1887

Chapter 27 : Cell Wall Structure, Synthesis, and Turnover

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Cell Wall Structure, Synthesis, and Turnover, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap27-1.gif /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap27-2.gif

Abstract:

Walls of gram-positive bacteria are dynamically variable and flexible structures that enclose and protect the underlying cytoplasmic membranes. The wall serves to protect the underlying protoplast, resist turgor, and maintain the shape of the cell. The wall in , like the walls in many other gram-positive bacteria, is composed mainly of peptidoglycan and one or more anionic polymers. These components are synthesized on identical anchor lipids, covalently attached to each other before or during insertion into the wall, processed through the wall, and finally released by turnover while still attached to each other. It is now clear that both types of polymer are essential for normal wall function and morphogenesis. In addition to containing peptidoglycan and anionic polymers, walls of gram-positive bacteria may contain substantial proportions of protein, held either covalently or noncovalently within the peptidoglycan-anionic-polymer complex, together with neutral polysaccharides, lipoteichoic acid, and the cations that form part of the polyelectrolyte gel structure of the wall complex. Teichoic acids found in species other than are listed in this chapter. The end of exponential growth in batch cultures of may be followed by marked lysis of the culture. This is due to the action of autolysins, enzymes that hydrolyze either the glycan or the peptide moieties of peptidoglycan. The final stage in the incorporation of peptidoglycan or peptidoglycan-anionic-polymer complex is accomplished by transpeptidation reactions.

Citation: Archibald A, Hancock I, Harwood C. 1993. Cell Wall Structure, Synthesis, and Turnover, p 381-410. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch27

Key Concept Ranking

Teichoic Acid
0.8352167
Amino Sugars
0.5201111
Lipoteichoic acid
0.49553582
Sugar Phosphates
0.49308753
Gram-Positive Cocci
0.43455666
0.8352167
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Electron micrograph of a thin section of the cell wall of 168. A, outer leaf of the cytoplasmic membrane plus bound teichoic acid; B, less electron-opaque thin inner layer; C, electron-opaque heterogeneous outer layer (Jan A. Hobot).

Citation: Archibald A, Hancock I, Harwood C. 1993. Cell Wall Structure, Synthesis, and Turnover, p 381-410. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Disaccharide pentapeptide subunit of the peptidoglycan of .

Citation: Archibald A, Hancock I, Harwood C. 1993. Cell Wall Structure, Synthesis, and Turnover, p 381-410. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

(a) Cross-linked peptidoglycan of the A1γ type found in and ; (b) cross-linked peptidoglycan of the A3α type found in . -DA? -diaminopimelic acid.

Citation: Archibald A, Hancock I, Harwood C. 1993. Cell Wall Structure, Synthesis, and Turnover, p 381-410. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Structures of glycerol teichoic acids from . (a) Wall teichoic acid; (b) lipoteichoic acid.

Citation: Archibald A, Hancock I, Harwood C. 1993. Cell Wall Structure, Synthesis, and Turnover, p 381-410. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Mode of linkage of ribitol teichoic acid to peptidoglycan in W23. The polyribitolphosphate is attached to the linkage unit, which consists of glycerolphosphate and an -acetylhexosamine-containing disaccharide 1-phosphate. PG, peptidoglycan; R, H or alanyl ester substituent; R, H or β glucosyl substituent.

Citation: Archibald A, Hancock I, Harwood C. 1993. Cell Wall Structure, Synthesis, and Turnover, p 381-410. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Repeating unit of the teichuronic acid of W23.

Citation: Archibald A, Hancock I, Harwood C. 1993. Cell Wall Structure, Synthesis, and Turnover, p 381-410. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Diagrammatic representation of extended- and minimum-energy conformations of the stem peptide of peptidoglycan. 1 Å = 0.1 nm. (Redrawn from reference .)

Citation: Archibald A, Hancock I, Harwood C. 1993. Cell Wall Structure, Synthesis, and Turnover, p 381-410. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

Biosynthesis of peptidoglycan in . Ala, alanine; DAP, diaminopimelic acid; Glu, glutamic acid; GlcNAc, -acetylglucosamine; MurNAc, -acetylmuramic acid; PP, pyrophosphate; PEP, phosphoenolpyruvate.

Citation: Archibald A, Hancock I, Harwood C. 1993. Cell Wall Structure, Synthesis, and Turnover, p 381-410. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9
Figure 9

Biosynthesis of ribitol teichoic acid and teichuronic acid in spp. GalNAc, -acetylgalactosamine; Glc, glucose; GlcA, glucuronic acid; GlcNAc, -acetylglucosamine; Gol, glycerol; Lipid-P, undecaprenylphosphate; LU, linkage unit; ManNAc, -acetylmannosamine; PP, pyrophosphate; Rol, ribitol.

Citation: Archibald A, Hancock I, Harwood C. 1993. Cell Wall Structure, Synthesis, and Turnover, p 381-410. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 10
Figure 10

Transmembrane glycerol teichoic acid synthesis involving undecaprenylphosphate anchor lipid and the proposed gated-pore protein complexes, (a) Assembly of linkage unit; (b) glycerolphosphate chain extension and glycosylation.

Citation: Archibald A, Hancock I, Harwood C. 1993. Cell Wall Structure, Synthesis, and Turnover, p 381-410. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 11
Figure 11

Formation of teichoic acid-peptidoglycan complex and its incorporation into the cell wall.

Citation: Archibald A, Hancock I, Harwood C. 1993. Cell Wall Structure, Synthesis, and Turnover, p 381-410. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12
Figure 12

Pattern of cross-linking in a growing cell wall. Layer 1 shows a pattern of incorporation of new material in which, for every 10 peptide monomers incorporated, 6 remain as monomers, 3 cross-link to existing wall monomers to form dimers, and 1 cross-links to an existing wall dimer to form a trimer. When a further layer of material is incorporated by the same pattern of incorporation, layer 1 moves up to become the second layer. Three of the original six monomers are converted to dimers, and one of the original three dimers becomes a trimer. Consequently, the layer now contains three monomers and peptides forming part of five dimers and two trimers. When the next layer is incorporated, the layer moves up to become the third layer, and in the process, one of its dimers becomes a trimer, so that the now-mature layer contains three monomers and peptides forming part of four dimers and three trimers. Further incorporation of new material has no effect on the pattern of cross-linking involving this layer, and its pattern of cross-linking reflects that of the mature cell wall. The apparent increase in cross-linking is thus a direct consequence of the initial incorporation. To allow the process to be depicted clearly, cross-linkages are shown perpendicular to glycan sheets. In the wall, however, peptides radiate from the helically twisted glycan chain and so connect chains at various angles: these chains are unlikely to be arranged into the regular sheets shown, for simplicity, here.

Citation: Archibald A, Hancock I, Harwood C. 1993. Cell Wall Structure, Synthesis, and Turnover, p 381-410. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 13
Figure 13

Cell wall growth in . Successive layers of cell wall are shown by progressively darker shading.

Citation: Archibald A, Hancock I, Harwood C. 1993. Cell Wall Structure, Synthesis, and Turnover, p 381-410. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 14
Figure 14

Assembly of cell wall in . Older wall material is shaded. Modified from Harold ( ).

Citation: Archibald A, Hancock I, Harwood C. 1993. Cell Wall Structure, Synthesis, and Turnover, p 381-410. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 15
Figure 15

Diagram showing the sites of action of specific autolysins. Symbols: , -acetylmuranoyl-L-alanine amidase; ←, carboxypeptidase; ↓, endo---acetylglucosaminidase; ↓ , endo---acetylmuramidase; ◂ and ▾, endopeptidase. -Apm, -diaminopimelic acid.

Citation: Archibald A, Hancock I, Harwood C. 1993. Cell Wall Structure, Synthesis, and Turnover, p 381-410. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 16
Figure 16

Micrograph of autolysin-deficient Nov-12 strain organism, showing long multiseptate filaments.

Citation: Archibald A, Hancock I, Harwood C. 1993. Cell Wall Structure, Synthesis, and Turnover, p 381-410. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818388.chap27
1. Aasjord, P.,, and A. Grov. 1980. Immunoperoxidase and electron microscopy studies of staphylococcal lipoteichoic acid. Acta Pathol. Microbiol. Scand. Sect. B 88: 47 52.
2. Abrams, A. 1958. O-Acetyl groups in the cell wall of Streptococcus faecalis. J. Biol. Chem. 230: 949 959.
3. Amako, K.,, and A. Takade. 1985. The fine structure of Bacillus subtilis revealed by the rapid-freezing and substitution-fixation method. J. Electron Microsc. 34: 13 17.
4. Anderson, R. G.,, H. Hussey,, and J. Baddiley. 1972. The mechanism of wall synthesis in bacteria. Biochem. J. 127: 11 25.
5. Aono, R. 1989. Characterization of cell wall components of the alkalophilic Bacillus strain C-125: identification of a polymer composed of polyglutamate and polyglucuronate. J. Gen. Microbiol. 135: 265 271.
6. Arakawa, H.,, and E. Ito. 1986. Biosynthetic studies on N-acetylmannosaminuronic acid containing teichuronic acid in Bacillus megaterium. Can. J. Microbiol. 32: 822 825.
7. Arakl, Y.,, S. Oba,, S. Arakl,, and E. Ito. 1980. Enzymatic deacetylation of N-acetylglucosamine residues in cell wall peptidoglycan. J. Biochem. 88: 469 479.
8. Archibald, A. R. 1976. Cell wall assembly in Bacillus subtilis: development of bacteriophage-binding properties as a result of the pulsed incorporation of teichoic acid. J. Bacteriol. 127: 956 960.
9. Archibald, A. R., 1980. Phage receptors in gram positive bacteria, p. 5 26. In L. L. Randall, and L. Philipson (ed.), Receptors and Recognition, series B, vol. 7. Virus Receptors. Chapman and Hall, London.
10. Archibald, A. R., 1987. Continuous culture, growth kinetics and wall turnover, p. 37 54. In I. C. Hancock, and I. R. Poxton (ed.), Bacterial Cell Surface Techniques. John Wiley & Sons, London.
11. Archibald, A. R., 1988. Bacterial cell wall structure and the ionic environment, p. 159 173. In R. Whittenbury,, G. W. Gould,, J. G. Banks,, and R. G. Board (ed.), Homeostatic Mechanisms in Micro-Organisms. Bath University Press, Bath, England.
12. Archibald, A. R., 1989. The Bacillus cell envelope, p. 217 254. In C. R. Harwood (ed.), Bacillus. Plenum Press, New York.
13. Archibald, A. R.,, J. J. Armstrong,, J. Baddlley,, and J. B. Hay. 1961. Teichoic acids and the structure of bacterial cell walls. Nature (London) 191: 570 572.
14. Archibald, A. R.,, J. Baddlley,, and N. L. Blumson. 1968. The teichoic acids. Adv. Enzymol. 30: 223 245.
15. Archibald, A. R.,, J. Baddlley,, and J. E. Heckels. 1973. Molecular arrangement of teichoic acid in the cell wall of Staphylococcus lactis. Nature (London) 241: 29 31.
16. Archibald, A. R.,, J. Baddlley,, and S. Heptinstall. 1973. The alanine ester content and magnesium binding capacity of walls of Staphylococcus aureus H grown at different pH values. Biochim. Biophys. Acta 291: 629 634.
17. Archibald, A. R., and H. E. Coapes. 1971. The wall teichoic acids of Lactobacillus plantarum NIRD CI06. Location of the phosphodiester groups and separation of the chains. Biochem. J. 124: 449 460.
18. Archibald, A. R., and H. E. Coapes. 1976. Bacteriophage SP50 as a marker for cell wall growth in Bacillus subtilis. J. Bacteriol. 125: 1195 1206.
19. 18a. Archibald, A. R.,, I. C. Hancock,, C. R. Harwood,, and P. Brown. Unpublished data.
20. 18b Archibald, A. R.,, I. C. Hancock,, C. R. Harwood,, and N. Prayitno. Unpublished data.
19. Archibald, A. R.,, and G. H. Stafford. 1972. A polymer of N-acetylglucosamine 1-phosphate in the wall of Staphylococcus lactis 2102. Biochem. J. 130: 681 690.
20. Armstrong, J. J.,, J. Baddlley,, and J. G. Buchanan. 1960. Structure of the ribitol teichoic acid from walls of Bacillus subtilis. Biochem. J. 76: 610 621.
21. Baddlley, J.,, I. C. Hancock,, and P. M. A. Sherwood. 1973. X-ray photoelectron studies of magnesium ions bound to the cell walls of Gram-positive bacteria. Nature (London) 243: 43 45.
22. Barnickel, G.,, H. Lablschlnski,, H. Bradaczek,, and P. Giesbrecht. 1979. Conformational energy calculation of the peptide part of murein. Eur. J. Biochem. 95: 157 165.
23. Barnickel, G.,, D. Naumann,, H. Bradaczek,, H. Labischlnski,, and P. Giesbrecht,. 1983. Computer-aided molecular modelling of the three-dimensional structure of bacterial peptidoglycan, p. 61 66. In R. Hakenbeck,, J. V. Holtje,, and H. Labischinski (ed.), The Target of Penicillin. Walter de Gruyter, Berlin.
24. Batley, M.,, J. W. Redmond,, and A. J. Wicken. 1987. Nuclear magnetic resonance spectra of lipoteichoic acid. Biochim. Biophys. Acta 901: 127 133.
25. Beveridge, T. J. 1981. Ultrastructure, chemistry and function of the bacterial wall. Int. Rev. Cytol. 72: 229 317.
26. Beveridge, T. J. 1989. Role of cellular design in bacterial metal accumulation and mineralisation. Annu. Rev. Microbiol. 43: 147 171.
27. Beveridge, T. J., 1989. The structure of bacteria, p. 1 65. In J. S. Poindexter, and E. R. Leadbetter (ed.), Bacteria in Nature. Plenum Publishing Corp., New York.
28. Beveridge, T. J.,, and L. L. Graham. 1991. Surface layers of bacteria. Microbiol. Rev. 55: 684 705.
29. Birdsell, D. C, R. J. Doyle, and M. Morgenstern. 1975. Organization of teichoic acid in the cell wall of Bacillus subtilis. J. Bacteriol. 121: 726 734.
30. Blumberg, P. M.,, and J. L. Strominger. 1974. Interaction of penicillin with the bacterial cell: penicillin-binding proteins and penicillin-sensitive enzymes. Bacteriol Rev. 38: 291 335.
31. Blumel, P.,, W. Uecker,, and P. Giesbrecht. 1979. Zero order kinetics of cell wall turnover in Staphylococcus aureus. Arch. Microbiol. 121: 103 110.
32. Blumel, P.,, W. Uecker,, and P. Giesbrecht,. 1981. In vitro studies on the possible role of cell wall turnover in Staphylococcus aureus during infection, p. 435 439. In J. Jeljasewicz (ed.), Proceedings of the 4th International Conference of Staphylococci and Staphylococcal Infections. Gustav Fischer Verlag, Stuttgart, Germany.
33. Boylan, R. J., N. H. Mendelson, D. Brooks, and F. E. Young. 1972. Regulation of the cell wall: analysis of a mutant of Bacillus subtilis defective in biosynthesis of teichoic acid. J. Bacteriol. 110: 281 290.
34. Briese, T.,, and R. Hakenbeck. 1985. Interaction of pneumococcal amidase with lipoteichoic acid and choline. Eur. J. Biochem. 146: 417 427.
35. Brooks, D.,, L. L. Mays,, Y. Hatefi,, and F. E. Young. 1971. Glucosylation of teichoic acid: solubilization and partial characterization of the uridine diphosphoglucose:polyglycerophosphate teichoic acid glucosyltransferase from membranes of Bacillus subtilis. J. Bacteriol. 107: 223 229.
36. Buchanan, C. E. 1987. Absence of penicillin-binding protein 4 from an apparently normal strain of Bacillus subtilis. J. Bacteriol. 269: 5301 5303.
37. Buchanan, C. E.,, and M.-L. Ling. 1992. Isolation and sequence analysis of dacB, which encodes a sporulation-specific penicillin-binding protein in Bacillus subtilis. J. Bacteriol. 174: 1717 1725.
38. Burdett, I. D. J.,, and A. L. Koch. 1984. Shape of nascent and completed poles of Bacillus subtilis. J. Gen. Microbiol. 130: 1711 1722.
39. Burge, R. E.,, R. Adams, H. H. M. Balyuzi, and D. A. Reavely. 1977. Structure of the peptidoglycan of bacterial cell walls. 1. J. Mol. Biol. 117: 955 974.
40. Burge, R. E.,, A. G. Fowler,, and D. A. Reavely. 1977. Structure of the peptidoglycan of bacterial cell walls. 2. J. Mol. Biol. 117: 927 953.
41.Burger, M. 1950. Bacterial Polysaccharides: Their Chemical and Immunological Aspects, p. 121134. Charles C Thomas, Publisher, Springfield, 111.
42.Burger, M. M., and L. Glaser. 1966. The synthesis of teichoic acids. V. Poly(glucosyl glycerol phosphate) and poly(galactosylglycerol phosphate). J. Biol. Chem. 241: 494506.
43. Button, D., M. K. Choudry, and N. C. Hemmings. 1975. Lipoteichoic acid from Bacillus licheniformis and one of its mutants. Proc. Soc. Gen. Microbiol. 2: 45 46.
44. Buxton, R. S.,, and J. B. Ward. 1980. Heat sensitive lysis mutants of Bacillus subtilis 168 blocked at three different stages of peptidoglycan synthesis. J. Gen. Microbiol. 120: 283 293.
45. Card, G. L.,, and D. J. Finn. 1983. Products of phospholipid metabolism in Bacillus stearothermophilus. J. Bacteriol. 154: 294 303.
46. Chaloupka, J.,, P. Kreckova,, and L. Rlhova. 1962. The mucopeptide turnover in the cell walls of growing cultures of Bacillus megaterium KM. Experientia 18: 362 364.
47. Cheah, S. C, H. Hussey, and J. Baddiley. 1981. Control of synthesis of wall teichoic acid in phosphate-starved cultures of Bacillus subtilis W23. Eur. J. Biochem. 118: 497 500.
48. Cheah, S. C, H. Hussey, I. C. Hancock, and J. Baddiley. 1982. Control of synthesis of wall teichoic acid during balanced growth of Bacillus subtilis W23. J. Gen. Microbiol. 128: 593 599.
49. Cheung, H.-Y.,, and E. Freese. 1985. Monovalent cations enable cell wall turnover of the turnover-deficient lyt-15 mutant of Bacillus subtilis. J. Bacteriol. 161: 1222 1225.
50. Childs, W. C, and F. C. Neuhaus. 1980. Biosynthesis of D-alanyl-lipoteichoic acid: characterization of ester linked alanine in the in vitro-synthesized product. J. Bacteriol. 143: 293 301.
51. Childs, W. C, D. J. Taron, and F. C. Neuhaus. 1986. Biosynthesis of D-alanyl lipoteichoic acid by Lactobacillus casei: interchain transacylation of D-alanyl ester residues. J. Bacteriol. 162: 1191 1195.
52.Chin, T., M. M. Burger, and L. Glaser. 1966. Synthesis of teichoic acids. VI. The formation of multiple wall polymers in Bacillus subtilis W23. Arch. Biochem. Biophys. 116: 358367.
53. Christian, R.,, G. Schultz,, F. M. Unger,, P. Messner,, Z. Kupcu,, and U. B. Sleytr. 1986. Structure of a rhamnan from the surface layer glycoprotein of Bacillus stearothermophilus strain NRS 2004/3a. Carbohydr. Res. 150: 265 272.
54. Clarke-Sturman, A. J.,, A. R. Archibald,, I. C. Hancock,, C. R. Harwood,, T. Merad,, and J. A. Hobot. 1989. Cell wall assembly in Bacillus subtilis: partial conservation of polar wall material and the effect of conditions on the pattern of incorporation of new material at the polar caps. J. Gen. Microbiol. 135: 657 665.
55. Cole, R. M.,, and J. J. Hahn. 1962. Cell wall replication in Streptococcus pyogenes: immunofluorescent methods applied during growth show that new wall is formed equatorially. Science 135: 722 724.
56. Cole, R. M., T. S. Popkin, R. J. Boylan, and N. H. Mendelson. 1970. Ultrastructure of a temperature-sensitive rod mutant of Bacillus subtilis. J. Bacteriol. 103: 793 810.
57. Coley, J.,, M. Duckworth,, and J. Baddiley. 1975. Extraction and purification of lipoteichoic acid from Gram positive bacteria. Carbohydr. Res. 40: 41 52.
58. Coley, J.,, E. Tarelli,, A. R. Archibald,, and J. Baddiley. 1978. The linkage between teichoic acid and peptidoglycan in bacterial cell walls. FEBS Lett. 88: 1 9.
59. Cook, R. L.,, R. J. Harris,, and G. Reid. 1988. Effect of culture media and growth phase on the morphology of lactobacilli and on their ability to adhere to epithelial cells. Curr. Microbiol. 17: 159 166.
60. Cooper, S. 1991. Bacterial Growth and Division. Academic Press, Inc., New York.
61. Cooper, S.,, M.-L. Hsieh,, and B. Guenther. 1988. Mode of peptidoglycan synthesis in Salmonella typhimurium: single-strand insertion. J. Bacteriol. 170: 3509 3512.
62. Courtney, H. S.,, I. Ofek,, W. A. Simpson,, D. L. Hasty, and E. H. Beachey. 1986. Binding of Streptococcus pyogenes to soluble and insoluble fibronectin. Infect. Immun. 53: 454 459.
63. Coxon, R. D.,, A. R. Archibald,, and C. R. Harwood,. 1989. Kinetics of protein export from Bacillus subtilis, p. 547 552. In L. O. Butler,, C. R. Harwood,, and B. E. B. Moseley (ed.), Genetic Transformation and Expression. Intercept Ltd., Andover, Hants, England.
64. Coxon, R. D.,, C. R. Harwood,, and A. R. Archibald. 1991. Protein export during growth of Bacillus subtilis: the effect of extracellular protease deficiency. Lett. Appl. Microbiol. 12: 91 94.
65. Daneo-Moore, L.,, and G. D. Shockman,. 1977. The bacterial cell surface in growth and division, p. 597 715. In G. Poste, and G. L. Nicolson (ed.). The Synthesis, Assembly and Turnover of Cell Surface Components. Elsevier/ North Holland Publishing Co., Amsterdam.
66. Davie, J. M.,, and T. D. Brock. 1966. Effect of teichoic acid on resistance to the membrane-lytic agent of Streptococcus zymogenes. J. Bacteriol. 92: 1623 1631.
67. de Boer, W. R.,, F. J. Kruyssen,, and J. T. M. Wouters. 1981. Cell wall turnover in batch and chemostat cultures of Bacillus subtilis. J. Bacteriol. 145: 50 60.
68. de Boer, W. R.,, J. T. M. Wouters, A. J. Anderson, and A. R. Archibald. 1978. Further evidence for the structure of the teichoic acids from Bacillus subtilis var niger. Eur. J. Biochem. 85: 433 436.
69.de Chastelier, C, R. Hellio, and A. Ryter. 1975. Study of cell wall growth in Bacillus megaterium by high resolution autoradiography. J. Bacteriol. 123: 11841196.
70.de Pedro, M. A., and U. Schwarz. 1981. Heterogeneity of newly inserted and pre-existing murein in the sacculus of Escherichia coli. Proc. Natl. Acad. Sci. USA 78: 58565866.
71. Dezelee, P.,, and G. D. Shockman. 1975. Studies of the formation of peptide cross-links in the cell wall peptidoglycan of Streptococcus faecalis. J. Biol. Chem. 250: 6806 6816.
72. Doyle, R. J.,, J. Chaloupka,, and V. Vinter. 1988. Turnover of cell walls in microorganisms. Microbiol. Rev. 52: 554 567.
73. Doyle, R. J.,, A. L. Koch,, and P. H. B. Carstens. 1983. Cell wall-DNA association in Bacillus subtilis. J. Bacteriol. 153: 1521 1527.
74. Doyle, R. J.,, M. L. McDannel,, J. R. Helman,, and U. N. Streips. 1975. Distribution of teichoic acid in the cell wall of Bacillus subtilis. J. Bacteriol. 122: 152 158.
75. Duckworth, M.,, A. R. Archibald,, and J. Baddlley. 1972. The location of N-acetylgalactosamine in the walls of Bacillus subtilis 168. Biochem. J. 130: 691 696.
76. Eberle, H.,, and K. G. Lark. 1966. Chromosome segregation in Bacillus subtilis. J. Mol. Biol. 22: 183 186.
77. Ekwunife, F.,, J. Singh,, K. Taylor,, and R. J. Doyle. 1991. Isolation and purification of cell wall polysaccharide of Bacillus anthracis (Δ Sterne). FEMS Microbiol. Lett. 82: 257 262.
78. Ellwood, D. C, and D. W. Tempest. 1969. Control of teichoic acid and teichuronic acid biosynthesis in chemostat cultures of Bacillus subtilis var niger. Biochem. J. 111: 1 5.
79. Endl, J.,, H. P. Seidl,, F. Fiedler, and K. H. Schleifer. 1983. Chemical composition and structure of cell wall teichoic acids of staphylococci. Arch. Microbiol. 135: 215 223.
80. Fan, D. P., B. E. Beckman, and H. L. Gardner-Eckstrom. 1975. Mode of cell wall synthesis in gram-positive bacilli. J. Bacteriol. 123: 1157 1162.
81. Favre, D.,, J. J. Thwaites, and N. H. Mendelson. 1985. Kinetic studies of temperature-induced helix hand inversion in Bacillus subtilis macrofibers. J. Bacteriol. 164: 1136 1140.
82. Fein, J. E.,, and H. J. Rogers. 1976. Autolytic enzyme-deficient mutants of Bacillus subtilis 168. J. Bacteriol. 127: 1427 1442.
83. Fiedler, F.,, and L. Glaser. 1974. The synthesis of poly (ribitolphosphate). II. On the mechanism of poly(ribitolphosphate) polymerase. J. Biol. Chem. 249: 2690 2695.
84. Fiedler, F.,, M. J. Schaffler,, and E. Stackebrandt. 1981. Biochemical and nucleic acid hybridisation studies on Brevibacterium linens and related strains. Arch. Microbiol. 129: 85 93.
85. Fiedler, F.,, and E. Steber. 1984. Structure and biosynthesis of teichoic acids in the cell walls of Staphylococcus xylosus. DSM 20266. Arch. Microbiol. 138: 321 328.
86. Fischer, H.,, and A. Tomasz. 1984. Production and release of peptidoglycan and wall teichoic acid polymers in pneumococci treated with beta-lactam antibiotics. J. Bacteriol. 157: 507 513.
87. Fischer, W., 1981. Glycerophosphoglycolipids: presumptive biosynthetic precursors of lipoteichoic acids, p. 209 228. In G. D. Shockman, and A. J. Wicken (ed.), Chemistry and Biological Activities of Bacterial Surface Amphiphiles. Academic Press, Inc., New York.
88. Fischer, W. 1988. Physiology of lipoteichoic acids in bacteria. Adv. Microb. Physiol. 29: 233 303.
89. Fischer, W.,, P. Rosel,, and H. U. Koch. 1981. Effect of alanine ester substitution and other structural features of lipoteichoic acids on their inhibitory activity against autolysins of Staphylococcus aureus. J. Bacteriol. 146: 467 475.
90. Fordham, W. D.,, and C. Gilvarg. 1974. Kinetics of crosslinking of peptidoglycan in Bacillus megaterium. J. Biol. Chem. 249: 2478 2482.
91. Forsberg, C. W.,, P. B. Wyrick,, J. B. Ward,, and H. J. Rogers. 1973. The effect of phosphate limitation on the morphology and wall composition of Bacillus licheniformis and its phosphoglucomutase-deficient mutants. J. Bacteriol. 113: 969 984.
92. Foster, S. J. 1991. Cloning, expression, sequence analysis and biochemical characterization of an autolytic amidase of Bacillus subtilis 168 trpC2. J. Gen. Microbiol. 137: 1987 1998.
93. Foster, S. J. 1992. Analysis of the autolysins of Bacillus subtilis 168 during vegetative growth and differentiation by using renaturing polyacrylamide gel electrophoresis. J. Bacteriol. 174: 464 470.
94. Fuchs-Cleveland, E.,, and C. C. Gilvarg. 1976. Oligomeric intermediates in peptidoglycan biosynthesis in Bacillus megaterium. Proc. Natl. Acad. Sci. USA 73: 4200 4204.
95. Gaily, D. L. 1991. Cell wall assembly in Gram-positive bacteria. Ph.D. thesis. University of Newcastle upon Tyne, Newcastle upon Tyne, England.
96. Gaily, D. L.,, I. C. Hancock,, C. R. Harwood,, and A. R. Archibald. 1991. Cell wall assembly in Bacillus megaterium: incorporation of new peptidoglycan by a monomer addition process. J. Bacteriol. 173: 2548 2589.
97. Ganfield, M. C. W.,, and R. A. Peiringer. 1980. The biosynthesis of nascent membrane lipoteichoic acid of Streptococcus faecium ( S. faecalis ATCC 9790) from phosphatidyl-kojibiosyldiacylglycerol and phosphatidyl-glycerol. J. Biol. Chem. 255: 5164 5169.
98.Gaur, N. K., K. Cabane, and I. Smith. 1988. Structure and expression of the Bacillus subtilis sin operon. J. Bacteriol. 170: 10461053.
99. Giles, A. F.,, and P. E. Reynolds. 1979. Bacillus megaterium resistance to cloxacillin accompanied by a compensatory change in penicillin binding proteins. Nature (London) 280: 167 168.
100. Giles, A. F.,, and P. E. Reynolds. 1979. The direction of transpeptidation during cell wall peptidoglycan biosynthesis in Bacillus megaterium. FEBS Lett. 101: 244 248.
101. Giudicelli, S.,, and A. Tomasz. 1984. Attachment of pneumococcal autolysin to wall teichoic acids an essential step in enzymatic wall degradation. J. Bacteriol. 158: 1188 1190.
102. Glaser, L., and M. M. Burger. 1964. The synthesis of teichoic acids. III. Glycosylation of polyglycerolphosphate. J. Biol. Chem. 239: 3187 3191.
103. Glauner, B.,, and U. Schwarz,. 1983. The analysis of murein composition with high pressure liquid chromatography, p. 29 34. In R. Hakenbeck,, J. V. Holtje,, and H. Labischinski (ed.), The Target of Penicillin. Walter de Gruyter, Berlin.
104. Goodell, E. W.,, and U. Schwarz. 1983. Cleavage and resynthesis of peptide cross-bridges in Escherichia coli murein. J. Bacteriol. 156: 136 140.
105. Goundry, J.,, A. R. Archibald,, J. Baddlley,, and A. L. Davison. 1967. The structure of the cell wall of Bacillus polymyxa NCIB 4747. Biochem. J. 104: 1 3.
106. Graham, L. L.,, and T. J. Beveridge. 1990. Effect of chemical fixatives on accurate preservation of Escherichia coli and Bacillus subtilis structure in cells prepared by freeze-substitution. J. Bacteriol. 172: 2150 2159.
107. Graham, L. L.,, and T. J. Beveridge. 1990. Evaluation of freeze-substitution and conventional embedding protocols for routine electron microscopic processing of eubacteria. J. Bacteriol. 172: 2141 2149.
108. Hammes, W. P.,, and O. Handler. 1976. Biosynthesis of peptidoglycan in Gaffkya homari. The incorporation of peptidoglycan into the cell wall and its direction of transpeptidation. Eur. J. Biochem. 70: 97 106.
109. Hancock, I. C. 1981. The biosynthesis of ribitol teichoic acid by toluenised cells of Bacillus subtilis W23. Eur. J. Biochem. 119: 85 90.
110. Hancock, I. C. 1983. Activation and inactivation of secondary wall polymers in Bacillus subtilis W23. Arch. Microbiol. 134: 222 226.
111. Hancock, I. C., 1986. The use of gram positive bacteria for the removal of metals from aqueous solution, p. 25 43. In R. Thompson (ed.), Trace Metal Removal from Aqueous Solution. Royal Chemical Society, London.
112. Hancock, I. C, and J. Baddiley. 1972. Biosynthesis of the wall teichoic acid in Bacillus licheniformis. Biochem. J. 127: 27 37.
113. Hancock, I., C, and J. Baddiley. 1985. Biosynthesis of the bacterial envelope polymers teichoic acid and teichuronic acid, p. 279 307. In A. N. Martonosi (ed.), The Enzymes of Biological Macromolecules, vol. 2. Plenum Press, Inc., New York.
114. Hancock, I. C, and C. M. Cox. 1991. Turnover of cell surface-bound capsular polysaccharide in Staphylococcus aureus. FEMS Microbiol. Lett. 77: 25 30.
115. Hanover, J. A., and W. J. Lennartz. 1979. The topological orientation of N,N''-diacetylchitobiosyl pyrophosphoryl dolichol in artificial and natural membranes. J. Biol. Chem. 254: 9237 9246.
116. Harold, F. M. 1990. To shape a cell: an inquiry into the causes of morphogenesis of microorganisms. Microbiol. Rev. 54: 381 431.
117. Harrington, C. R.,, and J. Baddiley. 1983. Peptidoglycan synthesis by partly autolyzed cells of Bacillus subtilis W23. J. Bacteriol. 155: 776 792.
118. Harrington, C. R.,, and J. Baddiley. 1985. Biosynthesis of wall teichoic acids in Staphylococcus aureus H, Micrococcus varians and Bacillus subtilis W23: involvement of lipid. J. Biochem. 153: 539 545.
119. Harwood, C. R. 1992. Bacillus subtilis and its relatives: molecular biological and industrial workhorses. Trends Biotechnol. 10: 247 256.
120. Harwood, C. R.,, R. D. Coxon,, and I. C. Hancock,. 1990. The Bacillus cell envelope and secretion, p. 327 369. In C. R. Harwood, and S. M. Cutting (ed.), Molecular Biological Methods for Bacillus. John Wiley & Sons, Chichester, England.
121. Hase, S.,, and Y. Matsushima. 1979. The structure of the branching point between acidic polysaccharide and peptidoglycan in Micrococcus lysodeikticus cell wall. J. Biochem. 81: 1181 1186.
122. Hay, J. B. 1970. Studies on the structure of bacterial cell walls and underlying regions. Ph.D. thesis, University of Newcastle upon Tyne, Newcastle upon Tyne, England.
123. Hay, J. B.,, A. J. Wicken,, and J. Baddiley. 1963. The location of intracellular teichoic acids. Biochim. Biophys. Acta 71: 188 190.
124. Heckels, J. E.,, P. A. Lambert,, and J. Baddiley. 1977. Binding of magnesium ions to cell walls of Bacillus subtilis W23 containing teichoic acid or teichuronic acid. Biochem. J. 162: 359 365.
125. Heptinstall, S.,, A. R. Archibald,, and J. Baddiley. 1970. Teichoic acids and membrane function in bacteria. Nature (London) 225: 519 521.
126. Herbold, D. R.,, and L. Glaser. 1975. Bacillus subtilis N-acetylmuramic acid L-alanine amidase. J. Biol. Chem. 250: 1676 1680.
127. Herbold, D. R.,, and L. Glaser. 1975. Interaction of N-acetylmuramic acid L-alanine amidase with cell wall polymers. J. Biol. Chem. 250: 7231 7238.
128.Hildebrandt, K. M., and J. S. Anderson. 1990. Biosynthetic elongation of isolated teichuronic acid polymers via glucosyl- and N-acetylmannosaminuronosyltransferases from solubilized cytoplasmic membrane fragments of Micrococcus luteus. J. Bacteriol. 172: 51605164.
129. Hobot, J. A. 1990. New aspects of bacterial ultrastructure as revealed by modern acrylics for electron microscopy. J. Struct. Biol. 104: 169 177.
130. Holtje, J. V.,, and A. Tomasz. 1975. Specific recognition of choline residues in the cell wall teichoic acid by the N-acetylmuramyl-L-alanine amidase of pneumococcus. J. Biol. Chem. 250: 6072 6076.
131.Hughes, A. H., I. C. Hancock, and J. Baddiley. 1973. The function of teichoic acids in cation control in bacterial membranes. Biochem. J. 132: 8393.
132. Hungerer, K. D.,, and D. J. Tipper. 1969. Cell wall polymers of Bacillus sphaericus 9602. Biochemistry 8: 3577 3587.
133. Hussey, H.,, D. Brooks,, and J. Baddiley. 1969. Direction of chain extension during the synthesis of teichoic acid in bacterial cell walls. Nature (London) 221: 665 666.
134. Hussey, H.,, S. Sueda,, S. C. Cheah,, and J. Baddiley. 1978. Control of teichoic acid synthesis in Bacillus licheniformis ATCC 9945. Eur. J. Biochem. 82: 169 174.
135. Ishimoto, N.,, and J. L. Strominger. 1966. Polyribitolphosphate synthetase of Staphylococcus aureus strain Copenhagen. J. Biol. Chem. 241: 639 650.
136. Ivanovics, G. 1940. Untersuchungen uber das Polysaccharid der Milzbrandbazillen. Z. Immunitaetsforsch. Exp. Ther. 97: 402 423.
137. Ivatt, R. J.,, and C. Gilvarg. 1979. The primary structure of the teichuronic acid of Bacillus megaterium. J. Biol. Chem. 254: 2759 2765.
138. Iwasaki, H.,, A. Shimada,, and E. Ito. 1986. Comparative studies of lipoteichoic acids from several Bacillus strains. J. Bacteriol. 167: 508 516.
139. Jackson, G. E. D.,, and J. L. Strominger. 1984. Synthesis of peptidoglycan by high molecular weight penicillin binding proteins of Bacillus subtilis and Bacillus stearothermophilus. J. Biol. Chem. 259: 1483 1490.
140. Jacob, F.,, S. Brenner,, and F. Cuzin. 1963. On the regulation of DNA replication in bacteria. Cold Spring Harbor Symp. Quant. Biol. 28: 329 347.
141. James, A. M.,, and J. E. Brewer. 1968. Non-protein components of the cell surface of Staphylococcus aureus. Biochem. J. 107: 817 821.
142. Johnstone, K.,, F. A. Simion,, and D. J. Ellar. 1982. Teichoic acid and lipid metabolism during sporulation of Bacillus megaterium KM. Biochem. J. 202: 459 467.
143. Joliffe, L. K.,, R. J. Doyle,, and U. N. Streips. 1980. Extracellular proteases modify cell wall turnover in Bacillus subtilis. J. Bacteriol. 141: 1191 1208.
144. Joliffe, L. K.,, R. J. Doyle,, and U. N. Streips. 1981. The energised membrane and cellular autolysis in Bacillus subtilis. Cell 25: 753 763.
145. Karakawa, W. W.,, and W. F. Vann,. 1982. Capsular polysaccharides of Staphylococcus aureus, p. 285 293. In J. B. Robbins,, J. C. Hill,, and J. C. Sadoff (ed.), Seminars in Infectious Diseases: Bacterial Vaccines, vol. 4. Thieme Stratton Inc., New York.
146. Kaya, S.,, Y. Araki,, and E. Ito. 1985. Structural studies on the linkage unit between polygalactosylglycerol phosphate and peptidoglycan in walls of Bacillus coagulans. Eur. J. Biochem. 147: 41 46.
147. Kaya, S.,, K. Yokoyama,, Y. Araki,, and E. Ito. 1984. N - Acetylmannosaminyl( 1 - 4)N - acetylglucosamine, a linkage unit between glycerol teichoic acid and peptidoglycan in cell walls. J. Bacteriol. 158: 990 996.
148. Kennedy, L. D.,, and D. R. D. Shaw. 1968. Direction of polyglycerolphosphate chain growth in Bacillus subtilis. Biochem. Biophys. Res. Commun. 32: 861 865.
149. Kessler, R. E., I. Van de Rljn, and M. McCarty. 1979. Characterisation and localisation of the enzymatic deacylation of lipoteichoic acid in group A streptococci. J. Exp. Med. 150: 1498 1509.
150. Kirchner, G.,, M. A. Kemper,, A. L. Koch,, and R. J. Doyle. 1988. Zonal turnover of cell poles of Bacillus subtilis. Ann. Inst. Pasteur Microbiol. 139: 645 654.
151. Kirchner, G.,, A. L. Koch,, and R. J. Doyle. 1984. Energised membrane regulates pole formation in Bacillus subtilis. FEMS Microbiol. Lett. 24: 438 441.
152. Koch, A. L. 1983. The surface stress theory of microbial morphogenesis. Adv. Microb. Physiol. 24: 301 366.
153. Koch, A. L. 1988. Biophysics of bacterial walls viewed as stress-bearing fabric. Microbiol. Rev. 52: 337 353.
154. Koch, A. L.,, and I. J. D. Burdett. 1986. Biophysics of pole formation of Gram-positive rods. J. Gen. Microbiol. 132: 3451 3457.
155. Koch, A. L.,, and I. J. D. Burdett. 1986. Normal pole formation during total inhibition of wall synthesis of Bacillus subtilis. J. Gen. Microbiol. 132: 3441 3449.
156. Koch, A. L.,, and A. J. Doyle. 1985. Inside-to-outside growth and turnover of the wall of gram positive rods. J. Theor. Biol. 117: 137 157.
157. Koch, A. L.,, and R. J. Doyle. 1986. Growth strategy for the Gram positive rod. FEMS Microbiol. Rev. 32: 247 254.
158. Koch, A. L.,, M. L. Higgins,, and R. J. Doyle. 1981. Surface tension-like forces determine bacterial shapes. J. Gen. Microbiol. 123: 151 161.
159. Koch, A. L.,, G. Kirchner,, R. J. Doyle,, and I. D. J. Burdett. 1985. How does a Bacillus split its septum right down the middle? Ann. Inst. Pasteur Microbiol. 136: 91 98.
160. Koch, A. L.,, H. L. T. Mobley,, R. J. Doyle,, and U. N. Streips. 1981. The coupling of wall growth and chromosome replication in Gram positive rods. FEMS Microbiol. Lett. 12: 201 208.
161. Koch, H. U.,, R. Doker,, and W. Fischer. 1985. Maintenance of D-alanine ester substitution of lipoteichoic acid by reesterification in Staphylococcus aureus. J. Bacteriol. 164: 1211 1217.
162. Koch, H. U.,, and W. Fischer. 1978. Acyldiglucosyldiacylglycerol-containing lipoteichoic acid with a poly(3-O-galabiosyl 2-0 galactosyl-sn-glycero-1-phosphate) chain from Streptococcus lactis Kiel 42172. Biochemistry 17: 5275 5281.
163.Koga, Y., M. Nishihara, and H. Morii. 1984. Products of phosphatidylglycerol turnover in two Bacillus strains with and without lipoteichoic acid in the cells. Biochim. Biophys. Acta 793: 8694.
164.Kojlma, N., Y. Arakl, and E. Ito. 1985. Structure of the linkage units between ribitol teichoic acids and peptidoglycan. J. Bacteriol. 161: 299306.
165. Kojima, N. Y. Araki, and E. Ito. 1985. Structural studies on the linkage unit of ribitol teichoic acid of Lactobacillus plantarum. Eur. J. Biochem. 148: 29 34.
166. Kojima, N.,, J. Lida,, Y. Araki,, and E. Ito. 1985. Structural studies on the linkage unit between poly(N-ace-tylglucosamine 1-phosphate) and peptidoglycan in cell walls of Bacillus pumilis. Eur. J. Biochem. 149: 331 336.
167.Kojima, N., K. Uchikawa, Y. Arakl, and E. Ito. 1985. A common linkage saccharide unit between teichoic acids and peptidoglycan in cell walls of Bacillus coagulans. J. Biochem. 97: 10851092.
168. Kolenbrander, P. E. 1988. Intergeneric coaggregation among human oral bacteria and ecology of dental plaque. Annu. Rev. Microbiol. 42: 627 656.
169.Kuroda, A., and J. Sekiguchi. 1991. Molecular cloning and sequencing of a major Bacillus subtilis autolysin gene. J. Bacteriol. 173: 73047312.
170. Labischinski, H.,, G. Barnickel,, H. Bradaczek,, and P. Giesbrecht. 1979. On the secondary and tertiary structure of murein. Eur. J. Biochem. 95: 147 155.
171. Labischinski, H.,, G. Barnickel,, and D. Naumann,. 1983. The state of order of bacterial peptidoglycan, p. 49 54. In R. Hakenbeck,, J. V. Holtje,, and H. Labischinski (ed.), The Target of Penicillin. Walter de Gruyter, New York.
172. Labischinski, H.,, G. Barnickel,, D. Naumann,, and P. Keller. 1985. Conformational and topological aspects of the three-dimensional architecture of bacterial peptidoglycan. Ann. Inst. Pasteur Microbiol. 136A: 45 50.
173. Labischinski, H.,, D. Naumann,, and W. Fischer. 1991. Small and medium-angle X-ray analysis of bacterial lipoteichoic acid phase structure. Eur. I. Biochem. 202: 1269 1274.
174. Lablaw, L. W.,, and V. M. Mosley. 1954. Periodic structure in the flagella and cell walls of a bacterium. Biochim. Biophys. Acta 15: 325 331.
175. Lambert, P. A., I. C. Hancock, and J. Baddlley. 1975. Influence of alanyl ester residues on the binding of magnesium ions to teichoic acids . Biochem. J. 151: 671 676.
176. Lang, W. K.,, and A. R. Archibald. 1982. Length of teichoic acid chains incorporated into walls of Bacillus subtilis grown under conditions of differing phosphate supply. FEMS Microbiol. Lett. 13: 93 97.
177. Lang, W. K., K. Glassey, and A. R. Archibald. 1982. Influence of phosphate supply on teichoic and teichuronic acid content of Bacillus subtilis walls. J. Bacteriol. 151: 367 375.
178. Leaver, J.,, I. C. Hancock,, and J. Baddlley. 1981. Fractionation studies of the enzyme complex involved in teichoic acid synthesis. J. Bacteriol. 146: 847 852.
179. Leclerc, D.,, and A. Asselin. 1989. Detection of bacterial cell wall hydrolases after denaturing polyacrylamide gel electrophoresis. Can. J. Microbiol. 35: 749 753.
180. Lifely, M. R.,, E. Tarelli,, and J. Baddlley. 1980. The teichuronic acid from walls of Bacillus licheniformis ATCC 9945. Biochem. J. 191: 305 318.
181. Lim, S. H, and M. R. J. Salton. 1985. Comparison of the chemical composition of lipomannan from Micrococcus agilis membranes with that of Micrococcus luteus strains. FEMS Microbiol. Lett. 27: 287 291.
182. Linnett, P. E.,, and J. L. Strominger. 1974. Amidation and cross-linking of the enzymatically synthesised peptidoglycan of Bacillus stearothermophilus. J. Biol. Chem. 249: 2489 2496.
183.Liu, T. Y, and E. C. Gottschlick. 1967. Muramic acid phosphate as a component of the mucopeptide of Gram-positive bacteria. J. Biol. Chem. 242: 471476.
184.Lleo, M. M., P. Canepari, and G. Satta. 1990. Bacterial cell shape regulation: testing of additional predictions unique to the two-competing-sites model for peptidoglycan assembly and isolation of conditional rod-shaped mutants from some wild-type cocci. J. Bacteriol. 172: 37583771.
185. Lombard!, S. J.,, S. L. Chen,, and A. J. Fulco. 1980. A rapidly metabolizing pool of phosphatidylglycerol as a precursor for phosphatidylethanolamine and diglyceride in Bacillus megaterium. J. Bacteriol. 141: 626 634.
186. Lombard!, S. J.,, and A. J. Fulco. 1980. Two distinct pools of phosphatidylglycerol in Bacillus megaterium. J. Bacteriol. 141: 618 625.
187. Lopez, R.,, E. Garcia,, P. Garcia,, C. Ronda,, and A. Tomasz. 1982. Choline-containing bacteriophage receptors in Streptococcus pneumoniae. J. Bacteriol. 151: 1581 1590.
188. Maino, V. C, and F. E. Young. 1974. Regulation of glucosylation of teichoic acid. J. Biol. Chem. 249: 5169 5175.
189. Margot, P.,, and D. Karamata. 1992. Identification of the structural genes for N-acetylmuramoyl-L-alanine amidase and its modifier in Bacillus subtilis 168: inactivation of these genes by insertional mutagenesis has no effect on growth or cell separation. Mol. Gen. Genet. 232: 359 366.
190. Margot, P.,, C. Mauel,, and D. Karamata. 1991. The Bacillus subtilis N-acetylglucosaminidase is encoded by a monocistronic operon controlled by a σ D dependent promoter, p. W 6. Proceedings of 6th International Conference on Bacilli. Stanford University Press, Stanford, Calif.
191. Markham, J. L.,, K. W. Knox,, A. J. Wicken,, and M. J. Hewett. 1975. Formation of extracellular lipoteichoic acid by oral streptococci and lactobacilli. Infect. Immun. 12: 378 385.
192. Marklewicz, Z.,, and A. Tomasz. 1990. Protein-bound choline is released from the pneumococcal autolytic enzyme during adsorption of the enzyme to cell wall particles. J. Bacteriol. 172: 2241 2244.
193. Marquis, R. E. 1973. Immersion refractometry of isolated bacterial cell walls. J. Bacteriol. 116: 1273 1279.
194. Marquis, R. E.,, and E. L. Carstensen. 1973. Electric conductivity and internal osmolality of intact bacterial cells. J. Bacteriol. 113: 1198 1206.
195. Marr, A. G. 1991. Growth rate of Escherichia coli. Microbiol. Rev. 55: 316 333.
196. Mauck, J.,, L. Chin,, and L. Glaser. 1971. Turnover of cell wall of gram positive bacteria. J. Biol. Chem. 246: 1820 1827.
197. Mauck, J.,, and L. Glaser. 1972. On the mode of in vivo assembly of the cell wall of Bacillus subtilis. J. Biol. Chem. 247: 1180 1827.
198.Mauel, C, M. Young, and D. Karamata. 1991. Genes concerned with synthesis of poly(glycerol phosphate), the essential teichoic acid in Bacillus subtilu strain 168, are organized in two divergent transcription units. J. Gen. Microbiol. 137: 929941.
199.Mauel, C, M. Young, P. Margot, and D. Karamata. 1989. The essential nature of teichoic acids in Bacillus subtilis as revealed by insertional mutagenesis. Mol. Gen. Genet. 215: 388394.
200. Maurer, J. J.,, and S. J. Mattingly. 1991. Molecular analysis of lipoteichoic acid from Streptococcus agalactiae. J. Bacteriol. 173: 487 494.
201. McCloskey, M. A.,, and F. A. Troy. 1980. Paramagnetic isoprenoid lipid carrier. 1. Chemical synthesis and incorporation into model membrane. Biochemistry 19: 2056 2060.
202. Mclntire, F. C, C. A. Bush, S. S. Wu, S. C. Li, Y. T. Li, M. McNeil, S. S. Tjoa, and P. V. Fennesey. 1987. Structure of a new hexasaccharide from the coaggregation polysaccharide of Streptococcus sanguis. Carbohydr. Res. 166: 133 143.
203. McLean, R. J. C, D. Beauchemin, L. Chapman, and D. C. Beveridge. 1990. Metal binding character of the γ-glutamylpolymer of Bacillus licheniformis ATCC 9945. Appl. Environ. Microbiol. 56: 3671 3677.
204.Mendelson, N. H. 1976. Helical growth of Bacillus subtilis: a new model of cell growth. Proc. Mail. Acad. Sci. USA 73: 17401744.
205.Mendelson, N. H. 1978. Helical Bacillus macrofibres; morphogenesis of a bacterial multicellular microorganism. Proc. Natl. Acad. Sci. USA 75: 24782482.
206.Mendelson, N. H. 1982. Bacterial growth and division: genes, structures, forces and clocks. Microbiol. Rev. 46: 341375.
207.Mendelson, N. H. 1982. Dynamics of Bacillus subtilis helical macrofiber morphogenesis: writhing, folding, close packing and contraction. J. Bacteriol. 151: 438449.
208.Mendelson, N. H., D. Favre, and J. J. Thwaltes. 1984. Twisted states of Bacillus subtilis macrofibres reflect structural states of the cell wall. Proc. Natl Acad. Sci. USA 81: 35623566.
209.Mendelson, N. H., and J. J. Thwaltes. 1989. Cell wall mechanical properties as measured with bacterial thread made from Bacillus subtilis. J. Bacteriol. 171: 10551062.
210. Merad, T.,, A. R. Archibald,, I. C. Hancock,, C. R. Harwood,, and J. A. Hobot. 1989. Cell wall assembly in Bacillus subtilis: visualisation of old and new wall material by electron microscopic examination of samples stained selectively for teichoic acid and teichuronic acid. J. Gen. Microbiol. 135: 645 655.
211. Messner, P.,, K. Bock,, R. Christian,, G. Schultz,, and U. B. Sleytr. 1990. Characterization of the surface layer glycoprotein of Clostridium symbiosum HB25. J. Bacteriol. 172: 2576 2583.
212. Messner, P.,, U. B. Sleytr,, R. Christian,, G. Schultz,, and F. M. linger. 1987. Isolation and structural determination of a diacetamidodideoxyuronic acid-containing glycan chain from the S-layer glycoprotein of Bacillus stearothermophilus NRS 2004/3a. Carbohydr. Res. 168: 211 218.
213. Mett, H.,, R. Bracha,, and D. Mirelman. 1980. Soluble nascent peptidoglycan in growing Escherichia coli cells. J. Biol. Chem. 255: 9584 9590.
214. Miller, L.,, L. Gray,, E. Beachey,, and M. Kehoe. 1988. Antigenic variation among group A streptococcal M proteins. J. Biol. Chem. 263: 5668 5673.
215. Miyashiro, M. S.,, H. Enei,, Y. Hirose,, and S. Udaka. 1980. Extracellular production of proteins. 5. Stimulating effect of inhibitors of cell wall synthesis on protein production by Bacillus brevis. Agric. Biol. Chem. 44: 2297 2303.
216. Mobley, H. L. T.,, R. J. Doyle,, and L. K. Joliffe. 1983. Cell wall polypeptide complexes in Bacillus subtilis. Carbohydr. Res. 116: 113 125.
217. Mobley, H. L. T.,, A. L. Koch,, R. J. Doyle,, and U. N. Streips. 1984. Insertion and fate of the cell wall in Bacillus subtilis. J. Bacteriol. 158: 169 179.
218.Murazumi, N., Y. Arakl, and E. Ito. 1986. Biosynthesis of the wall neutral polysaccharide in Bacillus cereus. Eur. J. Biochem. 161: 5159.
219. Nauman, D.,, G. Barnickel,, H. Bradaczek,, H. Labischinski,, and P. Giesbrecht. 1982. Infrared spectroscopy, a tool for probing bacterial peptidoglycan. Eur. J. Biochem. 125: 505 515.
220. Nealon, T. J.,, and S. J. Mattingly. 1984. Role of cellular lipoteichoic acids in mediating adherence of serotype III strains of group B streptococci to human embryonic, fetal and adult epithelial cells. Infect. Immun. 43: 523 530.
221. Xermut, M. V.,, and R. G. E. Murray. 1967. Ultrastructure of the cell wall of Bacillus polymyxa. J. Bacteriol. 93: 1949 1965.
222. Neuhaus, F. C. 1985. Interchain transacylation of D-alanine ester residues of lipoteichoic acid. A unique mechanism of membrane communication. Biochem. Soc. Trans. 13: 987 990.
223. Nishlkawa, J.,, M. Tada,, Y. Takubo,, T. Nishihara,, and M. Kondo. 1987. Occurrence in Bacillus megaterium of uridine 5'-diphospho-N-acetylgalactosamine and uridine 5'-diphosphogalactosamine, intermediates in the biosynthesis of galactosamine-6-phosphate polymer. J. Bacteriol. 169: 1338 1340.
224. Ofek, I.,, W. A. Simpson, and E. H. Beachey. 1982. Formation of molecular complexes between a structurally defined M protein and acylated or deacylated lipoteichoic acid of Streptococcus. J. Bacteriol. 149: 426 433.
225.Ohmizu, H., N. Tsukagos, S. Udata, N. Kaneda, and K. Yagi. 1983. Major proteins released by a protein producing bacterium, Bacillus brevis 47, are derived from the cell wall protein. J. Bacteriol. 94: 10771084.
226.Oldmlxon, E. H., P. Dezelee, M. C. Ziskin, and G. D. Shockman. 1976. Monomer addition as a mechanism of forming peptide cross-links in the cell wall peptidoglycan of Streptococcus faecalis ATCC 9790. Eur. J. Biochem. 68: 271280.
227.Pal, M. K., T. C. Ghosh, and J. K. Ghosh. 1990. Studies on the conformation of and metal ion binding by teichoic acid of Staphylococcus aureus. Biopolymers 30: 273277.
228. Park, W.,, H. Seto,, R. Hackenbeck,, and M. Matsuhashi. 1985. Major peptidoglycan transglycosylase activity in Streptococcus pneumoniae that is not a penicillin binding protein. FEMS Microbiol. Lett. 27: 45 48.
229. Pavlik, H. G.,, and H. J. Rogers. 1973. Selective extraction of polymers from cell walls of Gram-positive bacteria. Biochem. J. 131: 619 621.
230.Pooley, H. M. 1976. Layered distribution according to age within the cell wall of Bacillus subtilis. J. Bacteriol. 125: 11391147.
231.Pooley, H. M. 1976. Turnover and spreading of old wall during surface growth of Bacillus subtilis. J. Bacteriol. 125: 11271138.
232.Pooley, H. M., F.-X. Abellan, and D. Karamata. 1992. CDP-glycerol: poly(glycerophosphate) glycerophosphotransferase, which is involved in the synthesis of the major wall teichoic acid in Bacillus subtilis 168, is encoded by tagF ( rodC). J. Bacteriol. 174: 646649.
233.Pooley, H. M., and H. Karamata. 1984. Genetic analysis of autolysin-deficient and flagellaless mutants of Bacillus subtilis. J. Bacteriol. 160: 11231129.
234.Pooley, H. M., D. Paschoud, and D. Karamata. 1987. The gtaB marker in Bacillus subtilis 168 is associated with a deficiency in UDP-glucose pyrophosphorylase. J. Gen. Microbiol. 133: 34813493.
235. Pooley, P. R.,, R.-X. Abellan,, and D. Karamata. 1991. A conditional-lethal mutant of Bacillus subtilis 168 with a thermosensitive glyceroI-3-phosphate cytidylytransferase, an enzyme specific for the synthesis of the major wall teichoic acid. J. Gen. Microbiol. 137: 921 928.
236.Potvln, C, D. Leclerc, G. Tremblay, A. Asselln, and G. Bellemare. 1988. Cloning, sequencing and expression of a Bacillus bacteriolytic enzyme in Escherichia coli. Mol. Gen. Genet. 214: 241248.
237. Powell, D. A., M. Duckworth, and J. Baddlley. 1975. A membrane-associated lipomannan from Micrococcus lysodeikticus. Biochem. J. 151: 387 397.
238. Powell, J. F.,, and R. E. Strange. 1957. Diaminopimelic acid metabolism and sporulation in Bacillus sphaericus. Biochem. J. 65: 700 708.
239. Poxton, I. R.,, E. Tarelli,, and J. Baddlley. 1978. The structure of C-polysaccharide from the walls of Streptococcus pneumoniae. Biochem. J. 175: 1033 1042.
240. Priest, F. G. 1977. Extracellular enzyme synthesis in the genus Bacillus. Bacteriol. Rev. 41: 711 753.
241. Reid, G.,, R. L. Cook,, R. J. Harris,, J. D. Rousseau,, and H. Lawford. 1988. Development of a freeze substitution technique to examine the structure of Lactobacillus casei GR-1 grown in agar and under batch and chemostat culture conditions. Curr. Microbiol. 17: 151 158.
242. Reis, K. J., E. M. Ayoub, and M. D. P. Boyle. 1984. Streptococcal Fc receptors. I. Isolation and partial characterisation of the receptor from a group C Streptococcus. J. Immunol. 132: 3091 3097.
243. Robson, R. L.,, and J. Baddlley. 1977. Morphological changes associated with novobiocin resistance in Bacillus licheniformis. J. Bacteriol. 129: 1045 1050.
244. Robson, R. L.,, and J. Baddlley. 1977. Role of teichuronic acid in Bacillus licheniformis: defective autolysis due to deficiency of teichuronic acid in a novobiocin-resistant mutant . J. Bacteriol. 129: 1051 1058.
245. Rogers, H. J.,, H. R. Perkins,, and J. B. Ward. 1980. Microbial Cell Walls and Membranes. Chapman & Hall, Ltd., London.
246. Rogers, H. J.,, C. Taylor,, S. Rayter,, and J. B. Ward. 1984. Purification and properties of autolytic endo-β-Nacetyl glucosaminidase and the N-acetyl muramyl-L-alanine amidase. J. Gen. Microbiol. 130: 2395 2402.
247.Rohr, T. E., G. N. Levy, N. J. Stark, and J. S. Anderson. 1977. Initial reactions in biosynthesis of teichuronic acid of Micrococcus lysodeikticus cell walls. J. Biol. Chem. 252: 34603465.
248. Roten, C.-A. H.,, C. Brandt,, and D. Karamata. 1991. Genes involved in meso-diaminopimelate synthesis in Bacillus subtilis: identification of the gene encoding aspartokinase I. J. Gen. Microbiol. 137: 951 962.
249. Roten, C.-A. H.,, C. Brandt,, and D. Karamata. 1991. Identification of murA, the structural gene of phospho-enolpyruvate:uridine-N-acetyl-glucosamine enolpyruvoyltransferase in Bacillus subtilis, p. W 8. Proceedings of the 6th International Conference on Bacilli. Stanford University, Stanford, Calif.
250.Sara, M., and U. B. Sleytr. 1987. Charge distribution on the S-layer of Bacillus stearothermophilus NRS 1536/3C and importance of charged groups for morphogenesis and function. J. Bacteriol. 169: 28042809.
251. Sara, M.,, and U. B. Sleytr. 1987. Molecular sieving through S-layers of Bacillus stearothermophilus strains. J. Bacteriol. 169: 4092 4098.
252. Sargent, M. G. 1978. Surface extension and the cell cycle in procaryotes. Adv. Microb. Physiol. 18: 106 176.
253.Sasaki, Y., Y. Arakl, and E. Ito. 1980. Structure of the linkage region between glycerol teichoic acid and peptidoglycan in Bacillus cereus AHU cell walls. Biochem. Biophys. Res. Commun. 96: 529534.
254.Schlelfer, K. H., and O. Kandler. 1972. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36: 407477.
255. Seklguchi, J.,, H. Ohsu,, A. Kuroda,, H. Moriyama,, and T. Akamatsu. 1990. Nucleotide sequences of the Bacillus subtilis flaD locus and a Bacillus licheniformis homologue affecting autolysin level and flagellation. J. Gen. Microbiol. 136: 1223 1230.
256.Shabarova, Z. A., N. A. Hughes, and J. Baddlley. 1962. The influence of adjacent phosphate and hydroxyl groups on amino acid esters. Biochem. J. 83: 216219.
257.Sharpe, A., P. M. Blumberg, and J. L. Stromlnger. 1974. D-Alanine carboxypeptidase and cell wall cross-linking in Bacillus subtilis. J. Bacteriol. 117: 926927.
258.Sharpe, M. E., A. L. Davison, and J. Baddlley. 1964. Teichoic acids and group antigens in lactobacilli. J. Gen. Microbiol. 34: 333340.
259. Shaw, N.,, and J. Baddlley. 1964. The teichoic acid from the walls of Lactobacillus buchneri NCIB8007. Biochem. J. 93: 317 321.
260.Shlmada, A., H. Ohta, H. Iwasakl, and E. Ito. 1988. The function of β-N-acetylglucosaminyl monophosphoryl-undecaprenol in biosynthesis of lipoteichoic acids in a group of Bacillus strains. Eur. I. Biochem. 176: 559565.
261.Shlmada, A., J. Tamatukuri, and E. Ito. 1989. Function of α-D-glucosyl monophosphorylpolyprenol in biosynthesis of cell wall teichoic acid in Bacillus coagulans. J. Bacteriol. 171: 28352841.
262. Shockman, G. D.,, and J. F. Barrett. 1983. Structure, function and assembly of cell walls of Gram positive bacteria. Annu. Rev. Microbiol. 37: 501 527.
263. Shockman, G. D.,, L. Daneo-Moore,, and M. L. Higglns. 1974. Problems of cell wall and membrane growth, enlargement and division. Ann. N. Y. Acad. Sci. 235: 161 196.
264. Shockman, G. D.,, and H. D. Slade. 1964. The cellular location of streptococcal group D antigens. J. Gen. Microbiol. 37: 297 305.
265. Sjoqulst, J.,, J. Moritz,, I. B. Johansson,, and H. Hjelm. 1972. Localisation of protein A in the bacteria. Eur. J. Biochem. 30: 190 194.
266. Sleytr, U. B. 1983. Crystalline surface layers on bacteria. Arch. Microbiol. 37: 311 339.
267. Sleytr, U. B., and P. Messner. 1988. Crystalline surface layers in procaryotes. J. Bacteriol. 170: 2891 2897.
268. Sleytr, U. B.,, and M. Sara. 1986. Ultrafiltration membranes with uniform pores from crystalline bacterial cell wall layers. Appl. Microbiol. Biotechnol. 25: 83 90.
269. Smith, D. G.,, and P. M. F. Shattock. 1964. The cellular location of antigens in streptococci of groups D, N and Q. J. Gen. Microbiol. 34: 165 175.
270.Snowden, M. A., H. R. Perkins, A. W. Wyke, M. W. Hayes, and J. B. Ward. 1989. Cross-linking O-acetylation of newly synthesized peptidoglycan in Staphylococcus aureus H. J. Gen. Microbiol. 135: 30153022.
271.Sonnenfeld, E. M., T. J. Beveridge, and R. J. Doyle. 1985. Discontinuity of charge on cell wall poles of Bacillus subtilis. Can. J. Microbiol. 131: 875877.
272.Sonnenfeld, E. M., A. L. Koch, and R. J. Doyle. 1985. Cellular location of origin and terminus in Bacillus subtilis. J. Bacteriol. 163: 895899.
273. Sturman, A. J.,, and A. R. Archibald. 1978. Conservation of phage receptor material at the polar caps of Bacillus subtilis W23. FEMS Microbiol. Lett. 4: 255 259.
274. Sutcliffe, I. C, and N. Shaw. 1991. Atypical lipoteichoic acids of gram-positive bacteria. J. Bacteriol. 173: 7065 7069.
275. Taron, D. J.,, W. C. Childs,, and F. C. Neuhaus. 1983. Biosynthesis of D-alanyl lipoteichoic acid: role of diglyceride kinase in the synthesis of phosphatidylglycerol for chain elongation. J. Bacteriol. 154: 1110 1116.
276. Thomas, C. M.,, and G. Jagura-Burbzy,. 1992. Replication and segregation: the replicon hypothesis revisited, p. 45 80. In C. D. S. Hohan, and J. A. Cole (ed.), Prokaryotic Structure and Function: a New Perspective. Cambridge University Press, Cambridge.
277. Thwaltes, J. J., 1992. Growth and control of the cell wall: a mechanical model for Bacillus subtilis, p. 1 9. In M. A. De Pedro,, J. V. Holtje,, and W. Loffelhardt (ed.). Bacterial Growth and Lysis: Metabolism and Structure of the Bacterial Sacculus. Plenum Press, New York.
278. Thwaltes, J. J., and N. H. Mendelson. 1991. Mechanical behaviour of bacterial cell walls. Adv. Microb. Physiol. 32: 173 222.
279. Thwaltes, J. J.,, U. C. Surana,, and A. M. Jones. 1991. Mechanical properties of Bacillus subtilis cell walls: effects of ions and lysozyme. J. Bacteriol. 173: 204 210.
280. Tilby, M. J. 1977. Helical shape and wall synthesis in bacteria. Nature (London) 266: 450 452.
281. Tipper, D. J.,, W. Katz,, J. L. Strominger,, and J.-M. Ghuysen. 1967. Substituents on the carboxyl group of D-glutamic acid in the peptidoglycan of several bacterial cell walls. Biochem. J. 6: 921 929.
282. Tipper, D. J.,, and J. L. Strominger. 1966. Isolation of 4-O-β-N-acetylmuramyl-N-acetylglucosamine and 4-O-β-N,6-0-diacetylmuramyl-N-acetylglucosamine and the structure of the cell wall polysaccharide of Staphylococcus aureus. Biochem. Biophys. Res. Commun. 22: 48 56.
283. Tipper, D. J.,, and J. L. Strominger. 1968. Biosynthesis of the peptidoglycan of bacterial cell walls. XII. Inhibition of crosslinking by penicillins and cephalosporins: studies in Staphylococcus aureus. J. Biol. Chem. 243: 3169 3175.
284. Tipper, D. J.,, J. L. Strominger,, and J. C. Ensign. 1967. Structure of the cell wall of Staphylococcus aureus strain Copenhagen. VI. Mode of action of the bacteriolytic peptidase from Myxobacter and the isolation of intact cell wall polysaccharides. Biochemistry 6: 906 920.
285. Todd, J. A., A. N. Roberts, K. Johnstone, P. J. Piggot, G. Winter, and D. J. Ellar. 1986. Reduced heat resistance of mutant spores after cloning and mutagenesis of the Bacillus subtilis gene encoding penicillin-binding protein 5. J. Bacteriol. 167: 257 264.
286. Tomasz, A. 1968. Biological consequences of the replacement of choline by ethanolamine in the cell wall of pneumococcus: chain formation, loss of transformability, and loss of autolysis. Proc. Natl. Acad. Sci. USA 59: 86 93.
287.Tomasz, A., M. McDonnell, H. Westphal, and E. Zanati. 1975. Coordinated incorporation of nascent peptidoglycan and teichoic acid into pneumococcal cell walls during growth. J. Biol. Chem. 250: 337341.
288.Tomasz, A., and M. Westphal. 1971. Abnormal autolytic enzyme in a pneumococcus with altered teichoic acid composition. Proc. Natl. Acad. Sci. USA 68: 26272630.
289.Tsuboi, A., T. Norihiro, and S. Udaka. 1982. Reassembly in vitro of hexagonal surface arrays in a protein-producing bacterium Bacillus brevis. J. Bacteriol. 151: 14851497.
290. Tynecka, Z.,, and J. B. Ward. 1975. Peptidoglycan synthesis in Bacillus licheniformis. The inhibition of cross-linking by benzylpeniciilin and cephaloridine in vitro. Biochem. J. 146: 253 267.
291.Uchikawa, K., I. Seklkawa, and I. Azuma. 1986. Structural studies on teichoic acids in cell walls of several serotypes of Listeria monocytogenes. J. Biochem. 99: 315329.
292.Umeda, A., Y. Ueki, and K. Amako. 1987. Structure of the Staphylococcus aureus cell wall determined by the freeze-substitution method. J. Bacteriol. 169: 24822487.
293. Van Dam, J. E. G.,, J. Breg,, R. Komen,, J. P. Kamerling,, and J. F. G. Vliegenthart. 1989. Isolation and structural studies of phosphate-containing oligosaccharides from alkaline and acid hydrolysates of Streptococcus pneumoniae type 6B capsular polysaccharide. Carbohydr. Res. 187: 267 286.
294. Vann, W. F.,, T.-Y. Liu,, and J. B. Robbins. 1976. Bacillus pumilis polysaccharide cross-reactive with meningococcal group A polysaccharide. Infect. Immun. 13: 1654 1662.
295. Verwer, R. W. H., N. Nanninga, W. Keck, and U. Schwarz. 1978. Arrangement of the glycan chains in the sacculus of Escherichia coli. J. Bacteriol. 136: 723 729.
296. Wagner, P. M.,, and G. C. Stewart. 1991. Role and expression of the Bacillus subtilis rodC operon. J. Bacteriol. 173: 4341 4346.
297. Ward, J. B. 1973. The chain length of glycans in bacterial cell walls. Biochem. J. 133: 395 398.
298. Ward, J. B. 1975. Peptidoglycan synthesis in L-phase variants of Bacillus licheniformis and Bacillus subtilis. J. Bacteriol. 124: 668 678.
299. Ward, J. B. 1981. Teichoic and teichuronic acids: biosynthesis, assembly and location. Microbiol. Rev. 45: 211 243.
300. Ward, J. B.,, and C. A. M. Curtis. 1982. The biosynthesis and linkage of teichuronic acid to peptidoglycan in Bacillus licheniformis. Eur. J. Biochem. 122: 125 132.
301. Ward, J. B.,, and H. Perkins. 1974. Peptidoglycan biosynthesis by preparations from Bacillus licheniformis: cross-linking of newly synthesised chains to preformed cell wall. Biochem. J. 139: 781 784.
302. Ward, J. B.,, and H. R. Perkins. 1973. The direction of glycan synthesis in a bacterial peptidoglycan. Biochem. J. 135: 721 728.
303. Warth, A. D.,, and J. L. Strominger. 1971. Structure of the peptidoglycan from vegetative cell walls of Bacillus subtilis. Biochemistry 10: 4349 4358.
304. Watkinson, B. J.,, H. Hussey,, and J. Baddiley. 1971. Shared lipid phosphate carrier in the biosynthesis of teichoic acid and peptidoglycan. Nature New Biol. 229: 57 59.
305. Waxman, D. J.,, D. M. Lindgren,, and J. L. Strominger. 1981. High molecular weight penicillin binding proteins from membranes of bacilli. J. Bacteriol. 148: 950 955.
306. Waxman, D. J.,, and J. L. Strominger. 1980. Penicillinbinding proteins and the mechanism of action of beta-lactam antibiotics. Annu. Rev. Biochem. 52: 825 869.