1887

Chapter 38 : Restriction/Modification and Methylation Systems in Bacillus subtilis, Related Species, and Their Phages

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Restriction/Modification and Methylation Systems in Bacillus subtilis, Related Species, and Their Phages, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap38-1.gif /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap38-2.gif

Abstract:

Several restriction/modification (R/M) systems have been identified in and related bacteria and described in this chapter. Accepting the view that R/M systems have evolved to defend bacteria effectively against attack by bacterial viruses, the chapter discusses the question of what mechanisms bacteriophages have developed to overcome barriers provided by host R/M systems. In this review, the authors follow the convention of Smith and Nathans in describing R/M systems. They propose that for , the gene descriptions as used for be adopted. The interactions of bacteriophages and their hosts, analyzed according to the categories of bacterial R/M systems and the mechanisms that bacteriophages have evolved to overcome restriction, represent an interesting case of coevolution of two competing organisms. The chapter summarizes the effects of R/M on various DNA transport processes and provides information on the substrate nature of incoming DNA, the requirement for proficiency of the recipient cell, and the number of DNA molecules required for the biological process under study in a table.

Citation: Trautner T, Noyer-Weidner M. 1993. Restriction/Modification and Methylation Systems in Bacillus subtilis, Related Species, and Their Phages, p 539-552. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch38

Key Concept Ranking

DNA Synthesis
0.55026937
Chromosomal DNA
0.46921134
Horizontal Gene Transfer
0.40825823
0.55026937
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Genetic map of 168 (adapted from Piggot et al. [74]). Outside circle shows several physiological markers as reference. Inner circle shows positions of loci and attachment sites of MTase-encoding phages (the attachment site of phage H2, originally isolated from has been determined in lysogens of this phage [121]; the attachment sites of phages 11 and 11 have not yet been determined). The inner circle also shows the position of the locus, which, in interplay with the locus, determines nonpermissiveness of 168 for some phages.

Citation: Trautner T, Noyer-Weidner M. 1993. Restriction/Modification and Methylation Systems in Bacillus subtilis, Related Species, and Their Phages, p 539-552. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch38
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Building plan of C-5 MTases. The primary sequence of a typical C-5 MTase is shown as a double line. Four conserved elements (CEs I to IV) identifiable in all C-5 MTases ( ) are indicated as shaded boxes. CEs I and II contain the amino acid motifs F-X-G-X-G and P-C-X-X-X-S, thought to be involved in adenosylmethionine binding and methyl group transfer. The CEs are flanked and spaced by regions variable in size (indicated by tattered ends and dotted lines, respectively) and amino acid composition. TRDs have been allocated to the variable region separating CEs II and III.

Citation: Trautner T, Noyer-Weidner M. 1993. Restriction/Modification and Methylation Systems in Bacillus subtilis, Related Species, and Their Phages, p 539-552. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch38
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818388.chap38
1. Arwert, F.,, and L. Rutberg. 1974. Restriction and modification in Bacillus subtilis. Induction of a modifying activity in Bacillus subtilis 168. Mol. Gen. Genet. 133: 175 177.
2. Arwert, F.,, and G. Venema. 1973. Transformation in Bacillus subtilis. Fate of newly introduced transforming DNA. Mol. Gen. Genet. 123: 185 198.
3. Bachmann, B. J., 1987. Linkage map of Escherichia coli K-12, p. 807 876. In F. C. Neidhardt,, L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 2. American Society for Microbiology, Washington, D.C.
4. Balganesh, T. S.,, L. Reiners,, R. Lauster,, M. Noyer-Weidner,, K. Wilke,, and T. A. Trautner. 1987. Construction and use of chimeric SPR/ φ3T DNA methyltransferases in the definition of sequence recognizing enzyme regions. EMBO J. 6: 3543 3549.
5. Behrens, B.,, M. Noyer-Weidner,, B. Pawlek,, R. Lauster,, T. S. Balganesh,, and T. A. Trautner. 1987. Organization of multispecific DNA methyltransferases encoded by temperate Bacillus subtilh phages. EMBO J. 6: 1137 1142.
6. Bensi, G.,, A. Iglesias,, U. Canosi,, and T. A. Trautner. 1981. Plasmid transformation in Bacillus subtilis. The significance of partial homology between plasmid and recipient cell DNAs. Mol. Gen. Genet. 184: 400 404.
7. Berkner, K. L.,, and W. R. Folk. 1977. EcoRI cleavage and methylation of DNAs containing modified pyrimidines in the recognition sequence. J. Biol. Chem. 252: 3185 3193.
8. Berkner, K. L.,, and W. R. Folk. 1979. The effects of substituted pyrimidines in DNAs on cleavage by sequence-specific endonucleases. J. Biol. Chem. 254: 2551 2560.
9. Bickle, T. A., 1987. DNA restriction and modification systems, p. 692 696. In F. C. Neidhardt,, L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhi-murium: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C.
10. Bron, S.,, L. Janniere,, and S. D. Ehrlich. 1988. Restriction and modification in Bacillus subtilis Marburg 168: target sites and effects on plasmid transformation. Mol. Gen. Genet. 211: 186 189.
11. Bron, S.,, E. Luxen,, and T. A. Trautner. 1980. Restriction and modification in B. subtilis. The role of homology between donor and recipient DNA in transformation and transfection. Mol. Gen. Genet. 179: 111 117.
12. Bron, S.,, E. Luxen,, and G. Venema. 1983. Resistance of bacteriophage HI to restriction and modification by Bacillus subtilis R. J. Virol. 46: 703 708.
13. Bron, S.,, and K. Murray. 1975. Restriction and modification in B. subtilis. Nucleotide sequence recognized by restriction endonuclease R. BsuR from strain R. Mol. Gen. Genet. 143: 25 33.
14. Bron, S.,, K. Murray,, and T. A. Trautner. 1975. Restriction and modification in B. subtilis. Purification and general properties of a restriction endonuclease from strain R. Mol. Gen. Genet. 143: 13 23.
15. Brooks, J. E.,, J. S. Benner,, D. F. Heiter,, K. S. Silber,, L. A. Sznyter,, T. Jager-Quinton,, L. S. Moran,, B. E. Slatko,, G. G. Wilson,, and D. O. Nwankwo. 1989. Cloning the BamHI restriction modification system. Nucleic Acids Res. 17: 979 997.
16. Brooks, J. E.,, P. D. Nathan,, D. Landry,, L. A. Sznyter,, P. Waite-Rees,, C. L. Ives,, L. S. Moran,, B. E. Slatko,, and J. S. Benner. 1991. Characterization of the cloned BamHI restriction modification system: its nucleotide sequence, properties of the methylase, and expression in heterologous hosts. Nucleic Acids Res. 19: 841 850.
17. Buhk, H.-J.,, B. Behrens,, R. Tailor,, K. Wilke,, J. J. Prada,, U. Gunthert,, M. Noyer-Weidner,, S. Jentsch,, and T. A. Trautner. 1984. Restriction and modification in Bacillus subtilis: nucleotide sequence, functional organization and product of the DNA methyltransferase gene of bacteriophage SPR. Gene 29: 51 61.
18. Canosi, U.,, A. Iglesias,, and T. A. Trautner. 1981. Plasmid transformation in Bacillus subtilis: effects of insertion of Bacillus subtilis DNA into plasmid pC194. Mol. Gen. Genet. 181: 434 440.
19. Canosi, U.,, G. Lüder,, T. A. Trautner,, and S. Bron,. 1981. Restriction and modification in B. subtilis: effects on plasmid transformation, p. 179 187. In M. Polsinelli, and G. Mazza (ed.), Proceedings of the 5th European Meeting on Bacterial Transformation and Transfection. Cotswold Press, Oxford.
20. Canosi, U.,, G. Morelli,, and T. A. Trautner. 1978. The relationship between molecular structure and transformation efficiency of some S. aureus plasmids isolated from B. subtilis. Mol. Gen. Genet. 166: 259 267.
21. Card, C. O.,, G. G. Wilson,, K. Weule,, J. Hasapes,, A. Kiss,, and R. J. Roberts. 1990. Cloning and characterization of the HpaII methylase gene. Nucleic Acids Res. 18: 1377 1383.
22. Chandrasegaran, S.,, and H. O. Smith,. 1987. Amino acid sequence homologies among twenty-five restriction endonucleases and methylases, p. 149 156. In R. H. Sarma, and M. H. Sarma (ed.), Structure and Expression. Adenine Press, Guilderland, N.Y.
23. Connaughton, J. F.,, W. D. Kaloss,, P. G. Vanek,, G. A. Nardone,, and J. G. Chirikjian. 1990. The complete sequence of the Bacillus amyloliquefaciens proviral H2, BamHl methylase gene. Nucleic Acids Res. 18: 4002.
24. Contente, S.,, and D. Dubnau. 1979. Marker rescue transformation by linear plasmid DNA in Bacillus subtilis. Plasmid 2: 555 571.
25. Cregg, J. M.,, and C. R. Steward. 1978. EcoRI cleavage of DNA from Bacillus subtilis phage SP01. Virology 85: 601 605.
26. Davidoff-Abelson, R.,, and D. Dubnau. 1973. Conditions affecting the isolation from transformed cells of B. subtilis of high-molecular-weight single-stranded DNA of donor origin. J. Bacteriol. 116: 146 153.
27. deVos, W.,, G. Venema,, U. Canosi,, and T. A. Trautner. 1981. Plasmid transformation in Bacillus subtilis: fate of plasmid DNA. Mol. Gen. Genet. 181: 424 433.
28. Fucik, V.,, H. Grunnerova,, and S. Zadrazil. 1982. Restriction and modification in Bacillus subtilis 168. Regulation of hsr (nonB) expression in spoA mutants and effects on permissiveness of φ15 and φ105 phages. Mol. Gen. Genet. 186: 118 121.
29. Gaido, M. L.,, C. R. Prostko,, and J. S. Strobl. 1988. Isolation and characterization of BsuE methyltrans-ferase, a CGCG specific DNA methyltransferase from Bacillus subtilis. J. Biol. Chem. 263: 4832 4836.
29a. Ganesan, A. T. Personal communication.
30. Ganesan, A. T. 1979. Genetic recombination during transformation in Bacillus subtilis: appearance of a deoxyribonucleic acid methylase. J. Bacteriol. 139: 270 279.
31. Guha, S. 1985. Determination of DNA sequences containing methylcytosine in Bacillus subtilis Marburg. J. Bacteriol. 163: 573 579.
32. Günthert, U.,, and L. Reiners. 1987. Bacillus subtilis phage SPR codes for a DNA methyltransferase with triple sequence specificity. Nucleic Acids Res. 15: 3689 3702.
33. Günthert, U.,, K. Storm,, and R. Bald. 1978. Restriction and modification in Bacillus subtilis. Localization of the methylated nucleotide in the BsuRI recognition sequence. Eur. J. Biochem. 90: 581 583.
34. Günthert, U.,, J. Stutz,, and G. Klotz. 1975. Restriction and modification in B. subtilis. Mol. Gen. Genet. 142: 185 191.
35. Gwinn, D. D.,, and W. D. Lawton. 1968. Alteration of host specificity in Bacillus subtilis. Bacteriol. Rev. 32: 297 301.
36. Hattman, S. 1978. Sequence specificity of the wild-type ( dam +) and mutant ( dam h) forms of bacteriophage T2 DNA adenine methylase. J. Mol. Biol. 119: 361 376.
37. Heitman, J.,, and P. Model. 1987. Site-specific methylases induce the SOS DNA repair response in Escherichia coli. J. Bacteriol. 169: 3243 3250.
38. Hemphill, H. E.,, I. Gage,, S. A. Zahler,, and R. Z. Korman. 1980. Prophage-mediated production of a bacteriocinlike substance by SP β lysogens of Bacillus subtilis. Can. J. Microbiol. 26: 1328 1333.
39. Hemphill, H. E.,, and H. R. Whiteley. 1975. Bacteriophages of Bacillus subtilis. Bacteriol. Rev. 39: 257 315.
40. Iglesias, A.,, G. Bensi,, U. Canosi,, and T. A. Trautner. 1981. Plasmid transformation in Bacillus subtilis: alterations introduced into the recipient-homologous DNA of hybrid plasmids can be corrected in transformation. Mol. Gen. Genet. 184: 405 409.
41. Ikawa, S.,, T. Shibata,, and T. Ando. 1979. Recognition sequence of endonuclease R .BamNx from Bacillus amyloliquefaciens N. Agric. Biol. Chem. 43: 873 875.
42. Ikawa, S.,, T. Shibata,, T. Ando,, and H. Saito. 1980. Genetic studies on site-specific endodeoxyribonucleases in B. subtilis: multiple modification and restriction systems in transformants of Bacillus subtilis 168. Mol. Gen. Genet. 177: 359 368.
43. Ikawa, S.,, T. Shibata,, K. Matsumoto,, T. Iijima,, H. Saito,, and T. Ando. 1981. Chromosomal loci of genes controlling site-specific restriction endonucleases of Bacillus subtilis. Mol. Gen. Genet. 183: 1 6.
44. Ingrosso, D.,, A. V. Fowler,, J. Bleibaum,, and S. Clarke. 1989. Sequence of the D-aspartyl/L-isoaspartyl protein methyltransferase from human erythrocytes. J. Biol. Chem. 264: 20131 20139.
45. Ito, J.,, and R. J. Roberts. 1979. Unusual base sequence arrangements in phage φ29 DNA. Gene 5: 1 7.
46. Ito, J.,, and J. Spizlzen. 1971. Abortive infection of sporulating Bacillus subtilis 168 by φ2 bacteriophage. J. Virol. 7: 515 523.
47. Jentsch, S. 1983. Restriction and modification in Bacillus subtilis: sequence specificities of restriction/modification systems BsuM , BsuE, and BsuF. J. Bacteriol. 156: 800 808.
48. Kapfer, W.,, J. Walter,, and T. A. Trautner. 1991. Cloning, characterization and evolution of the BsuFl restriction endonuclease gene of Bacillus subtilis and purification of the enzyme. Nucleic Acids Res. 19: 6457 6463.
49. Kaszubska, W.,, C. Aiken,, C. D. O'Connor,, and R. I. Gumport. 1989. Purification, cloning and sequence analysis of Rsrl DNA methyltransferase: lack of homology between two enzymes, Rsrl and EcoRI, that methylate the same nucleotide in identical recognition sequences. Nucleic Acids Res. 17: 10403 10425.
50. Kiss, A.,, and F. Baldauf. 1983. Molecular cloning and expression in Escherichia coli of two modification methylase genes of Bacillus subtilis. Gene 21: 111 119.
51. Kiss, A.,, G. Posfai,, C. C. Keller,, P. Venetianer,, and R. J. Roberts. 1985. Nucleotide sequence of the BsuRI restriction-modification system. Nucleic Acids Res. 13: 6403 6421.
51a. Klimasauskas, S.,, J. L. Nelson,, and R. J. Roberts. 1991. The sequence specificity domain of cytosine-C5 methylases. Nucleic Acids Res. 22: 6183 6190.
52. Klimasauskas, S.,, A. Timinskas,, S. Menkevicius,, D. Butkiene,, V. Butkus,, and A. Janulaitis. 1989. Sequence motifs characteristic of DNA[cytosine-N4]methyltransferases: similarity to adenine and cytosine-C5 DNA-methylases. Nucleic Acids Res. 17: 9823 9832.
53. Koncz, C.,, A. Kiss,, and P. Venetianer. 1978. Biochemical characterization of the restriction-modification system of Bacillus sphaericus. Eur. J. Biochem. 89: 523 529.
54. Krüger, D. H.,, and T. A. Bickle. 1983. Bacteriophage survival: multiple mechanisms for avoiding the deoxyribonucleic acid restriction systems of their hosts. Microbiol. Rev. 47: 345 360.
55. Kupper, D.,, J.-G. Zhou,, P. Venetianer,, and A. Kiss. 1989. Cloning and structure of the Bepl modification methylase. Nucleic Acids Res. 17: 1077 1088.
56. Lange, C.,, A. Jugel,, J. Walter,, M. Noyer-Weidner,, and T. A. Trautner. 1991. 'Pseudo' domains in phage-encoded DNA methyltransferases. Nature (London) 352: 645 648.
57. Lange, C.,, M. Noyer-Weidner,, T. A. Trautner,, M. Weiner,, and S. A. Zahler. 1991. M.H2I, a multispecific 5C-DNA methyltransferase encoded by Bacillus amyloliquefaciens phage H2. Gene 100: 213 218.
58. Lauster, R. 1989. Evolution of type II DNA methyltransferases. A gene duplication model. J. Mol. Biol. 206: 313 321.
59. Lauster, R.,, A. Kriebardis,, and W. Guschlbauer. 1987. The GATATC-modification enzyme EcoRV is closely related to the GATC-recognizing methyltransferases DpnII and dam from E. coli and phage T 4. FEBS Lett. 220: 167 176.
60. Lauster, R.,, T. A. Trautner,, and M. Noyer-Weidner. 1989. Cytosine-specific type II DNA methyltransferases. A conserved enzyme core with variable target-recognizing domains. J. Mol. Biol. 206: 305 312.
61. Lawrie, J. M.,, J. S. Downard,, and H. R. Whiteley. 1978. Bacillus subtilis bacteriophages SP82, SPOl and φe: a comparison of DNAs and peptides synthesized during infection. J. Virol. 27: 725 737.
62. Maekawa, Y.,, H. Yasukawa,, and B. Kawakami. 1990. Cloning and nucleotide sequences of the BanIrestriction-modification genes in Bacillus aneurinolyticus. J. Biochem. 107: 645 649.
63. Makino, O.,, J. Kawamura,, H. Saito,, and Y. Ikada. 1979. Inactivation of restriction endonuclease BamNx after infection with phage φNR2. Nature (London) 277: 64 66.
64. Makino, O.,, H. Saito,, and T. Ando. 1980. Bacillus subtilis-phage φ1 overcomes host-controlled restriction by producing BamNx inhibitor protein. Mol. Gen. Genet. 179: 463 468.
65. Marinus, M. G., 1984. Methylation of prokaryotic DNA, p. 81 109. In A. Razin,, H. Cedar,, and A. D. Riggs (ed.), DNA Methylation. Biochemistry and Biological Significance. Springer-Verlag, New York.
66. McClelland, M.,, and M. Nelson. 1988. The effect of site specific DNA modification methyltransferases—a review. Gene (Amsterdam) 74: 291 304.
67. Messer, W.,, and M. Noyer-Weidner. 1988. Timing and targeting: the biological functions of Dam methylation in E. coli. Cell 54: 735 737.
68. Nathan, P. D.,, and J. E. Brooks. 1988. Characterization of clones of the BamHI methyltransferase gene. Gene 74: 35 36.
69. Noyer-Weidner, M.,, R. Diaz,, and L. Reiners. 1986. Cytosine-specific DNA modification interferes with plasmid establishment in Escherichia coli K12: involvement of rg/B. Mol. Gen. Genet. 205: 469 475.
70. Noyer-Weidner, M.,, S. Jentsch,, J. Kupsch,, M. Bergbauer,, and T. A. Trautner. 1985. DNA methyltransferase genes of Bacillus subtilis phages: structural relatedness and gene expression. Gene 35: 143 150.
71. Noyer-Weidner, M.,, S. Jentsch,, B. Pawlek,, U. Gunthert,, and T. A. Trautner. 1983. Restriction and modification in Bacillus subtilis: DNA methylation potential of the related bacteriophages Z, SPR, SP β, φ3T and q 11. J. Virol. 46: 446 453.
72. Noyer-Weidner, M.,, and T. A. Trautner,. 1993. DNA methylation in prokaryotes, p. 39 108. In J. D. Jost, and H. P. Saluz (ed.), DNA Methylation: Molecular Biology and Biological Significance. Birkhauser Verlag, Basel.
73. Ohmori, H.,, J. Tomizawa,, and G. Maxam. 1978. Detection of 5-methylcytosine in DNA sequences Nucleic Acids Res. 5: 1479 1485.
74. Piggot, P. J.,, M. Amjad,, J.-J. Wu,, H. Sandoval,, and J. Castro,. 1990. Genetic and physical maps of Bacillus subtilis 168, p. 493 543. In C. R. Harwood, and S. M. Cutting (ed.). Molecular Biological Methods for Bacillus. John Wiley & Sons, Chichester, United Kingdom.
75. Pósfai, J.,, A. S. Bhagwat,, G. Pósfai,, and R. J. Roberts. 1989. Predictive motifs derived from cytosine methyltransferases. Nucleic Acids Res. 17: 2421 2435.
76. Pósfai, G.,, A. Kiss,, S. Erdei,, J. Pósfai,, and P. Venetianer. 1983. Structure of the Bacillus sphaericus R modification methylase gene. J. Mol. Biol. 170: 597 610.
77. Raleigh, E. A.,, and G. Wilson. 1986. Escherichia coli K-12 restricts DNA containing 5-methylcytosine. Proc. Natl. Acad. Sci. USA 83: 9070 9074.
78. Reeve, J. N.,, E. Amann,, R. Tailor,, U. Gunthert,, K. Scholz,, and T. A. Trautner. 1980. Unusual behaviour of SP0l DNA with respect to restriction and modification enzymes recognizing the sequence 5'-G-G-C-C. Mol. Gen. Genet. 178: 229 331.
79. Roberts, R. J.,, G. A. Wilson,, and F. E. Young. 1977. Recognition sequence of specific endonuclease BamHI from Bacillus amyloliquefaciens H. Nature (London) 265: 82 84.
80. Saito, H.,, T. Shibata,, and T. Ando. 1979. Mapping of genes determining nonpermissiveness and host-specific restriction to bacteriophages in Bacillus subtilis Marburg. Mol. Gen. Genet. 170: 117 122.
81. Santos, I.,, and H. deLencastre. Unpublished results.
82. Scherzer, E.,, B. Auer,, and M. Schweiger. 1987. Identification, purification, and characterization of Escherichia coli virus Tl DNA methyltransferase. J. Biol. Chem. 262: 15225 15231.
83. Schlagman, S.,, and S. Hattman. 1983. Molecular cloning of a functional dam + gene coding for phage T4 DNA adenine methylase. Gene 22: 139 156.
84. Schneider-Scherzer, E.,, B. Auer,, E. J. deGroot,, and M. Schweiger. 1990. Primary structure of a DNA (N 6-adenine)-methyltransferase from Escherichia coli virus Tl. J. Biol. Chem. 265: 6086 6091.
85. Shibata, T.,, and T. Ando. 1974. Host controlled modification and restriction in Bacillus subtilis. Mol. Gen. Genet. 131: 275 280.
86. Shibata, T.,, and T. Ando. 1975. In vitro modification and restriction of phage φ105C DNA with Bacillus subtilis N cell-free extract. Mol. Gen. Genet. 138: 269 279.
87. Shibata, T.,, and T. Ando. 1976. The restriction endonucleases in Bacillus amyloliquefaciens N strain. Substrate specificities. Biochim. Biophys. Acta 442: 184 196.
88. Shibata, T.,, S. Ikawa,, Y. Komatsu,, T. Ando,, and H. Saito. 1979. Introduction of host-controlled modification and restriction systems of Bacillus subtilis IAM1247 into Bacillus subtilis 168. J. Bacteriol. 139: 308 310.
89. Smith, H. O.,, T. M. Annau,, and S. Chandrasegaran. 1990. Finding sequence motifs in groups of functionally related proteins. Proc. Natl. Acad. Sci. USA 87: 826 830.
90. Smith, H. O.,, and D. Nathans. 1973. A suggested nomenclature for bacterial host modification and restriction systems and their enzymes. J. Mol. Biol. 81: 419 423.
91. Som, S.,, A. S. Bhagwat,, and S. Friedman. 1987. Nucleotide sequence and expression of the gene encoding the EcoRII modification enzyme. Nucleic Acids Res. 15: 313 323.
92. Stephenson, F. H.,, B. T. Ballard,, H. W. Boyer,, J. M. Rosenberg,, and P. J. Greene. 1989. Comparison of the nucleotide and amino acid sequences of the RsrI and EcoRI restriction endonucleases. Gene 85: 1 13.
93. Stroynowski, I. T. 1981. Distribution of bacteriophage φ3T homologous deoxyribonucleic acid sequences in Bacillus subtilis 168, related bacteriophages, and other Bacillus species. J. Bacteriol. 148: 91 100.
94. Stroynowski, I. T. 1981. Integration of bacteriophage φ3T-coded thymidylate synthetase gene into the Bacillus subtilis chromosome. J. Bacteriol. 148: 101 108.
95. Sugisaki, H.,, Y. Maekawa,, S. Kanazawa,, and M. Takanami. 1982. New restriction endonucleases from Acetobacter aceti and Bacillus aneurinolyticus. Nucleic Acids Res. 10: 5747 5752.
96. Szomolanyi, E.,, A. Kiss,, and P. Venetianer. 1980. Cloning the modification methylase gene of Bacillus sphaericus R in Escherichia coli. Gene 10: 219 225.
97. Tao, T.,, J. C. Bourne,, and R. M. Blumenthal. 1991. A family of regulatory genes associated with type II restriction-modification systems. J. Bacteriol. 173: 1367 1375.
98. Tao, T.,, J. Walter,, K. J. Brennan, M. M. Cotterman, and R. M. Blumenthal. 1989. Sequence, internal homology and high-level expression of the gene for a DNA-(cy-tosine AM)-methyltransferase, M. PvuII. Nucleic Acids Res. 17: 4161 4175.
99. Terschüren, P. A. Unpublished results.
100. Terschuren, P.-A.,, M. Noyer-Weldner,, and T. A. Trautner. 1987. Recombinant derivatives of Bacillus subtilis phage Z containing the DNA methyltransferase genes of related methylation-proficient phages. J. Gen. Microbiol. 133: 945 952.
100a. Thorne, C. B. 1962. Transduction in Bacillus subtilis. J. Bacteriol. 83: 106 111.
101. Tran-Betcke, A.,, B. Behrens,, M. Noyer-Weidner,, and T. A. Trautner. 1986. DNA methyltransferase genes of Bacillus subtilis phages: comparison of their nucleotide sequences. Gene 42: 89 96.
102. Trautner, T. A. Unpublished results.
103. Trautner, T. A.,, T. S. Balganesh,, and B. Pawlek. 1988. Chimeric multispecific DNA methyltransferases with novel combination of target recognition. Nucleic Acids Res. 16: 6649 6657.
104. Trautner, T. A.,, B. Pawlek,, S. Bron,, and C. Anagnostopoulos. 1974. Restriction and modification in B. subtilis. Biological aspects. Mol. Gen. Genet. 131: 181 191.
105. Uozumi, T.,, T. Hoshino,, K. Miwa,, S. Horinouchi,, T. Beppu,, and K. Arima. 1977. Restriction and modification in Bacillus species. Genetic transformation of bacteria with DNA from different species, part I. Mol. Gen. Genet. 152: 65 69.
106. Vanek, P. G.,, J. F. Connaughton,, W. D. Kaloss,, and J. G. Chirlkjian. 1991. The complete sequence of the Bacillus amyloliquefaciens strain H, cellular BamHI methylase gene. Nucleic Acids Res. 18: 6145.
107. Walter, J.,, T. A. Trautner,, and M. Noyer-Weidner. 1992. High plasticity of multispecific DNA methyltransferases in the region carrying DNA target recognizing enzyme modules. EMBO J. 11: 4445 4450.
108. Walter, J.,, M. Noyer-Weidner,, and T. A. Trautner. 1990. The amino acid sequence of the CCGG recognizing DNA methyltransferase M .BsuFI: implications for the analysis of sequence recognition by cytosine DNA methyltransferases. EMBO J. 9: 1007 1013.
109. Weiner, M. P. 1986. Characterization of bacteriophage H2. Ph.D. thesis. Cornell University, Ithaca, N.Y.
110. Wilke, K.,, E. Rauhut,, M. Noyer-Weidner,, R. Lauster,, B. Pawlek,, B. Behrens,, and T. A. Trautner. 1988. Sequential order of target-recognizing domains in multispecific DNA-methyltransferases. EMBO J. 7: 2601 2609.
111. Williams, M. T.,, and F. E. Young. 1977. Temperate Bacillus subtilis bacteriophage φ3T: chromosomal attachment site and comparison with temperate bacteriophages φ105 and SP02. J. Virol. 21: 522 529.
112. Wilson, G. G. 1988. Type II restriction-modification systems. Trends Genet. 4: 314 318.
113. Wilson, G. G. 1991. Organization of restriction-modification systems. Nucleic Acids Res. 19: 2539 2566.
114. Witmer, H.,, and M. Franks. 1981. Restriction and modification of bacteriophage SP10 DNA by Bacillus subtilis Marburg 168: stabilization of SP10 DNA in restricting hosts preinfected with a heterologous phage SP18.J. Virol. 37: 148 155.
115. Wu, J. C.,, and D. V. Santi. 1987. Kinetic and catalytic mechanism of Hhal methyltransferase. J. Biol. Chem. 262: 4776 4786.
116. Xu, G.-L.,, W. Kapfer,, J. Walter,, and T. A. Trautner. 1992. BsuBl—an isospecific restriction and modification system of Pstl: characterization of the BsuBl genes and enzymes. Nucleic Acids Res. 20: 6517 6523.
117. Yasbin, R. 1977. DNA repair in Bacillus subtilis. I. The presence of an inducible system. Mol. Gen. Genet. 153: 211 218.
118. Yasbin, R. 1977. DNA repair in Bacillus subtilu. II. Activation of the inducible system in competent cells. Mol. Gen. Genet. 153: 219 225.
119. Zahler, S. A., 1982. Specialized transduction in Bacillus subtilis, p. 269 360. In D. Dubnau (ed.). The Molecular Biology of the Bacilli, vol. I. Bacillus subtilis. Academic Press, Inc., New York.
120. Zahler, S. A.,, R. Z. Korman,, R. Rosenthal,, and H. E. Hemphill. 1977. Bacillus subtilis bacteriophage SPβ: localization of the prophage attachment site, and specialized transduction. J. Bacteriol. 129: 556 558.
121. Zahler, S. A.,, R. Z. Korman,, C. Thomas,, P. S. Fink,, M. P. Weiner,, and J. M. Odebralskl. 1987. H2, a temperate bacteriophage isolated from Bacillus amyloliquefaciens strain H. J. Gen. Microbiol. 133: 2937 2944.

Tables

Generic image for table
Table 1

R/M systems of and some other strains

Citation: Trautner T, Noyer-Weidner M. 1993. Restriction/Modification and Methylation Systems in Bacillus subtilis, Related Species, and Their Phages, p 539-552. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch38
Generic image for table
Table 2

DNA MTases of and phages

Citation: Trautner T, Noyer-Weidner M. 1993. Restriction/Modification and Methylation Systems in Bacillus subtilis, Related Species, and Their Phages, p 539-552. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch38
Generic image for table
Table 3

Effect of restriction and modification on processing of invading DNA in

Citation: Trautner T, Noyer-Weidner M. 1993. Restriction/Modification and Methylation Systems in Bacillus subtilis, Related Species, and Their Phages, p 539-552. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch38

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error