1887

Chapter 28 : Biosynthesis and Function of Membrane Lipids

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Biosynthesis and Function of Membrane Lipids, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap28-1.gif /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap28-2.gif

Abstract:

especially , have major advantages for the study of the function of membrane lipids in bacterial membrane physiology. offer two additional biological phenomena to membrane lipid research. The first is sporulation, during which membrane lipid phenomena accompanying differentiation could be studied. The second is temperature-induced control of the composition of the membrane lipids, in which detectable amounts of unsaturated fatty acids (UFAs) are synthesized by only at low growth temperatures. This chapter focuses on the aspects of lipid metabolism that differ from those of the better studied gram-negative bacteria. The primary focus is on , because of its advantages in genetic analysis. Fatty acid synthesis is the best-studied aspect of lipid metabolism. The chapter first focuses on the aspects of the pathway utilized in other bacteria and then discusses the product diversification reactions that result in the distinctive fatty acid compositions of . Two efforts that used as a model organism have contributed substantially for understanding of membrane lipids in bacteria. The first was the isolation of a growing collection of well-characterized mutants affecting lipid metabolism. The second is the continuing progress in molecular cloning of the lipid metabolism genes of this organism.

Citation: de Mendoza D, Grau R, Cronan, Jr. J. 1993. Biosynthesis and Function of Membrane Lipids, p 411-421. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch28

Key Concept Ranking

Unsaturated Fatty Acids
0.56016004
Fatty Acids
0.50575817
Acetyl Coenzyme A
0.5041322
Fatty Acid Synthase
0.47480133
0.56016004
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Acylation of -G3P by two successive transfers of acyl groups from acyl-ACP. This pathway has been demonstrated in and clostridia. -G3P is probably synthesized by reduction of a glycolytic intermediate such as dihydroxyacetone phosphate or glyceraldehyde 3-phosphate.

Citation: de Mendoza D, Grau R, Cronan, Jr. J. 1993. Biosynthesis and Function of Membrane Lipids, p 411-421. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Initiation of fatty acid biosynthesis in The initiation of new acyl chains is accomplished by the action of three enzymes: 1, acetyl-CoA carboxylase; 2, malonyl-CoA: ACP transacylase; 3, 3-ketoacyl-ACP synthase III.

Citation: de Mendoza D, Grau R, Cronan, Jr. J. 1993. Biosynthesis and Function of Membrane Lipids, p 411-421. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Elongation cycle of fatty acid biosynthesis. The elongation of a growing acyl chains is accomplished by the action of four enzymes: 1, 3-ketoacyl-ACP synthase; 2, 3-ketoacyl-ACP reductase; 3, 3-hydroxyacyl-ACP dehydrase; 4, enoyl reductase (frans-2-acyl-ACP reductase).

Citation: de Mendoza D, Grau R, Cronan, Jr. J. 1993. Biosynthesis and Function of Membrane Lipids, p 411-421. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Proposed pathway for incorporation of branched-chain 2-keto acids into fatty acids in Branched-chain amino acids are converted to branched-chain 2-keto acids by a branched-chain amino acid transaminase (reaction 1). The branched-chain 2-keto acid can then be converted into a CoA ester by a branched-chain 2-keto acid dehydrogenase (reaction 2) or an aldehyde derivative by a branched-chain 2-keto acid decarboxylase (reaction 3). It is assumed that the primers produced by reactions 2 and 3 could then be condensed with malonyl-ACP (see text and Fig. 6 ).

Citation: de Mendoza D, Grau R, Cronan, Jr. J. 1993. Biosynthesis and Function of Membrane Lipids, p 411-421. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Synthesis of complex lipids. The three phospholipid species found in are synthesized from phosphatidic acid (top center structure) by a series of reactions catalyzed by six enzymes: 1, CDP-diglyceride synthase (phosphatidate cytidyltransferase); 2, phosphatidylserine synthase; 3, phosphatidylserine decarboxylase; 4, phosphatidylglycerol-phosphate synthase; 5, phosphatidylglycerol-phosphate phosphatase; 6, cardiolipin synthase. The same reactions are believed to occur in bacilli. In addition, diglyceride is synthesized by dephosphorylation of phosphatidic acid by phosphatidic acid phosphatase (reaction 7). A portion of the diglyceride is then glucosylated by one or two transfers of glucose from UDP-glucose (reaction 8 and 9). Reactions 7 through 9 have been detected in other organisms but not bacilli. Not shown is the amino acylation of phosphatidylglycerol (the product of reaction 5) by lysyl-tRNA to form lysylphosphatidylglycerol.

Citation: de Mendoza D, Grau R, Cronan, Jr. J. 1993. Biosynthesis and Function of Membrane Lipids, p 411-421. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Pathways of branched-chain fatty acid and UFA syntheses in (A) Pathway of synthesis from branched-chain acyl-CoA esters as primers. (B) The other proposed pathway ( ) of synthesis from branched-chain 2-keto acids as primer sources. UFAs are formed by cold-induced desaturation of phospholipids ( ) or acyl-CoAs ( ).

Citation: de Mendoza D, Grau R, Cronan, Jr. J. 1993. Biosynthesis and Function of Membrane Lipids, p 411-421. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818388.chap28
1. Albertlni, A. M.,, C. Scotti,, and A. Galizzi. 1991. The Bacillus subtilis outG locus shows similarity to genes for fatty acids and polyketide biosynthesis. Abstr. 6th Int. Conf. Bacilli 1991.
2. Baigori, M.,, R. Grau,, H. R. Morbidonl,, and D. de Mendoza. 1991. Isolation and characterization of Bacillus subtilis mutants blocked in the synthesis of pantothenic acid. J. Bacteriol. 173: 4240 4242.
3. Bell, R. M. 1975. Mutants of Escherichia coli defective in membrane phospholipid synthesis. Properties of wild type and K m defective sn-glycerol-3-phosphate acyl-transferase activities. J. Biol. Chem. 250: 7147 7152.
4. Bishop, D. G.,, L. Rutberg,, and B. Samuelson. 1967. The chemical composition of the cytoplasmic membrane of Bacillus subtilis. Eur. J. Biochem. 2: 448 453.
5. Bloch, K. 1970. ^-Hydroxydecanoyl thioester dehydrase. Enzymes 5: 441 464.
6. Boudreaux, D. P.,, E. Eisenstat,, T. Ijima,, and E. Freese. 1981. Biochemical and genetic characterization of an auxotroph of Bacillus subtilis altered in the acyl CoA: acyl-carrier-protein-transacylase. Eur. J. Biochem. 115: 175 181.
7. Boudreaux, D. P.,, and E. Freese. 1981. Sporulation in Bacillus subtilis is independent of membrane fatty acid composition. J. Bacteriol. 148: 480 486.
8. Bulla, L. A.,, K. W. Nickerson,, T. L. Mount,, and J. J. Iandolo,. 1975. Biosynthesis of fatty acids during germination and outgrowth of Bacillus thuringiensis spores, p. 520 525. In P. Gerhardt,, R. N. Costilow,, and H. L. Sadof (ed.), Spores VI. American Society for Microbiology, Washington, D.C.
9. Butterworth, P. H. W.,, and K. Bloch. 1970. Comparative aspects of fatty acid synthesis in Bacillus subtilis and Escherichia coli. Eur. J. Biochem. 12: 496 501.
10. Clejan, S.,, T. A. Krulwich,, K. R. Mondrus,, and D. Seto-Young. 1986. Membrane lipid composition of obligately and facultatively alkalophilic strains of Bacillus spp. J. Bacteriol. 168: 334 340.
11. Cronan, J. E., Jr. 1978. Molecular biology of bacterial membrane lipids. Annu. Rev. Biochem. 47: 163 189.
12. Cronan, J. E., Jr.,, and R. M. Bell. 1974. Mutants of Escherichia coli defective in membrane phospholipid synthesis: mapping of the structural gene for L-glycerol-3-phosphate dehydrogenase. J. Bacteriol. 118: 598 605.
13. Cronan, J. E., Jr.,, and C. O. Rock,. 1987. Biosynthesis of membrane lipids, p. 474 497. In F. C. Neidhart,, J. L. Ingrahan,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C.
14. Cronan, J. E., Jr.,, L. J. Weisberg,, and R. G. Allen. 1975. Regulation of membrane lipid synthesis in Escherichia coli: accumulation of free fatty acids of abnormal length during inhibition of phospholipid synthesis. J. Biol. Chem. 250: 5835 5840.
15. de Mendoza, D.,, and J. E. Cronan, Jr. 1983. Thermal regulation of membrane lipid fluidity in bacteria. Trends Biochem. Sci. 8: 49 52.
16. de Mendoza, D.,, and R. N. Farias,. 1988. Effect of fatty acid supplementation on membrane fluidity in microorganisms, p. 119 149. In R. C. Aloia,, C. C. Curtain,, and L. M. Gordon (ed.), Physiological Regulation of Membrane Fluidity, vol. 3. Alan R. Liss, Inc., New York.
17. de Mendoza, D.,, A. Klages-Ulrich,, and J. E. Cronan, Jr. 1983. Thermal regulation of membrane fluidity in Escherichia coli: effects of overproduction of 0-keto-acyl-acyl-carrier protein synthase I. J. Biol. Chem. 258: 2098 2101.
18. Dreher, R.,, K. Poralla,, and W. A. Konlng. 1976. Synthesis of ω-alicyclic fatty acids from cyclic precursors in Bacillus subtilis. J. Bacteriol. 127: 1136 1140.
19. Dunkley, E. A.,, Jr., S. Clejan,, and T. A. Krulwich. 1991. Mutants of Bacillus species isolated on the basis of protonophore resistance are deficient in fatty acid desaturase activity. J. Bacteriol. 173: 7750 7755.
20. Fujil, D. K.,, and A. J. Fulco. 1977. Biosynthesis of unsaturated fatty acids by Bacilli: hyperinduction and modulation of desaturase synthesis. J. Biol. Chem. 252: 3660 3670.
21. Fulco, A. J. 1969. The biosynthesis of unsaturated fatty acids by Bacilli. I. Temperature induction of the desaturation reaction. J. Biol. Chem. 244: 889 895.
22. Fulco, A. J. 1983. Fatty acid metabolism in bacteria. Prog. Lipid Res. 22: 133 160.
23. Garwln, J. L.,, and J. E. Cronan, Jr. 1980. Thermal modulation of fatty acid synthesis in Escherichia coli does not involve de novo synthesis. J. Bacteriol. 141: 1457 1459.
24. Grau, R.,, and D. de Mendoza. 1993. Ph.D. thesis. University of Rosario, Rosario, Argentina.
25. Grau, R.,, and D. de Mendoza. Regulation of the synthesis of unsaturated fatty acids by growth temperature in Bacillus subtilis: evidence that phospholipids are substrates of a cold-inducible fatty acid desaturation pathway. Mol. Microbiol., in press.
26. GuCfanti, A. A.,, S. Clejan,, L. H. Falk,, D. B. Hicks,, and T. A. Krulwich. 1987. Isolation and characterization of uncoupler resistant mutants of Bacillus subtilis. J. Bacteriol. 169: 4479 4485.
27. Holgrem, E. 1978. A mutant of Bacillus subtilis with temperature sensitive synthesis of fatty acids. FEMS Microbiol. Lett. 3: 327 329.
28. Jackowskl, S.,, C. M. Murphy,, J. E. Cronan, Jr.,, and C. O. Rock, 1989. Acetoacetyl-acyl carrier protein synthase: a target for the antibiotic thiolactomycin. J. Biol. Chem. 264: 7624 7629.
29. Jackowskl, S.,, and C. O. Rock. 1987. Acetoacetyl-acyl carrier protein synthase as potential regulator of fatty acid biosynthesis in bacteria. J. Biol. Chem. 262: 7927 7931.
30. Kaneda, T. 1963. Biosynthesis of branched-chain fatty acids. I. Isolation and identification of fatty acids from Bacillus subtilis (ATCC 7059). J. Biol. Chem. 238: 1222 1228.
31. Kaneda, T. 1967. Fatty acids in the genus Bacillus. I. Iso-and anteiso-fatty acids as characteristic constituents of lipids in 10 species. J. Bacteriol. 93: 894 903.
32. Kaneda, T. 1973. Biosynthesis of branched long-chain fatty acids from the related short-chain α-keto acid substrates by a cell free system of Bacillus subtilis. Can. J. Microbiol. 19: 87 96.
33. Kaneda, T. 1977. Fatty acids of the genus Bacillus: an example of branched-chain preference. Bacteriol. Rev. 41: 391 418.
34. Kaneda, T. 1991. Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol. Rev. 55: 288 302.
35. Kaneda, T.,, and E. J. Smith. 1980. Relationship of primer specificity of fatty acid de novo synthetase to fatty acid composition in ten species of bacteria and yeast. Can. J. Microbiol. 26: 893 898.
36. Krulwich, T. A.,, S. Clejan,, L. Falk,, and A. A. GuCfanti. 1987. Incorporation of specific exogenous fatty acids into membrane lipids modulates protonophore resistance in Bacillus subtilis. J. Bacteriol. 169: 4479 4485.
37. Krulwlch, T. A.,, P. G. Quish,, and A. A. Guffantl. 1990. Uncoupler-resistant mutants of bacteria. Microbiol. Rev. 54: 52 65.
38. Lennarz, W. J., 1970. Bacterial lipids, p. 210 270. In J. J. Wakil (ed.), Lipid Metabolism. Academic Press, Inc., New York.
39. Lombard!, F. J.,, and A. J. Fulco. 1980. Temperature-mediated hyperinduction of fatty acid desaturation in pre-existing and newly formed fatty acid synthesized endogenously in Bacillus megaterium. Biochim. Biophys. Acta 618: 359 363.
40. Lowe, P. N.,, J. A. Hodgson,, and R. N. Perham. 1983. Dual role of a single multienzyme complex in the oxidative decarboxylation of pyruvate and branched-chain 2-oxoacids in Bacillus subtilis. Biochem. J. 215: 133 140.
41. McElhaney, R. N. 1982. Effects of membrane lipids on transport and enzymic activities. Curr. Top. Membr. Transp. 17: 317 380.
42. Mclntyre, T. M.,, B. K. Chamberlain,, R. E. Webster,, and R. M. Bell. 1977. Mutants of Escherichia coli defective in membrane phospholipid synthesis. Effects of cessation and reinitiation of phospholipid synthesis on macromolecular synthesis and phospholipid turnover. J. Biol. Chem. 252: 4487 4493.
43. Mindlch, L. 1970. Membrane synthesis in Bacillus subtilis. I. Isolation and properties of strains bearing mutations in glycerol metabolism. J. Mol. Biol. 49: 415 432.
44. Mindlch, L. 1970. Membrane synthesis in Bacillus subtilis. II. Integration of membrane proteins in the absence of lipid synthesis. J. Mol. Biol. 49: 433 439.
45. Mindlch, L. 1971. Induction of Staphylococcus aureus lactose permease in the absence of glycerolipid synthesis. Proc. Natl. Acad. Sci. USA 68: 420 424.
46. Mindlch, L. 1972. Control of fatty acid synthesis in bacteria. J. Bacteriol. 110: 96 102.
47. Mindlch, L., 1975. Studies on bacterial membrane biogenesis using glycerol auxotrophs, p. 429 455. In A. Tzagolof (ed.), Membrane Biogenesis: Mitochondria, Chloroplasts and Bacteria. Plenum Press, New York.
48. Morbidoni, R.,, M. Baigori,, D. de Mendoza,, and J. E. Cronan, Jr. Unpublished results.
49. Naik, D. N.,, and T. Kaneda. 1974. Biosynthesis of branched long-chain fatty acids by species of Bacillus: relative activities of three α-keto acids substrates and factors affecting chain length. Can. J. Microbiol. 20:1701— 1708.
50. Namba, Y.,, K. Yoshizawa,, A. Ejima,, T. Hayashi,, and T. Kaneda. 1969. Coenzyme A and nicotinamide adenine dinucleotide-dependent branched chain α-keto acid dehydrogenase. I. Purification and properties of the enzyme from Bacillus subtilis. J. Biol. Chem. 244: 4437 4447.
51. Nunn, W. D.,, D. L. Kelley,, and N. Y. Stumfall. 1977. Regulation of fatty acid synthesis during glycerol starvation of glycerol auxotrophs of Escherichia coli. J. Bacteriol. 132: 526 531.
52. Oku, H.,, and T. Kaneda. 1988. Biosynthesis of branched-chain fatty acids in Bacillus subtilis. A decarboxylase is essential for branched-chain fatty acid synthetase. J. Biol. Chem. 263: 18386 18396.
53. Op den Kamp, J. A. F.,, I. Redai,, and L. L. M. van Deenen. 1969. Phospholipid composition of Bacillus subtilis. J. Bacteriol. 99: 298 303.
54. Platt, M. W.,, K. J. Miller,, W. S. Lane,, and E. P. Kennedy. 1990. Isolation and characterization of the constitutive acyl carrier protein from Rhizobium meliloti. J. Bacteriol. 172: 5440 5444.
55. Revill, W. P.,, and P. F. Leadlay. 1991. Cloning, characterization, and high-level expression in Escherichia coli of the Saccharopolyspora erythraea gene encoding an acyl carrier protein potentially involved in fatty acid biosynthesis. J. Bacteriol. 173: 4379 4385.
56. Rigomier, D.,, and B. Lubochinsky. 1974. Metabolisme des phospholipides chez des mutants asporogenes de Bacillus subtilis au cours de la croissance exponentialle. Ann. Microbiol. 125B: 295 303.
57. Rock, C. O.,, and S. Jackowskl. 1982. Regulation of phospholipid synthesis in Escherichia coli. Composition of the acyl-acyl carrier protein pool in vivo. J. Biol. Chem. 257: 10759 10765.
58. Rothman, J. E.,, and E. P. Kennedy. 1977. Asymmetrical distribution of phospholipids in the membrane of Bacillus megaterium. J. Mol. Biol. 110: 603 618.
59. Rothman, J. E.,, and E. P. Kennedy. 1977. Rapid trans-membrane movement of newly synthesized phospholipids during membrane assembly. Proc. Natl. Acad. Sci. USA 74: 1821 1825.
60. Russell, N. J. 1984. Mechanisms of thermal adaptation in bacteria: blueprints for survival. Trends Biochem. Sci. 9: 108 112.
61. Saito, K. 1960. Chromatographic studies on bacterial fatty acids. J. Biochem. 47: 699 719.
62. Scandella, C. J.,, and A. Kornberg. 1969. Biochemical studies of bacterial sporulation and germination. XV. Fatty acids in growth and sporulation of Bacillus megaterium. J. Bacteriol. 98: 82 86.
63. Silvius, J. R.,, and R. X. McElhaney. 1979. Effects of phospholipid acyl chain structure on physical properties. I. Isobranched phosphatidylcholines. Chem. Phys. Lipids 24: 287 296.
64. Vanden Boom, T.,, and J. E. Cronan, Jr. 1989. Genetics and regulation of bacterial lipid metabolism. Annu. Rev. Microbiol. 43: 317 343.
65. Wille, W.,, E. Eisenstand,, and K. Willecke. 1975. Inhibition of the de novo fatty acid biosynthesis by the antibiotic cerulenin in Bacillus subtilis: effect of citrate-Mg 2+ transport and synthesis of macromolecules. Antimicrob. Agents Chemother. 8: 231 237.
66. Willecke, K.,, and L. Mindlch. 1971. Induction of citrate transport in Bacillus subtilis during the absence of phospholipid synthesis. J. Bacteriol. 106: 514 518.
67. Willecke, K.,, and A. B. Pardee. 1971. Fatty acid requiring mutants of Bacillus subtilis defective in branched chain keto acid dehydrogenase. J. Biol. Chem. 246: 5264 5272.

Tables

Generic image for table
Table 1

Fatty acid composition of total membrane lipid extracts from

Citation: de Mendoza D, Grau R, Cronan, Jr. J. 1993. Biosynthesis and Function of Membrane Lipids, p 411-421. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch28

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error