Chapter 37 : DNA Repair Systems

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

DNA Repair Systems, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap37-1.gif /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap37-2.gif


has served as the principal model for investigations into DNA repair mechanisms. The DNA repair systems identified in this paradigm have also been discovered in most other organisms studied. This chapter attempts to look at these repair systems with respect to differentiation processes and developmental biology as studied in the gram-positive bacterium . Originally, DNA repair systems were considered integral parts of an organism's ability to survive the effects of environmental insults and metabolic processes. However, as the molecular characterization of these repair systems proceeded it became obvious that in addition to determining mutation frequency and cell survival, DNA repair systems also play important roles in viral activation, DNA replication, genetic recombination, metabolism, and cancer. In order to investigate systematically the interrelationship(s) between DNA repair systems and these other phenomena, an appropriate model system must be identified. These systems are generally linked in their expression and activity with one or more of the developmental states that have been identified for the bacterium. It is in the elucidation of this linkage that becomes a critical model for the understanding of how organisms respond at the molecular level to stressful situations. Similar characterizations of these repair systems in other gram-positive bacteria, especially among the extremely resistant bacteria, will determine whether or not represents a paradigm for gram-positive bacteria or for bacteria that have distinct developmental cycles.

Citation: Yasbin R, Cheo D, Bol D. 1993. DNA Repair Systems, p 529-537. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch37

Key Concept Ranking

Transcription Start Site
DNA Synthesis
Genetic Recombination
Nucleotide Excision Repair
Base Excision Repair
DNA Polymerase I
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Alonso, J. E.,, G. Luder,, and R. H. Tailor. 1991. Characterization of Bacillus subtilis recombinational pathways. J. Bacteriol. 173:39773980.
2. Bayles, K. W. 1991. Cloning of the Staphylococcus aureus recA gene and generation and characterization of a recA mutant. Plasmid 25:154161.
3.. Bibor, V.,, and W. G. Verly. 1978. Purification and properties of the endonuclease specific for apurinic sites of Bacillus stearothermophilus. J. Biol. Chem. 253:850855.
4. Bol, D. K. 1991. Bacillus subtilis responses and mechanisms of resistance to hydrogen peroxide. Ph.D. thesis. University of Maryland Baltimore County, Baltimore. 1992.
5. Bol, D. K.,, and R. E. Yasbin. 1990. Characterization of an inducible oxidative stress system in Bacillus subtilis. J. Bacteriol. 172:35033506.
6. Bol, D. K.,, and R. E. Yasbin. 1991. The isolation and identification of a vegetative catalase gene from Bacillus subtilis. Gene 109:3137.
7. Chen, Nt.-Y.,, J.-J. Zhang,, and H. Paulus. 1989. Chromosomal location of the Bacillus subtilis aspartokinase II gene and nucleotide sequence of the adjacent genes homologous to uvrC and trx of Escherichia coli. J. Gen. Microbiol. 135:29312940.
8. Cheo, D. L.,, K. W. Bayles,, and R. E. Yasbin. 1991. Cloning and characterization of DNA damage-inducible promoter regions from Bacillus subtilis. J. Bacteriol. 173:16961703.
9. Cheo, D. L.,, K. W. Bayles,, and R. E. Yasbin. 1992. Molecular characterization of regulatory elements controlling expression of the Bacillus subtilis recA+ gene. Biochimie 74:755762.
10. Cheo, D. L.,, K. W. Bayles,, and R. E. Yasbin. Elucidation of regulatory elements that control damage induction and competence-induction of the Bacillus subtilis SOS system. Submitted for publication.
11. Christman, M. F.,, R. W. Morgan,, F. S. Jacobson,, and B. N. Ames. 1985. Positive control of a regulon for defense against oxidative stress and some heat shock proteins in Salmonella typhimurium. Cell 41:753762.
12. Demple, B.,, J. Halbrook,, and S. Linn. 1983. Escherichia coli xth mutants are hypersensitive to hydrogen peroxide.J. Bacteriol. 153:10791082.
13. Demple, B.,, A. Johnson,, and D. Fung. 1986. Exonuclease III and endonuclease IV remove 3' blocks from DNA synthesis primers in H202-damaged E. coli. Proc. Natl. Acad. Sci. USA 83:77317735.
14. Dodson, L. A.,, and C. T. Hadden. 1980. Capacity for postreplication repair correlated with transducibility in Rec" mutants of Bacillus subtilis. J. Bacteriol. 144: 608615.
15. Donnellan, J. E., Jr.,, and R. B. Setlow. 1965. Thymine photoproducts but not thymine dimers are found in ultraviolet irradiated bacterial spores. Science 149: 308310.
16. Dowds, B. C. A.,, and J. A. Hoch. 1991. Regulation of the oxidative stress response by the hpr gene in Bacillus subtilis. . J. Gen. Microbiol. 137:11211125.
17. Dowds, B. C. A.,, P. Murphy,, D. J. McConnell,, and K. M. Devine. 1987. Relationship among oxidative stress, growth cycle, and sporulation in Bacillus subtilis. J. Bacteriol. 169:57715775.
18. Dubnau, D. 1991. Genetic competence in Bacillus subtilis. Microbiol. Rev. 55:395424.
19. Epstein, H. T.,, and I. Mahler. 1968. Mechanism of enhancement of SP82 transfection. J. Virol. 2:710715.
20. Evans, D. M.,, and B. E. B. Moseley. 1983. Roles of uvsC, uvsD, uvsE, and mtcA genes in the two pyrimidine dimer excision repair pathways of Deinococcus radiodurans. J. Bacteriol. 156:576583.
21. Fields, P. I.,, and R. E. Yasbin. 1980. Involvement of deoxyribonucleic acid polymerase III in W-reactivation in Bacillus subtilis. J. Bacteriol. 144:473475.
22. Fridovich, I. 1978. The biology of oxygen radicals. Science 201:875900.
23. Friedberg, E. C., 1981. Base excision repair of DNA, p. 7783. In E. Seeberg, and K. Kleppi (ed.), Chromosome Damage and Repair. Plenum Press, New York.
24. Friedberg, E. C. 1985. DNA Repair, p. 141211. W. H. Freeman and Co., New York.
25. Ganesan, A. K. 1974. Persistence of pyrimidine dimers during post-replication repair in ultraviolet light-irradiated Escherichia coli K-12. J. Mol. Biol. 87:102119.
26. Germaine, G. R.,, and W. G. Murrel. 1973. Effect of dipicolinic acid on the ultraviolet radiation resistance of Bacillus cereus spores. Photochem. Photobiol. 17:145153.
27. Goering, R. V. 1979. Mutants of Staphylococcus aureus deficient in recombinational repair. Improved isolation by selecting for mutants exhibiting concurrent sensitivity to ultraviolet radiation and N-methyl-N'-nitro-N-nitrosoguanidine. Mutat. Res. 60:279289.
28. Goering, R. V.,, and P. A. Pattee. 1971. Mutants of Staphylococcus aureus with increased sensitivity to ultraviolet radiation. J. Bacteriol. 106:157161.
29. Grossman, L.,, and A. T. Yeung. 1990. The UvrABC endonuclease system of Escherichia coli: a view from Baltimore. Mutat. Res. 236:213221.
30. Hadden, C. T. 1979. Gap-filling repair synthesis induced by ultraviolet light in a Bacillus subtilis Uvr-mutant. J. Bacteriol. 139:239246.
31. Hadden, C. T. 1979. Pyrimidine dimer excision in a Bacillus subtilis Uvr- mutant.J. Bacteriol. 139:247255.
32. Hadden, C. T.,, R. S. Foote,, and S. Mitra. 1983. Adaptive response of Bacillus subtilis to N-methyl-N-nitro-N-nitrosoguanidine. J. Bacteriol. 153:756762.
33. Hagensee, M.,, and R. E. Moses. 1989. Multiple pathways for repair of H2O2-induced damage in Escherichia coli. J. Bacteriol. 171:991995.
34. Hanawalt, P. C. 1989. Concepts and models for DNA repair: from E. coli to mammalian cells. Environ. Mol. Mutagen. 14:9098.
35. Harris, W. J.,, and G. C. Barr. 1971. Mechanism of transformation in Bacillus subtilis. Mol. Gen. Genet. 113:316330.
36. Inoue, M.,, H. Oshima,, T. Okubo,, and S. Mitsuhashi. 1972. Isolation of the rec mutants in Staphylococcus aureus. J. Bacteriol. 112:11691176.
37. Inoue, T.,, and T. Kada. 1978. Purification and properties of a Bacillus subtilis endonuclease specific for apurinic sites in DNA. J. Biol. Chem. 253:85598563.
38. Juan, J.-Y.,, S. N. Keeney,, and E. M. Gregory. 1991. Reconstitution of the Deinococcus radiodurans aposuperoxide dismutase. Arch. Biochem. Biophys. 286:257263.
39. Kaasen, I.,, P. Falkenberg,, O. B. Styrvold,, and A. R. Strem. 1992. Molecular cloning and physical mapping of the otsBA genes, which encode the osmoregulatory trehalose pathway of Escherichia coli: evidence that transcription is activated by KatF (AppR). J. Bacteriol. 174:889898.
40. Kallio, P. T.,, J. E. Fagelson,, J. A. Hoch,, and M. A. Strauch. 1991. The transition state regulator Hpr of Bacillus subtilis is a DNA-binding protein. J. Biol. Chem. 266:1341113417.
41. Kelner, A. 1949. Effect of visible light on the recovery of Streptomyces griseus conidia from ultraviolet irradiation injury. Proc. Natl. Acad. Sci. USA 35:7379.
42. Kushner, S. R., 1987. DNA repair, p. 10441053. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology, Washington, D.C..
43. Lindahl, T. 1979. DNA glycosylases, endonucleases, endonucleases for apurinic/apyrimidinic sites, and base excision repair. Prog. Nucleic Acids Res. Mol. Biol. 22: 135192.
44. Lindahl, T. 1982. DNA repair enzymes. Annu. Rev. Biochem. 51:6187.
45. Lindahl, T.,, B. Sedgwick,, M. Sekiguchi,, and Y. Nakabeppu. 1988. Regulation and expression of the adaptive response to alkylating agents. Annu. Rev. Biochem. 57:133157.
46. Little, J. W.,, and D. W. Mount. 1982. The SOS regulatory system of Escherichia coli. Cell 29:1122.
47. Loewen, P. C.,, J. Switala,, and B. L. Triggs-Rlane. 1985. Catalases HPI and HPII in E. coli are induced independently. Arch. Biochem. Biophys. 243:144149.
48. Love, P. E.,, M. J. Lyle,, and R. E. Yasbin. 1985. DNA damage inducible (DIN) loci are transcriptionally activated in competent Bacillus subtilis. Proc. Natl. Acad. Sci. USA 82:62016205.
49. Love, P. E.,, and R. E. Yasbin. 1984. Genetic characterization of the inducible "SOS-like" system of Bacillus subtilis. J. Bacteriol. 160:910920.
50. Lovett, C. M., Jr.,, P. E. Love,, and R. E. Yasbin. 1989. Competence-specific induction of the Bacillus subtilis RecA protein analog: evidence for dual regulation of a recombination protein. J Bacteriol. 171:23182322.
51. Lovett, C. M., Jr.,, and J. W. Roberts. 1985. Purification of a RecA protein analogue from Bacillus subtilis. J. Biol. Chem. 260:33053313.
52. Malvy, C.,, J. Pierre,, M. Lefrancois,, and J. Markovits. 1990. Low concentrations of acridine dimers inhibit Micrococcus AP endonuclease through interaction with apurinic sites in DNA. Chem-Biol. Interact. 73:249260.
53. Marrero, R.,, and R. E. Yasbin. 1988. Cloning of the Bacillus subtilis recE+ gene and functional expression of recE+ in B. subtilis. J. Bacteriol. 170:335344.
54. Mason, J. M.,, and P. Setlow. 1986. Essential role of small acid-soluble spore proteins in resistance of Bacillus subtilis spores to UV light. J. Bacteriol. 167:174178.
55. Masters, C. I.,, B. E. B. Moseley,, and K. W. Minton. 1991. AP endonuclease and uracil DNA glycosylase activities in Deinococcus radiodurans. Mutat. Res. 254: 263272.
56. McAllister, W. T.,, and D. M. Green. 1972. Bacteriophage SP82G inhibition of intracellular deoxyribonucleic acid inactivation process of Bacillus subtilis. J. Virol. 10:5159.
57. McCann, M. P.,, J. P. Kidwell,, and A. Matin. 1991. The putative sigma factor KatF has a central role in development of starvation-mediated general resistance in Escherichia coli. J. Bacteriol. 173:41884194.
58. Mohr, S. C.,, N. V. H. A. Sokolov,, C. He,, and P. Setlow. 1991. Binding of small acid-soluble spore proteins from Bacillus subtilis changes the conformation of DNA from B to A. Proc. Natl. Acad. Sci. USA 88:7781.
59. Morohoshi, F.,, K. Hayashi,, and N. Munakata. 1991. Molecular analysis of Bacillus subtilis ada mutants deficient in the adaptive response to simple alkylating agents. J. Bacteriol. 173:78347840.
60. Morohoshi, F.,, and X. Munakata. 1986. Two classes of Bacillus subtilus mutants deficient in the adaptive response to simple alkylating agents. Mol. Gen. Genet. 202:200206.
61. Morohoshi, F.,, and N. Munakata. 1987. Multiple species of Bacillus subtilis DNA alkyltransferase involved in the adaptive response to simple alkylating agents. J. Bacteriol. 169:587592.
62. Moseley, B. E. B. 1983. Photobiology and radiobiology of Micrococcus (Deinococcus) radiodurans. Photochem. Photobiol. Rev. 7:223274.
63. Munakata, N. 1974. Ultraviolet sensitivity of Bacillus subtilis spores upon germination and outgrowth. J. Bacteriol. 120:5965.
64. Munakata, N. 1977. Mapping of the genes controlling excision repair of pyrimidine photoproducts in Bacillus subtilis. Mol. Gen. Genet. 156:4954.
65. Munakata, N.,, and C. S. Rupert. 1972. Genetically controlled removal of "spore photoproduct" from deoxyribonucleic acid of ultraviolet-irradiated Bacillus subtilis spores. J. Bacteriol. 111:192198.
66. Munakata, N.,, and C. S. Rupert. 1974. Dark repair of DNA containing "spore photoproduct" in Bacillus subtilis. Mol. Gen. Genet. 130:239250.
67. Munakata, N.,, and C. S. Rupert. 1975. Effects of DNA-polymerase-defective and recombination-deficient mutations on the ultraviolet sensitivity of Bacillus subtilis spores. Mutat. Res. 27:157169.
68. Nakayama, H.,, S. Shiota,, and K. Umezu. 1992. UV endonuclease-mediated enhancement of UV survival in Micrococcus luteus: evidence revealed by deficiency in the Uvr homolog. Mutat. Res. 273:4348.
69. Nicholson, W. Personal communication.
70. Nicholson, W. L.,, B. Setlow,, and P. Setlow. 1990. Binding of DNA in vitro by a small, acid-soluble spore protein and its effect on DNA topology. J. Bacteriol. 172:69006906.
71. Nicholson, W. L.,, B. Setlow,, and P. Setlow. 1991. Ultraviolet irradiation of DNA complexed with alpha/ beta-type small, acid-soluble proteins from spores of Bacillus or Clostridium species makes spore photoproduct but not thymine dimers. Proc. Natl. Acad. Sci. USA 88:82888292.
72. Pierre, J.,, and J. Laval. 1980. Micrococcus luteus endonucleases for apurinic/apyrimidinic sites in deoxyribonucleic acid. I. Purification and general properties. Biochemistry 19:50185024.
73. Radany, E. H.,, G. Malanoski,, N. Ambulos,, E. C. Friedberg,, and R. E. Yasbin. 1988. Transfection enhancement of bacteriophage DNA may reflect a novel repair pathway for UV-irradiated DNA in Bacillus subtilis. J. Cell. Biochem. (Suppl.) 12A:323.
74. Radman, M., 1974. Phenomenology of an inducible mutagenic DNA repair pathway in Escherichia coli: SOS repair hypothesis, p. 128142. In S. Prakash,, F. Sherman,, M. Miller,, C. Lawrence,, and H. W. Tabor (ed.), Molecular and Environmental Aspects of Mutagenesis. Charles C. Thomas, Publisher, Springfield, Ill..
75. Raymond-Denise, A.,, and N. Guillen. 1991. Identification of dinR, a DNA damage-inducible regulator gene of Bacillus subtilis. J. Bacteriol. 173:70847091.
76. Richter, H. E.,, and P. C. Loewen. 1981. Induction of catalase in E. coli by ascorbic acid involves hydrogen peroxide. Biochem. Biophys. Res. Commun. 100:10391046.
77. Roca, A. I.,, and M. M. Cox. 1990. The RecA protein: structure and function. Crit. Rev. Biochem. 25:415456.
78. Rupp, W. D.,, and P. Howard-Flanders. 1968. Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J. Mol. Biol. 31:291304.
79. Sancar, A.,, K. A. Franklin,, and G. B. Sancar. 1984. Escherichia coli photolyase stimulates Uvr ABC excision nuclease in vitro. Proc. Natl. Acad. Sci. USA 81:73977401.
80. Sancar, A.,, and W. D. Rupp. 1983. A novel repair enzyme: UVRABC excision nuclease of Escherichia coli cuts a DNA strand on both sides of the damaged region. Cell 33:249260.
81. Schellhorn, H. E.,, and V. L. Stones. 1992. Regulation of katF and katE in Escherichia coli K-12 by weak acids. J. Bacteriol. 174:47694776.
82. Setlow, B.,, and P. Setlow. 1987. Thymine-containing dimers as well as spore photoproducts are found in ultraviolet-irradiated Bacillus subtilis spores that lack small, acid-soluble proteins. Proc. Natl. Acad. Sci. USA 84:421423.
83. Setlow, P. 1988. Small acid-soluble, spore proteins of Bacillus species: structure, synthesis, genetics, function and degradation. Annu. Rev. Microbiol. 42:319338.
84. Setlow, R. B.,, P. A. Swenson,, and W. L. Carrier. 1963. Thymine dimers and inhibition of DNA synthesis by ultraviolet irradiation of cells. Science 142:14641466.
85. Shevell, D. E.,, B. M. Friedman,, and G. C. Walker. 1990. Resistance to alkylation damage in Escherichia coli: role of the Ada protein in induction of the adaptive response. Mutat. Res. 223:5372.
86. Shuster, R. C. 1967. Fate of thymine-containing dimers in the deoxyribonucleic acid of ultraviolet-irradiated Bacillus subtilis. J. Bacteriol. 93:811815.
87. Sicard, N.,, and A. M. Estevenon. 1990. Excision-repair capacity in Streptococcus pneumoniae: cloning and expression of a uvr-like gene. Mutat. Res. 235:195201.
88. Sicard, N.,, J. Oreglia,, and A.-M. Estevenon. 1992. Structure of the gene complementing uvr-402 in Streptococcus pneumoniae: homology with Escherichia coli uvrB and the homologous gene in Micrococcus luteus. J. Bacteriol. 174:24122415.
89. Smith, M. D.,, C. I. Masters,, and B. E. B. Moseley,. 1992. Molecular biology of radiation-resistant bacteria, p. 258280. In R. A. Herbert, and R. J. Sharp (ed.). Molecular Biology and Biotechnology of Extremophiles. Blackie & Son Limited, Glasgow.
90. Stafford, R. S.,, and J. E. Donnellan, Jr. 1968. Photochemical evidence for conformation changes in DNA during germination of bacterial spores. Proc. Natl. Acad. Set. USA 59:822828.
91. Tartaglia, L. A.,, G. Store,, and B. N. Ames. 1989. Identification and molecular analysis of oxyR-regulated promoters important for the bacterial adaptation to oxidative stress. J. Mol. Biol. 209:709719.
92. van Houten, B. 1990. Nucleotide excision repair in Escherichia coli. Microbiol. Rev. 54:1851.
93. Varghese, A. J. 1970. 5-Thyminyl-5,6-dihydrothymine from DNA irradiated with ultraviolet light. Biochem. Biophys. Res. Commun. 38:484490.
94. Visse, R.,, M. de Ruijter,, and J. Brouwer. 1991. Uvr excision repair protein complex of Escherichia coli binds to the convex side of a cisplatin-induced kink in the DNA. J. Biol. Chem. 266:76097617.
95. Walker, G. C. 1984. Mutagenic and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol. Rev. 48:6093.
96. Walkup, L. K. B.,, and T. Kogoma. 1989. Escherichia coli proteins inducible by oxidative stress mediated by the superoxide radical. J. Bacteriol. 171:14761484.
97. Wallace, S. S. 1988. AP endonucleases and DNA glycosylases that recognize oxidative DNA damage. Environ. Mol. Mutagen. 12:431477.
98. Wang, T.-C. V.,, and C. S. Rupert. 1977. Transitory germinative excision repair in Bacillus subtilis. J. Bacteriol. 129:13131319.
99. Witkin, E. M. 1976. Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriol. Rev. 40:869907.
100. Yagi, Y.,, and D. B. Clewell. 1980. Recombination-deficient mutant of Streptococcus faecalis. J. Bacteriol. 143:966970.
101. Yasbin, R. E. 1977. DNA repair in Bacillus subtilis. II. Activation of the inducible system in competent bacteria. Mol. Gen. Genet. 153:219225.
102. Yasbin, R. E., 1985. DNA repair in Bacillus subtilis, p. 3352. In D. Dubnau (ed.), Molecular Biology of the Bacilli, vol. II. Academic Press, Inc., New York.
103. Yasbin, R. E.,, D. L. Cheo,, and K. W. Bayies. 1992. Inducible DNA repair and differentiation in Bacillus subtilis: interactions between global regulons. Mol. Microbiol. 6:12631270.
104. Yasbin, R. E.,, P. I. Fields,, and B. J. Andersen. 1980. Properties of Bacillus subtilis 168 derivatives freed of their natural prophages. Gene 12:155159.
105. Yasbin, R. E.,, P. Love,, J. Jackson,, and C. M. Lovett, Jr., 1988. Evolutionary divergence of the SOS-like (SOB) system of Bacillus subtilis, p. 485490. In E. C. Friedberg, and P. Hanawalt (ed.), Mechanisms and Consequences of DNA Damage Processing. Alan R. Liss, Inc., New York.
106. Yasbin, R. E.,, and R. Miehl. 1980. Deoxyribonucleic acid repair in Bacillus subtilis: development of competent cells into a tester for carcinogens. Appl. Environ. Microbiol. 39:854858.
107. Yasbin, R. E.,, M. Stranathan,, and K. W. Bayies. 1991. The : recE(A)+ : gene of : B. subtilis : and its gene product: further characterization of this universal protein. Biochimie 73:245250.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error