleotide reductase found in gram-positive bacteria. Biochem. Biophys. Res. Commun. 102: 1276 1282.
143. Schrader, W. P.,, and J. S. Anderson. 1978. Membrane-bound nucleotidase of Bacillus cereus. J. Bacteriol. 133: 576 583.
144. Sedmak, J.,, and R. Ramaley. 1971. Purification and properties of Bacillus subtilis nucleoside diphosphokinase. J. Biol. Chem. 246: 5365 5372.
145. Sekar, V.,, S. P. Wilson,, and J. H. Hageman. 1981. Induction of Bacillus subtilis sporulation by nucleosides: inosine appears to be a sporogen. J. Bacteriol. 145: 489 493.
146. Senesi, S.,, G. Cercignani,, G. Freer,, G. Batoni,, S. Barnini,, and F. Ota. 1991. Structural and stereospecific requirements for the nucleoside-triggered germination of Bacillus cereus spores. J. Gen. Microbiol. 137: 399 404.
147. Senesi, S.,, G. Falcone,, P. L. Ipata,, and R. A. Felicioli. 1974. Inhibition of phosphodiesterases from Bacillus subtilis by nucleoside triphosphates. Biochemistry 13: 5008 5011.
148. Senesi, S.,, R. A. Felicioli,, P. L. Ipata,, and G. Falcone,. 1975. Regulation of polyribonucleotide turnover in vegative cells and spores of Bacillus subtilis, p. 265 270. In P. Gerhardt,, R. N. Costilow,, and H. L. Sadoff (ed.). Spores VI. American Society for Microbiology, Washington, D.C.
149. Sergott, R.C,, L. J. Debeer,, and M. J. Bessman. 1971. On the regulation of a bacterial deoxycytidylate deaminase. J. Biol. Chem. 246: 7755 7758.
150. Setlow, P. 1973. Deoxyribonucleic acid synthesis and deoxynucleotide metabolism during bacterial spore germination. J. Bacteriol. 114: 1099 1107.
151. Setlow, P., 1974. Energy and small-molecule metabolism during germination of Bacillus spores, p. 443 450. In P. Gerhardt,, R. N. Costilow,, and H. L. Sadoff (ed.), Spores VI. American Society for Microbiology, Washington, D.C.
152. Setlow, P.,, and A. Kornberg. 1970. Biochemical studies of bacterial sporulation and germination. XXIII. Nucleotide metabolism during spore germination. J. Biol. Chem. 245: 3645 3652.
153. Sharpe, M. E. , 1981. The genus Lactobacillus, p. 1653 1679. In P. S. Mortimer,, H. Stolp,, H. G. Triiper,, A. Balows,, and H. G. Schlegel (ed.). The prokaryotes, vol. 2. Springer-Verlag, New York.
154. Shibata, H.,, N. Ohnishi,, K. Takeda,, H. Fukunaga,, K. Shimamura,, E. Yasunobu,, and I. Tani. 1986. Germination of Bacillus cereus spores induced by purine ribosides and their analogs: effects of modification of base and sugar moieties of purine nucleosides on germination-inducing activity. Can. J. Microbiol. 32: 186 189.
155. Shiio, I.,, and H. Ozaki. 1978. Cellular distribution and some properties of 5' nucleotidases in Bacillus subtilis K. J. Biochem. 83: 409 421.
156. Shimizu, S.,, T. Abe,, and H. Yamada. 1988. Distribution of methylthioadenosine phosphorylase in eubacteria. FEMS Microbiol. Lett. 51: 177 180.
157. Shlomal, J.,, and A. Kornberg. 1978. Deoxyuridine triphosphatase of Escherichia coli. Purification, properties, and use as reagent to reduce uracil incorporation into DNA. J. Biol. Chem. 253: 3305 3312.
158. Smar, M.,, S. A. Short,, and R. Wolfenden. 1991. Lyase activity of nucleoside 2-deoxyribosyltransferase: transient generation of ribal and its use in the synthesis of 2'-deoxynucleosides. Biochemistry 30: 7908 7912.
159. Segaard-Andersen, L.,, H. Pedersen,, B. Hoist,, and P. Valentln-Hansen. 1991. A novel function of the cAMP-CPR complex in Escherichia coli: cAMP-CRP functions as an adaptor for the CytR repressor in the deo operon. Mol. Microbiol. 5: 969 975.
160. Sonensheln, A. L., 1985. Recent progress in metabolic regulation of sporulation, p. 185 193. In J. A. Hoch, and P. Setlow (ed.), Molecular Biology of Microbial Differentiation. American Society for Microbiology, Washington, D.C.
161. Sonenshein, A. L., 1989. Metabolic regulation of sporulation and other stationary-phase phenomena, p. 109 130. In I. Smith,, R. A. Slepecky,, and P. Setlow (ed.), Regulation of Procaryotic Development. American Society for Microbiology, Washington, D.C.
162. Song, B. H.,, and J. Neuhard. 1989. Chromosomal location, cloning and nucleotide sequence of the Bacillus subtilis cdd gene encoding cytidine/deoxycytidine deaminase. Mol. Gen. Genet. 216: 462 468.
163. Stubbe, J. A. 1990. Ribonucleotide reductases: amazing and confusing. J. Biol. Chem. 265: 5329 5332.
164. Suhadolnlk, R. J. 1979. Nucleosides as Biological Probes. John Wiley & Sons, Inc., New York.
165. Sukhodolets, V. V. Personal communication.
166. Sukhodolets, V. V.,, Y. Flyakh, and E. V. Rumyantseva. 1983. Mapping of mutations in genes for nucleoside catabolism on the Bacillus subtilis chromosome. Genetika 19: 221 226.
167. Takagi, Y.,, and B. L. Horecker. 1957. Purification and properties of a bacterial riboside hydrolase. J. Biol. Chem. 225: 77 86.
168. Tesfa-Selase, F.,, and W. T. Drabble. 1990. Regulation of the gua operon of Escherichia coli by the DnaA protein. Mol. Gen. Genet. 231: 256 264.
169. Teuber, M.,, and A. Gels,. 1981. The family Streptococcaceae (nonmedical aspects), p. 1614 1630. In P. S. Mortimer,, H. Stolp,, H. G. Truper,, A. Balows,, and H. G. Schlegel (ed.), The prokaryotes, vol. 2. Springer-Verlag, New York.
170. Tomati, F.,, and I. Takahashi,. 1976. Changes in enzyme activities in Bacillus subtilis infected with bacteriophage PBS1, p. 315 318. In D. Schlessinger (ed.), Microbiology—1976. American Society for Microbiology, Washington, D.C.
171. Tozzl, M. G.,, F. Sgarrella,, D. Barsacchi,, and P. L. Ipata. 1984. Induction of deoxyribose-5-phosphate aldolase of Bacillus cereus by deoxyribonucleosides. Biochem. Int. 9: 319 325.
172. Tozzi, M. G.,, F. Sgarrella,, and P. L. Ipata. 1981. Induction and repression of enzymes involved exogenous purine compound utilization in Bacillus cereus. Biochim. Biophys. Acta 678: 460 466.
173. Turnbough, C. L., Jr.,, and R. L. Switzer. 1975. Oxygen-dependent inactivation of glutamine phosphoribosylpyrophosphate amidotransferase in stationary-phase cultures of Bacillus subtilis. J. Bacteriol. 121: 108 114.
174. Uerkvitz, W. 1974. Trans-N-deoxyribosylase from Lactobacillus helveticus. Crystallization and properties. Eur. J. Biochem. 23: 387 395.
175. Vachova, L.,, M. Strnadova,, H. Kucerova,, and J. Chaloupka. 1990. Effect of actinomycin D on viability, sporulation and nucleotide pool of Bacillus megaterium. Folia Microbiol. 35: 190 199.
176. Valentin-Hansen, P.,, H. Alba,, and D. Schumperli. 1982. The structure of tandem regulatory regions in the deo operon of Escherichia coli K12. EMBO J. 1: 317 322.
177. Vasantha, N.,, E. M. Gathers,, and J. N. Hansen. 1984. Effect of purine and pyrimidine limitations on RNA synthesis in Bacillus subtilis. J. Bacteriol. 158: 884 889.
178. Vogels, G. D.,, and C. van der Drift. 1976. Degradation of purines and pyrimidines by microorganisms. Bacteriol. Rev. 40: 403 468.
179. Wabiko, H.,, K. Ochi,, D. M. Nguyen,, E. R. Allen,, and E. Freese. 1988. Genetic mapping and physiological consequences of metE mutations of Bacillus subtilis. J. Bacteriol. 170: 2705 2710.
180. Wachsman, J. T.,, S. Kemp,, and L. Hogg. 1964. Thymineless death in Bacillus megaterium. J. Bacteriol. 87: 1079 1086.
181. Wachsman, J. T.,, and D. D. Morgan. 1971. Deoxynucle oside kinases of Bacillus megaterium. J. Bacteriol. 105: 787 792.
182. Waindle, L. M.,, and R. L. Switzer. 1973. Inactivation of aspartic transcarbamylase in sporulating Bacillus subtilis: demonstration of a requirement for metabolic energy. J. Bacteriol. 114: 517 527.
183. Wainscott, V. J.,, and J. F. Kane,. 1976. Dihydrofolate reductase in Bacillus subtilis, p. 208 213. In D. Schlessinger (ed.). Microbiology—1976. American Society for Microbiology, Washington, D.C.
184. Waleh, X. S.,, and J. L. Ingraham. 1976. Pyrimidine ribonucleoside monophosphokinase and the mode of RNA turnover in Bacillus subtilis. Arch. Microbiol. 110: 49 54.
185. Watanabe, Y.,, O. Tatsuhiko,, and Y. Tsujisaka. 1976. Changes in the metabolic pathways of hypoxanthine in Streptomyces. J. Gen. Appl. Microbiol. 22: 13 23.
186. Wheeler, P. R. 1987. Biosynthesis and scavenging of purines by pathogenic mycobacteria including Mycobacterium leprae. J. Gen. Microbiol. 133: 2999 3011.
187. Willing, A.,, H. Follmann,, and G. Aiding. 1988. Ribonucleotide reductase of Brevibacterium ammoniagenes is a manganese enzyme. Eur. J. Biochem. 170: 603 611.
188. Yau, S.,, and J. T. Wachsman. 1973. The Bacillus megaterium ribonucleotide reductase: evidence for a B 12 coenzyme requirement. Mol. Cell. Biochem. 1: 101 105.
189. Yoshikawa, H.,, and N. Ogasawara. 1991. Structure and function of DnaA and the DnaA-box in eubacteria: evolutionary relationships of bacterial replication origins. Mol. Microbiol. 5: 2589 2597.
190. Zahler, S. A. 1978. An adenine-thiamin auxotrophic mutant of Bacillus subtilis. J. Gen. Microbiol. 107: 199 201.
191. Zain-ul-Abedin, J. M. Lopez,, and E. Freese. 1983. Induction of bacterial differentiation by adenine and adenosine analogs and inhibitors of nucleic acid synthesis. Nucleoside Nucleotides 2: 257 274.
192. Zalkin, H.,, and C. D. Truit. 1977. Characterization of the glutamine site of Escherichia coli guanosine 5'-monophosphate synthetase. J. Biol. Chem. 252: 5431 5436.

Tables

Generic image for table
Table 1

Growth of purine and pyrimidine auxotrophic strains of on different purine or pyrimidine compounds

Citation: Nygaard P. 1993. Purine and Pyrimidine Salvage Pathways, p 359-378. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch26
Generic image for table
Table 2

Effects of amino acid starvation on incorporation of bases and nucleosides in ()

Citation: Nygaard P. 1993. Purine and Pyrimidine Salvage Pathways, p 359-378. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch26
Generic image for table
Table 3

Selection of mutants resistant to purine and pyrimidine analogs in

Citation: Nygaard P. 1993. Purine and Pyrimidine Salvage Pathways, p 359-378. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch26
Generic image for table
Table 4

Intracellular amounts of nucleoside triphosphates and PRPP in

Citation: Nygaard P. 1993. Purine and Pyrimidine Salvage Pathways, p 359-378. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch26

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error