1887

Chapter 43 : Plasmids

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Plasmids, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap43-1.gif /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap43-2.gif

Abstract:

Laboratory strains of , which are derived from strain 168, are devoid of endogenous plasmids. Many plasmids from other spp. and from other genera of gram-positive bacteria, such as staphylococci and streptococci, have been introduced, studied, and used in 168. Studies conducted in as well as in natural plasmid hosts and in are presented in this chapter, as they have all contributed to our understanding of plasmids from gram-positive bacteria. RCR plasmids have been studied much more extensively than theta replicating plasmids and have been reviewed recently in depth. The chapter focuses on newly found aspects of the replication mechanism, copy control, and interaction with host functions that help explain the life cycles of these plasmids. In contrast, theta replicating plasmids have not been previously reviewed in detail and are discussed more extensively. Plasmids of the pAMβ1 family have a large host range and are auto transferable. The following observations indicate that plasmids of the pAMβ1 family use an initiation mechanism related to that of ColEl-type replicons. First, pAMβ1, pIP501, and pSM19035 do not transform A mutant of . Second, DNA polymerase 1 initiates pAMβ1 leading-strand synthesis. Third, pAMβ1, pIP501, and pSM19035 carry a -like sequence on the lagging-strand template, ~100 bp downstream of the initiation on site of the leading-strand synthesis.

Citation: Jannière L, Grass A, Ehrlich S. 1993. Plasmids, p 625-644. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch43

Key Concept Ranking

DNA Polymerase III
0.48780808
DNA Polymerase I
0.47637156
0.48780808
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Unidirectional replication of rolling-circle repli-cons. Heavy lines, plus strands; light lines, minus strands; continuous lines, parental DNA; discontinuous lines, newly synthesized DNA. “Plus origin” represents the terminus-plus-origin overlapping region, and the bent arrow indicates direction of replication. <, secondary structure at the minus origin. Steps are as follows, (i) Initiation. Nick by Rep at the plus origin. Copy number control is exerted at this step, (ii) Displacement of the plus strand and elongation from die 3′ OH nick to synthesize a new plus strand, (iii) Termination of plus-strand synthesis. Rep renicks at the plus origin to release one complete double-stranded plasmid that is then free to reenter the replication pool. Or, (iii) if termination does not occur because of, for example, plus-strand breakage or Rep protein release, high-molecular-weight linear concatemers (HMW) will form, (iv) Religation of the displaced plus strand to form a free ssDNA replication intermediate. (v) Conversion synthesis of ssDNA to dsDNA. Initiation at the minus origin (utilizing host factors) is followed by elongation to synthesize a new minus strand, (vi) Termination of conversion synthesis, releasing a second double-stranded molecule for reentry into the replication pool.

Citation: Jannière L, Grass A, Ehrlich S. 1993. Plasmids, p 625-644. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch43
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Regions required for copy control, replication, and multimer resolution in three plasmids from the pAM1 family. Continuous line, sequenced regions; broken line, unsequenced regions; boxes, ORFs; arrows within the boxes, direction of transcription. The region lacking in pIP501 and pSM 19035 is shown in brackets. Replication origin and direction of replication are indicated by heavy arrows. Several restriction sites that suggest sequence homology outside of the common sequenced regions are represented. Rep and Res stand for the replication protein and resolvase, respectively. A, I; Hd, dIII; K, IHp, I; P, I; E, RI.

Citation: Jannière L, Grass A, Ehrlich S. 1993. Plasmids, p 625-644. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch43
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Single-strand initiation (A) site of pAM1. The sequence of the active strand is shown. Endpoints of deletions generated by exonuclease III are indicated by arrows; + and − refer to deletions that preserve or abolish activity.

Citation: Jannière L, Grass A, Ehrlich S. 1993. Plasmids, p 625-644. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch43
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Copy control regions of three plasmids of the pAMβ1 family and putative control mechanisms. (A) Critical promoters are represented by bent arrows, which indicate directions of transcription; inverted repeats are labeled I to IV. The region diverging to almost 50% between pAMβ1 and two other plasmids is boxed. Other symbols are explained in the legend to Fig. 2 . (B) Hypothetical secondary structures generated upon interaction of mRNA and countertranscript (top) and folding of the 5′ end of the mRNA (bottom).

Citation: Jannière L, Grass A, Ehrlich S. 1993. Plasmids, p 625-644. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch43
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Structure of the resolution sites of pAMβ1, pIP501, and pSM 19035. The three imperfect inverted repeats (I through III) are represented by arrows, matching regions are indicated by a continuous line, and nonhomologous regions are indicated by a broken line. The numbers refer to lengths (in base pairs) of different regions and distances between the repeats. The sequence shown beneath the box is present in the nine repeats from the three plasmids.

Citation: Jannière L, Grass A, Ehrlich S. 1993. Plasmids, p 625-644. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch43
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Comparison of conserved C-terminal domains of INT recombinases and Resβ and ResIP proteins. The amino acid sequences are from previously published data ( ). Alignments are based on those reported previously ( ). Positions within the INT recombinases, where at least 11 residues are related, are shown by uppercase letters (related amino acids are considered to be ST, ILMV, DE, QN, FY, and C; 50). Positions at which at least 11 residues are identical are indicated by boldface uppercase letters. Resβ and ResIP amino acids matching the consensus are shown. The arrow indicates the tyrosine likely to be transiently linked to DNA during recombination is close to the C-terminal part of the conserved domain.

Citation: Jannière L, Grass A, Ehrlich S. 1993. Plasmids, p 625-644. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch43
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818388.chap43
1. Amundsen, S. K.,, A. M. Neiman,, S. M. Thibodeaux,, and G. R. Smith. 1990. Genetic dissection of the biochemical activities of RecBCD enzyme. Genetics 126: 25 40.
2. Arantes, O.,, and D. Lereclus. 1991. Construction of cloning vectors for Bacillus thuringiensis. Gene 108: 115 119.
3. Archer, G. L.,, and W. D. Thomas, Jr., 1990. Conjugative transfer of antimicrobial resistance genes between staphylococci, p. 115 122. In R. Novick (ed.), Molecular Biology of the Staphylococci. VCH Press, New York.
4. Argos, P.,, A. Landy,, K. Abremskl,, J. B. Egan,, E. Hag-gard-Ljungquist,, R. H. Hoess,, M. L. Kahn,, B. Kalionls,, S. V. L. Narayana,, L. S. Plerson III,, N. Sternberg,, and J. M. Leong. 1986. The integrase family of site-specific recombinases: regional similarities and global diversity. EMBO J. 5: 433 440.
5. Asch, D. K.,, R. V. Goering,, and E. A. Ruff. 1984. Isolation and preliminary characterization of a plasmid mutant derepressed for conjugal transfer in Staphylococcus aureus. Plasmid 12: 197 202.
6. Ballester, S.,, P. Lopez,, M. Espinosa,, J. C. Alonso,, and S. A. Lacks. 1989. Plasmid structural instability associated with pC194 replication functions. J. Bacteriol. 171: 2271 2277.
7. Bates, E. E.,, and H. J. Gilbert. 1989. Characterization of a cryptic plasmid from Lactobacillus plantarum. Gene 85: 253 258.
8. Baum, J. A.,, D. M. Coyle,, M. P. Gilbert, C. S. Jany, and C. Gawron-Burke. 1990. Novel cloning vectors for Bacillus thuringiensis. Appl. Environ. Microbiol. 56: 3420 3428.
9. Baum, J. A.,, and M. P. Gilbert. 1991. Characterization and comparative sequence analysis of replication origins from three large Bacillus thuringiensis plasmids. J. Bacteriol. 173: 5280 5289.
10. Behnke, D.,, and M. S. Gilmore. 1981. Location of antibiotic resistance determinants, copy control, and replication functions on the double-selective streptococcal cloning vector pGB301. Mol. Gen. Genet. 184: 115 120.
11. Behnke, D.,, V. I. Golubkov,, H. Malke,, A. S. Boitsov,, and A. A. Totolian. 1979. Restriction endonuclease analysis of group a streptococcal plasmids determining resistance to macrolides, lincosamides and strepto-gramin-B antibiotics. FEMS Microbiol. Lett. 6: 5 9.
12. Behnke, D.,, and S. Klaus. 1983. Double or triple sets of replication functions as inverted and direct repeats on in vitro reconstructed streptococcal MLS resistance plasmids. Z. Allg. Mikrobiol. 23: 539 547.
13. Bidnenko, V. Personal communication.
13a.. Bidnenko, V. E.,, A. Grass,, and S. D. Ehrlich. Mutation in the plasmid pUBl 10 Rep protein affects its ability to terminate rolling circle replication. Submitted for publication.
14. Bièrne, H.,, S. D. Ehrlich, and B. Michel. 1991. The replication termination signal terB of the Escherichia colt chromosome is a deletion hot spot. EMBO J. 10: 2699 2705.
15. Birch, P.,, and S. A. Khan. 1992. Replication of single-stranded plasmid pT181 DNA in vitro. Proc. Natl. Acad. Sci. USA 89: 290 294.
16. Black, D. S.,, A. J. Kelly,, M. J. Mardis,, and H. S. Moyed. 1991. Structure and organization of hip, an operon that affects lethality due to inhibition of peptidoglycan or DNA synthesis. J. Bacteriol. 173: 5732 5739.
17. Blakely, G.,, S. Colloms,, G. May,, M. Burke,, and D. Sherratt. 1991. Escherichia coli XerC recombinase is required for chromosomal segregation at cell division. New Biol. 3: 789 798.
17a.. Blanchard, A. Personal communication.
18. Boccard, F.,, T. Smokvina,, J.-L. Pernodet,, A. Fried-mann,, and M. Guérineau. 1989. The integrated conjugative plasmid pSAM2 of Streptomyces ambofaciens is related to temperate bacteriophages. EMBO J. 8: 973 980.
19.Boe, L. M.-F. Gros, H. te Riele, S. Ehrlich, and A. Grass. 1989. Replication origins of single-stranded DNA plasmid pUB110. J. Bacteriol. 171: 33663372.
20. Boistov, A. S.,, V. I. Golubkov,, I. M. Iontova,, E. N. Zaitsev,, H. Malke,, and A. A. Totolian. 1979. Inverted repeats on plasmids determining resistance to MLS antibiotics in group A streptococci. FEMS Microbiol. Lett. 6: 11 14.
21. Bouia, A.,, F. Bringel,, L. Frey,, B. Kammerer,, A. Belarbi,, A. Guyonvarch,, and J.-C. Hubert. 1989. Structural organization of pLPl, a cryptic plasmid from Lactobacillus plantarum CCM 1904. Plasmid 22: 185 192.
22. Bourgueleret, L.,, G. Bieth, andT. Horodniceanu. 1981. Conjugative R plasmids in group C and G streptococci. J. Bacteriol. 145: 1102 1105.
23. Bramhill, D.,, and A. Kornberg. 1988. A model for initiation at origins of DNA replication. Cell 54: 915 918.
23a.. Brand, S.,, and D. Behnke. 1991. Copy number control of the streptococcal plasmid pIP501 occurs at three levels. Nucleic Acids Res. 20: 395 400.
23b.. BrantI, S.,, and D. Behnke. 1992. The amount of RepR protein determines the copy number of plasmid pIP501 in Bacillus subtilis. J. Bacteriol. 174: 5475 5478.
23c.. Brand, S.,, and D. Behnke. 1992. Characterization of the minimal origin required for replication of the streptococcal plasmid pIP501 in Bacillus subtilis. Mol. Microbiol. 6: 3501 3510.
24. Brand, S.,, D. Behnke,, and J. C. Alonso. 1990. Molecular analysis of the replication region of the conjugative Streptococcus agalactiae plasmid pIP501 in Bacillus subtilis. Comparison with plasmids p AMβ1 and pSM19035. Nucleic Acids Res. 18: 4783 4789.
25. Brand, S.,, A. Nowak,, D. Behnke,, and J. C. Alonso. 1989. Revision of the nucleotide sequence of the Streptococcus pyogenes plasmid pSM19035 repS gene. Nucleic Acids Res. 17: 10110.
25a.. Brantl, S.,, B. Nuez,, and D. Behnke. 1992. In vitro and in vivo analysis of transcription within the replication region of plasmid pIP501. Mol. Gen. Genet. 234: 105 112.
26. Brefort, G.,, M. Magot,, H. Ionesco,, and M. Sebald. 1977. Characterization and transferability of Clostridium perfringens plasmids. Plasmid 1: 52 66.
26a.. Bron, S. Personal communication.
26b.. Bron, S. Unpublished data.
27. Bron, S., 1990. Plasmids, p. 75 138. In C. R. Harwood,, and S. M. Cutting (éd.). Molecular Biology Methods for Bacillus, vol. 3. John Wiley & Sons, Ltd., London.
36. 27a.Bron, S., S. Holsappel, G. Venema, and B. Peeters. 1991. Plasmid deletion formation between short, direct repeats in Bacillus subtilis is stimulated by single-stranded rolling-circle replication intermediates. Mol. Gen Genet. 226: 8896.
28. Bron, S.,, and E. Luxen. 1985. Segregational instability of pUBHO-derived recombinant plasmids in Bacillus subtilis. Plasmid 14: 235 244.
28a.. Bron, S.,, E. Luxen,, and P. Swart. 1988. Instability of recombinant pUBllO plasmids in Bacillus subtilis: plasmid-encoded stability function and effects of DNA inserts. Plasmid 19: 231 241.
29. Brown, D. P.,, K. B. Idler,, and L. Katz. 1990. Characterization of the genetic elements required for site-specific integration of plasmid pSE211 in Saccharopolyspora erythraea. J. Bacteriol. 172: 1877 1888.
29a.. Bruand, C. Personal communication.
30. Bruand, C.,, S. D. Ehrlich,, and L. Jannière,. 1990. A method for detecting unidirectional theta replication in Bacillus subtilis plasmids, p. 123 129. In M. M. Zukowski,, A. T. Ganesan,, and J. A. Hoch (éd.). Genetics and biotechnology of Bacilli, vol. 3. Academic Press, Inc., San Diego, Calif.
31. Bruand, C.,, S. D. Ehrlich,, and L. Jannière. 1991. Unidirectional theta replication of the structurally stable Enterococcus faecalis plasmid pAMβ1. EMBO J. 10: 2171 2177.
32. Byrne, M. E.,, M. T. Gillepsie,, and R. A. Skurray. 1990. Molecular analysis of a gentamicin resistance trans-posonlike element on plasmids isolated from North American Staphylococcus aureus strains. Antimicrob. Agents Chemother. 34: 2106 2113.
33. Camilli, A.,, D. A. Portnoy,, and P. Youngman. 1990. Insertional mutagenesis of Listeria monocytogenes with a novel Tn 917 derivative that allows direct cloning of DNA flanking transposon insertions. J. Bacteriol. 172: 3738 3744.
34. Carrigan, C. M.,, J. A. Haarsma,, M. T. Smith,, and R. G. Wake. 1987. Sequence features of the replication terminus of the Bacillus subtilis chromosome. Nucleic Acids Res. 15: 8501 8509.
35. Carrigan, C. M.,, R. A. Pack,, M. T. Smith,, and R. G. Wake. 1991. Normal ierC-region of the Bacillus subtilis chromosome acts in a polar manner to arrest the clockwise replication fork. J. Mol. Biol. 222: 197 207.
36. Clerget, M. 1991. Site-specific recombination promoted by short DNA segment of plasmid Rl and by homologous segment in the terminus region of the Escherichia coli chromosome. New Biol. 3: 780 788.
37. Clewell, D. B., and A. E. Franke. 1974. Characterization of a plasmid determining resistance to erythromycin, lincomycin, and vernamycin B α in a strain of Streptococcus pyogenes. Antimicrob. Agents Chemother. 5: 534 537.
38. Clewell, D. B.,, L. T. Pontius,, K. E. Weaver,, F. Y. An,, Y. Ike,, A. Suzuki,, and J. Nakayama,. 1990. Enterococcus faecalis hemolysin/bacteriocin plasmid pADl: regulation of the pheromone response, p. 3 8. In G. M. Dunny,, P. P. Cleary,, and L. L. McKay (ed.), Genetics and Molecular Biology of Streptococci, Lactococci and Enterococci. American Society for Microbiology, Washington, D.C.
39. Clewell, D. B.,, and K. E. Weaver. 1989. Sex pheromones and plasmid transfer in Enterococcus faecalis. Plasmid 21: 175 184.
40. Clewell, D. B.,, Y. Yagi,, G. M. Dunny,, and S. K. Schultz. 1974. Characterization of three plasmid deoxyribonu-cleic acid molecules in a strain of Streptococcus faecalis: identification of a plasmid determining erythromycin resistance. J. Bacteriol. 117: 283 289.
41. Colloms, S. D.,, P. Sykora,, G. Szatmari,, and D. J. Sherratt. 1990. Recombination at ColEl requires the Escherichia coli xerC gene product, a member of the lambda integrase family of site-specific recombinases. J. Bacteriol. 172: 6973 6980.
42. Courvalin, P. M.,, C. Carlier,, and Y. A. Chabbert. 1972. Plasmid-linked tetracycline and erythromycin resistance in group D "Streptococcus." Ann. Inst. Pasteur (Paris) 123: 755 759.
43. Cox, M. M., 1989. DNA inversion in the 2µM plasmid of Saccharomyces cerevisiae, p. 661 670. In D. E. Berg, and M. M. Howe (ed.), Mobile DNA. American Society for Microbiology, Washington, D.C.
44. Craig, N. L. 1988. The mechanism of conservative site-specific recombination. Annu. Rev. Genet. 22: 77 105.
44a.. Dabert, P. Personal communication.
45. Dabert, P.,, S. D. Ehrlich,, and A. Grass. 1992. High-molecular-weight linear multimer formation by single-stranded DNA plasmids in Escherichia coli. J. Bacteriol. 174: 173 178.
46. Dabert, P.,, S. D. Ehrlich,, and A. Gross. 1992. Chi sequence protects against RecBCD degradation of DNA in vivo. Proc. Natl. Acad. Sci. USA 89: 12073 12077.
47. Dabert, P.,, S. D. Ehrlich,, and A. Gross. Effects of chi on ssDNA plasmids and high-molecular-weight linear plasmid multimer formation. Submitted for publication.
48. Dao, M. L.,, and J. J. Ferretti. 1985. Streptococcus-Escherichia coli shuttle vector pSA3 and its use in the cloning of streptococcal genes. Appl. Environ. Microbiol. 49: 115 119.
49. Darabi, A.,, R. Forough,, G. Bhardwaj,, M. Watabe,, G. Goodarazl,, S. C. Gross,, and K. Watabe. 1989. Identification and nucleotide sequence of the minimal replicon of the low-copy-number plasmid pBS2. Plasmid 22: 281 286.
50. Dayhoff, M. O.,, R. M. Schwartz,, and B. C. Orcutt. 1978. A model of evolutionary change in proteins, p. 345. In M. O. Dayhoff (ed.), Atlas of Protein Sequence and Structure, vol. 5, suppl. 3. National Biomédical Research Foundation, Washington, D.C.
51. del Solar, G.,, and M. Espinosa. 1992. The copy number of plasmid pLSl is regulated by two irans-acting plasmid products: the antisense RNAH and the repressor protein, RepA. Mol. Microbiol. 6: 83 94.
52.de Massy, B., S. Béjar, J. Louarn, and J.-M. Louarn. 1987. Inhibition of replication forks exiting the terminus region of the Escherichia coli chromosome occurs at loci separated by 5 min. Proc. Natl. Acad. Sci. USA 84: 17591763.
53. Dempsey, L. A.,, P. Birch,, and S. A. Khan. 1992. Uncoupling of the DNA topoisomerase and replication activities of an initiator protein. Proc. Natl. Acad. Sci. USA 89: 3083 3087.
54. de Rossi, E.,, A. Milano,, P. Brigidi,, F. Brini,, and G. Riccardi. 1992. Structural organization of pBCl, a cryptic plasmid from Bacillus coagulans. J. Bacteriol. 174: 638 642.
55. Devine, K.,, S. Hogan,, D. Higgins,, and D. McConnell. 1989. Replication and segregational stability of the Bacillus plasmid pBAAl. J. Bacteriol. 171: 1166 1172.
56. Donoghue, D. J.,, and P. A. Sharp. 1978. Replication of colicin El plasmid DNA in vivo requires no plasmid-encoded proteins. J. Bacteriol. 133: 1287 1294.
57. Dorman, C. J.,, and C. F. Higgins. 1987. Fimbrial phase variation in Escherichia coli: dependence on integration host factor and homologies with other site-specific recombinases. J. Bacteriol. 169: 3840 3843.
58. Ehrenfeld, E. E.,, and D. B. Clewell. 1987. Transfer functions of the Streptococcus faecalis plasmid pADl: organization of plasmid DNA encoding response to sex pheromone. J. Bacteriol. 169: 3473 3481.
59. Ehrlich, S. D., 1989. Illegitimate recombination in bacteria, p. 799 832. In D. E. Berg, and M. M. Howe (ed.), Mobile DNA. American Society for Microbiology, Washington, D.C.
60. Ehrlich, S. D.,, C. Bruand,, S. Sozhamannan,, P. Dabert,, M.-F. Gros,, L. Jannière,, and A. Grass. 1991. Plasmid replication and structural stability in Bacillus subtilis. Res. Microbiol. 142: 869 873.
61. Ehrlich, S. D.,, P. Nolrot,, M. A. Petit,, L. Jannière,, B. Michel,, and H. te Riele,. 1986. Structural instability of Bacillus subtilis plasmids, p. 71 83. In J. K. Setlow, and A. Hollaender (ed.), Genetic Engineering, vol. 8. Plenum Press, New York.
6la.. Ehrlich, S. D.,, H. te Riele,, M. A. Petit,, L. Jannière,, P. Nolrot,, and E. Michel,. 1986. DNA recombination in plasmids and the chromosome of Bacillus subtilis, p. 27 34. In A. T. Ganesan, and J. Hoch (éd.). Bacillus Molecular Genetics and Biotechnology Applications. Academic Press, Inc., Orlando, Fla.
62. El-Solh, N.,, D. H. Bouanchaud,, T. Horodnlceanu,, A. Roussel,, and Y. A. Chabbert. 1978. Molecular studies and possible relatedness between R plasmids from groups B and D streptococci. Antimicrob. Agents Chemother. 14: 19 23.
63. Evans, R. P., Jr.,, and F. L. Macrlna. 1983. Streptococcal R plasmid pIP501: endonuclease site map, resistance determinant location, and construction of novel derivatives. J. Bacteriol. 154: 1347 1355.
64. Feirtag, J. M.,, J. P. Petzel,, E. Pasalodos,, K. A. Baldwin,, and L. L. McKay. 1991. Thermosensitive plasmid replication, temperature-sensitive host growth, and chromosomal plasmid integration conferred by Lactococcus lactis subsp. cremoris lactose plasmids in Lactococcus lactis subsp. lactis. Appl. Environ. Microbiol. 57: 539 548.
65. Forbes, B. A. 1979. Ph.D. thesis. University of Oklahoma Health Sciences Center, Oklahoma City.
66. Gamier, T.,, and S. T. Cole. 1988. Identification and molecular genetic analysis of replication functions of the bacteriocinogenic plasmid pIP404 from Clostridium perfringens. Plasmid 19: 151 160.
67. Gamier, T.,, and S. T. Cole. 1988. Complete nucleotide sequence and genomic organization of the bacteriocin-ogenic plasmid, pIP404, from Clostridium perfringens. Plasmid 19: 134 150.
68. Gamier, T.,, W. Saurin,, and S. T. Cole. 1987. Molecular characterization of the resolvase gene, res, carried by a multicopy plasmid from Clostridium perfringens: common evolutionary origin for prokaryotic site-specific recombinases. Mol. Microbiol. 1: 371 376.
69. Gennaro, M. L., 1990. DNA replication and its regulation in the pT181 plasmid family, p. 183 195. In R. P. Novick (ed.). Molecular Biology of the Staphylococci. VCH Press, New York.
70. Gerdes, K.,, L. K. Poulsen,, T. Thisted,, A. K. Nielsen,, J. Martinussen,, and P. H. Andreasen. 1990. The hok killer gene family in gram-negative bacteria. NewBiol. 2: 946 956.
71. Gilmore, M. S.,, D. Behnke,, and J. J. Ferretti,. 1982. Evolutionary relatedness of MLS resistance and replication function sequences on streptococcal antibiotic resistance plasmids, p. 174 176. In D. Schlessinger (éd.), Microbiology 1982. American Society for Microbiology, Washington, D.C.
72. Glasgow, A. C,, K. T. Hughes,, and M. I. Simon,. 1989. Bacterial DNA inversion systems, p. 637 659. In D. E. Berg, and M. M. Howe (ed.), Mobile DNA. American Society for Microbiology, Washington, D.C.
73. Golubkov, V. I.,, W. Reichardt,, A. S. Boistov,, I. M. Iontova,, H. Malke,, and A. A. Totolian. 1982. Sequence relationships between plasmids associated with conventional MLS resistance and zonal lincomycin resistance in Streptococcus pyogenes. Mol. Gen. Genet. 187: 310 315.
74. Grinius, L.,, G. Dreguniene,, E. B. Goldberg,, C.-H. Liao,, and S. J. Projan. 1992. A staphylococcal multidrug resistance gene product is a member of a new protein family. Plasmid 27: 119 129.
75. Gros, M. F.,, H. te Riele,, and S. D. Ehrlich. 1987. Rolling circle replication of the single-stranded plasmid pC194. EMBO J. 6: 3863 3869.
76. Gros, M.-F.,, H. te Riele,, and S. D. Ehrlich. 1989. Replication origin of a single-stranded DNA plasmid pC194. EMBOJ. 8: 2711 2716.
77. Grass, A.,, and S. D. Ehrlich. 1988. Insertion of foreign DNA into plasmids from gram-positive bacteria induces formation of high-molecular-weight plasmid multimers. J. Bacteriol. 170: 1183 1190.
78. Grass, A.,, and S. D. Ehrlich. 1989. The family of highly interrelated single-stranded deoxyribonucleic acid plasmids. Microbiol. Rev. 53: 231 241.
79. Grass, A.,, H. Ross,, and R. Novick. 1987. Functional analysis of a palindromic sequence required for normal replication of several staphylococcal plasmids. Proc. Natl. Acad. Sci. USA 84: 2165 2169.
79a.. Halpern, D. Personal communication.
80. Hara, T.,, S. Nagatomo,, S. Ogata,, and S. Ueda. 1991. Molecular structure of the replication origin of a Bacillus subtilis (natto) plasmid, pUH 1. Appl. Environ. Microbiol. 57: 1838 1841.
81. Hatful), G. F.,, and N. D. F. Grindley,. 1988. Resolvases and DNA-invertases: a family of enzymes active in site-specific recombination, p. 357 396. In R. Kucherla-pati, and G. R. Smith (ed.), Genetic Recombination. American Society for Microbiology, Washington, D.C.
82. Hayes, F.,, C. Daly,, and G. F. Fitzgerald. 1990. Identification of the minimal replicon of Lactococcus lactis subsp. lactis UC317 plasmid pCI305. Appl. Environ. Microbiol. 56: 202 209.
82a.. Hayes, F.,, C. Daly,, and G. F. Fitzgerald. 1990. High-frequency, site-specific recombination between lacto-coccal and pAMβ1 plasmid DNAs. J. Bacteriol. 172: 3485 3489.
83. Hayes, F.,, P. Vos,, G. F. Fitzgerald,, W. M. de Vos, and C. Daly. 1991. Molecular organization of the minimal replicon of novel, narrow-host-range, lactococcal plasmid pCI305. Plasmid 25: 16 26.
84. Heinemann, J. A. 1991. Genetics of gene transfer between species. Trends Genet. 7: 181 185.
85. Hershfield, V. 1979. Plasmids mediating multiple drug resistance in group B streptococcus: transferability and molecular properties. Plasmid 2: 137 149.
86. Hespell, R. B.,, and T. R. Whitehead. 1991. Conjugal transfer of Tn 916, Tn 916ΔE, and pAMβ1 from Entero-coccus faecalis to Butyrivibrio fibrisolvens strains. Appl. Environ. Microbiol. 57: 2703 2709.
87. Highlander, S.,, and R. P. Novick. 1987. Plasmid repopulation kinetics in Staphylococcus aureus. Plasmid 17: 210 221.
88. Hill, C.,, L. A. Miller,, and T. R. Klaenhammer. 1991. The bacteriophage resistance plasmid pTR2030 forms high-molecular-weight multimers in lactococci. Plasmid 25: 105 112.
89. Hopwood, D. A.,, D. J. Lydiate,, F. Malpartida,, and H. M. Wright,. 1984. Conjugative sex plasmids of Streptomyces, p. 615 634. In D. R. Helinski,, S. N. Cohen,, D. B. Clewell,, D. A. Jackson,, and A. Hollaender (ed.), Plasmids in Bacteria. Plenum Press, New York.
90. Horaud, T., C. Le Bouguenec, and K. Pepper. 1985. Molecular genetics of resistance to macrolides, lincosamides and streptogramin B (MLS) in streptococci. J. Antimicrob. Chemother. 16: 111 135.
91. Horng, J. S.,, K. M. Polzin,, and L. L. McKay. 1991. Replication and temperature-sensitive maintenance functions of lactose plasmid pSK11L from Lactococcus lactis subsp. cremoris. J. Bacteriol. 173: 7573 7581.
92. Horodniceanu, T.,, D. H. Bouanchaud,, G. Bieth,, and Y. A. Chabbert. 1976. R plasmids in Streptococcus agalactiae (group B). Antimicrob. Agents Chemother. 10: 795 801.
93. Imanaka, T.,, M. Fujii,, and S. Alba. 1981. Isolation and characterization of antibiotic resistance plasmids from thermophilic bacilli and construction of deletion plasmids. J. Bacteriol. 146: 1091 1097.
94. Imanaka, T.,, H. Ishlkawa,, and S. Aiba. 1986. Complete nucleotide sequence of the low copy number plasmid pRATl 1 and replication control by the RepA protein in Bacillus subtilis. Mol. Gen. Genet. 205: 90 96.
95. Iordanescu, S. 1976. Temperature-sensitive mutant of a tetracycline resistant staphylococcal plasmid. Arch. Roum. Pathol. Exp. Microbiol. 35: 257 264.
111. 95a.Iordanescu, S., and R. Basheer. 1991. The Staphylococcus aureus mutation pcrA3 leads to the accumulation of pT181 replication initiation complexes. J. Mol. Biol. 221: 11831189.
96. Ippen-Ihler, K. A.,, and E. G. Minkley, Jr. 1986. The conjugation system of F, the fertility factor of Escherichia coli. Annu. Rev. Genet. 20: 593 624.
97. Itoh, T.,, and J. Tomizawa. 1978. Initiation of replication of plasmid CoIEl DNA by RNA polymerase, ribo-nuclease H, and DNA polymerase I. Cold Spring Harbor Symp. Quant. Biol. 43: 409 417.
97a.. Jahns, A.,, A. Schäfer,, A. Gels,, and M. Teuber. 1991. Identification, cloning and sequencing of the replication region of Lactococcus lactis ssp. lactis biovar. diacetylactis Bu2 citrate plasmid pSL2. FEMS Microbiol. Lett. 80: 253 258.
98. Jannière, L., C. Bruand, and S. D. Ehrlich. 1990. Structurally stable Bacillus subtilis cloning vectors. Gene 87: 53 61.
99. Jannière, L.,, and S. D. Ehrlich. 1987. Recombination between short repeat sequences is more frequent in plasmids than in the chromosome of Bacillus subtilis. Mol. Gen. Genet. 210: 116 121.
100. Josson, K.,, P. Soetaert,, F. Michiels,, H. Joos,, and J. Mahillon. 1990. Lactobacillus hilgardii plasmid pLAB1000 consists of two functional cassettes commonly found in other gram-positive organisms. J. Bacteriol. 172: 3089 3099.
100a.. King, K. W.,, and K. Dybvig. 1992. Nucleotide sequence of Mycoplasma mycoides subspecies mycoides plasmid pKMKl. Plasmid 28: 86 91.
101. Kleanthous, H., C. L. Clayton, and S. Tabaqchall. 1991. Characterization of a plasmid from Helicobacter pylori encoding a replication protein common to plasmids in gram-positive bacteria. Mol. Microbiol. 5: 2377 2389.
102. Klemm, P. 1986. Two regulatory fim genes, fimB and fimE, control the phase variation of type 1 fimbriae in Escherichia coli. EMBOJ. 5: 1389 1393.
103. Koepsel, R.,, R. Murray,, W. Rosenblum,, and S. Khan. 1985. The replication initiator protein of plasmid pT181 has sequence-specific endonuclease and topoisomerase-like activities. Proc. Natl. Acad. Sci. USA 82: 6845 6849.
104. Kornberg, A.,, and T. A. Baker. 1991. DNA Replication, 2nd ed. W. H. Freeman & Co., New York.
105. Krah, E. R., III, and F. L. Macrina. 1989. Genetic analysis of the conjugal transfer determinants encoded by the streptococcal broad-host-range plasmid pIP501. J. Bacteriol. 171: 6005 6012.
106. Krah, E. R., Ill, and F. L. Macrina. 1991. Identification of a region that influences host range of the streptococcal conjugative plasmid pIP501. Plasmid 25: 64 69.
107. Kubo, A.,, A. Kusukawa,, and T. Komano. 1988. Nucleotide sequence of the rci gene encoding shufflon-specific DNA recombinase in the Incll plasmid R64: homology to the site-specific recombinases of integrase family. Mol. Gen. Genet. 213: 30 35.
108. Kuempel, P. L.,, J. M. Henson,, L. Dircks,, M. Tecklen-burg,, and D. F. Lim. 1991. dif, a recA-independent recombination site in the terminus region of the chromosome of Escherichia coli. New Biol. 3: 799 811.
109. Kües, U.,, and U. Stahl. 1989. Replication of plasmids in gram-negative bacteria. Microbiol. Rev. 53: 491 516.
110. Kurusu, Y.,, M. Inui,, K. Kohama,, M. Kobayashi,, M. Terasawa,, and H. Yukawa. 1991. Identification of plasmid partition function in coryneform bacteria. Appl. Environ. Microbiol. 57: 759 764.
111. Lane, D.,, R. de Feyter,, M. Kennedy,, S.-H. Phua,, and D. Semon. 1986. D protein on miniF plasmid acts as a repressor of transcription and as a site-specific resolvase. Nucleic Acids Res. 14: 9713 9728.
111a.. Langella, P. Personal communication.
112. Langella, P.,, and A. Chopin. 1989. Effect of restriction-modification systems on transfer of foreign DNA into Lactococcus lactis subsp . lactis. FEMS Microbiol. Lett. 59: 301 306.
113. Leblanc, D. J.,, and L. N. Lee. 1984. Physical and genetic analyses of streptococcal plasmid pAMβ1 and cloning of its replication region. J. Bacteriol. 157: 445 453.
113a.. LeBlanc, D. J.,, L. N. Lee,, and A. Abu-Al-Jaibat. 1992. Molecular, genetic, and functional analysis of the basic replicon of pVA380-l, a plasmid of oral streptococcal origin. Plasmid 28: 130 145.
113b.. Le Chatelier, E. Personal communication.
114. Le Chatelier, E.,, C. Bruand,, S.D. Ehrlich,, and L. Jannière. A novel class of theta-replicating plasmids: the pAMβ1 family from gram-positive bacteria. Submitted for publication.
115. Le Chatelier, E.,, S. D. Ehrlich,, and L. Jannière. 1993. Biochemical and genetic analysis of the unidirectional theta replication of the S. agalactiae plasmid pIP501. Plasmid 29: 50 56.
116. Leenhouts, K.,, J. B. Tolner,, S. Bron,, J. Kok,, G. Venema,, and J. F. M. L. Seegers. 1991. Nucleotide sequence and characterization of the broad-host-range lactococcal plasmid pWVOl. Plasmid 26: 55 66.
116a.. Lereclus, D. Personal communication.
117. Lereclus, D.,, S. Guo,, V. Sanchis,, and M.-M. Lecadet. 1988. Characterization of two Bacillus thuringiensis plasmids whose replication is thermosensitive in B. subtilis. FEMS Microbiol. Lett. 49: 417 422.
118. Lereclus, D.,, and O. Orantes. 1992. spbA locus ensures the segregational stability of pHT1030, a novel type of gram-positive replicon. Mol. Microbiol. 6: 35 46.
119. Lewis, P. J.,, G. B. Ralston,, R. I. Christopherson,, and R. G. Wake. 1990. Identification of the replication terminator protein binding sites in the terminus region of the Bacillus subtilis chromosome and stoichiometry of the binding. J. Mol. Biol. 214: 73 84.
120. Lydiate, D. J.,, F. Malpartlda,, and D. A. Hopwood. 1985. The Streptomyces plasmid SCP2: its functional analysis and development into useful cloning vectors. Gene 35: 223 235.
120a.. Madsen, S. M.,, L. Andrup,, and L. Boe. Fine mapping and DNA sequence of replication functions of Bacillus thuringiensis plasmid pTX14-3. Plasmid, in press.
120b.. Maguin, E. Personal communication.
121. Maguin, E.,, P. Duwat,, T. Hege,, D. Ehrlich,, and A. Gruss. 1992. New thermosensitive plasmid for gram-positive bacteria. J. Bacteriol. 174: 5633 5638.
122. Mahillon, J.,, and D. Lereclus. 1988. Structural and functional analysis of Tn 4430: identification of an inte-grase-like protein involved in the co-integrate-resolution process. EMBO J. 7: 1515 1526.
122a.. Malke, H. 1974. Genetics of resistance to macrolide antibiotics and lincomycin in natural isolates of Streptococcus pyogenes. Mol. Gen. Genet. 135: 349 367.
123. Malke, H.,, and S. E. Holm,. 1982. Streptococcal DNA cloning vehicles derived from a plasmid associated with zonal lincomycin resistance, p. 233 235. In S. E. Holm, and P. Christensen (éd.), Basic Concepts of Streptococci and Streptococcal Diseases. Reedbooks, Chertsey, England.
124. Malke, H.,, H. E. Jacob,, and K. Störl. 1976. Characterization of the antibiotic resistance plasmid ERL1 from Streptococcus pyogenes. Mol. Gen. Genet. 144: 333 338.
125. Malke, H.,, W. Reichardt,, M. Hartmann,, and F. Walter. 1981. Genetic study of plasmid-associated zonal resistance to lincomycin in Streptococcus pyogenes. Antimicrob. Agents Chemother. 19: 91 100.
126. Martin, J. P.,, G. H. del Solar,, R. Lurz,, A. G. de la Campa, B. Dobrinski, and M. Espinosa. 1989. Induced bending of plasmid pLSl DNA by the plasmid-encoded protein RepA. J. Biol. Chem. 264: 21334 21339.
127. Masai, H.,, N. Nomura,, and K.-I. Aral. 1990. The ABC-primosome: a novel priming system employing dnaA, dnaB, dnaC and primase on a hairpin containing a dnaA box sequence. J. Biol. Chem. 265: 15134 15144.
128. Masai, H.,, N. Nomura,, Y. Kubota,, and K.-I. Aral. 1990. Roles of (ø174 type primosome- and G4 type primase-dependent primings in initiation of lagging and leading strand syntheses of DNA replication. J. Biol. Chem. 265: 15124 15133.
129. McDougall, J.,, D. Margarita,, and I. Saint Girons. 1992. Homology of a plasmid from the spirochete Treponema denticola with the single-stranded DNA plasmid. J. Bacteriol. 174: 2724 2728.
129a.. McDowell, D. G.,, and N. H. Mann. 1991. Characterization and sequence analysis of a small plasmid from Bacillus thuringiensis var. kurstaki strain HD1-DIPEL. Plasmid 25: 113 120.
130. Mercier, J.,, J. Lachapelle,, F. Couture,, M. Lafond,, G. Vézlna,, M. Boissinot,, and R. C. Levesque. 1990. Structural and functional characterization of tnpl, a recombinase locus in Tn27 and related β-lactamase transposons. J. Bacteriol. 172: 3745 3757.
131.Michel, B., and S. D. Ehrlich. 1986. Illegitimate recombination at the replication origin of the bacteriophage M13. Proc. Natl. Acad. Sci. USA 83: 33863390.
132.Michel, B., and S. D. Ehrlich. 1986. Illegitimate recombination occurs between the replication origin of plasmid pC194 and a progressing replication fork. EMBO J. 5: 36913696.
133. Minton, N. P.,, T.-J. Swinfield,, J. K. Brehm,, S. M. Whelan,, and J. D. Oultram,. 1991. Vectors for use in Clostridium acetobutylicum, p. 120 140. In M. Sebald (éd.), Genetics and Molecular Biology of Anaerobic Bacteria. Springer Verlag, New York.
133a.. Morel, F. Personal communication.
134. Moriya, S.,, T. Fukuoka,, N. Ogasawara,, and H. Yoshi-kawa. 1988. Regulation of initiation by DnaA-boxes in the origin region of the Bacillus subtilis chromosome. EMBOJ. 7: 2911 2917.
135. Muller, R. E.,, T. Ano,, T. Imanaka,, and S. Aiba. 1986. Complete nucleotide sequences of Bacillus plasmids pUBHOdB, pRBHl and its copy mutants. Mol. Gen. Genet. 202: 169 171.
136. Mural, M.,, H. Miyashita,, H. Araki,, T. Seki,, and Y. Oshlma. 1987. Molecular structure of the replication origin of a Bacillus liquefaciens plasmid pFTB14. Mol. Gen. Genet. 210: 92 100.
137. Murphy, E. 1990. Properties of the site-specific trans-posable element Tn554, p. 123 135. In R. P. Novick (éd.), Molecular Biology of the Staphylococci. VCH Press, New York.
138. Niaudet, B.,, L. Jannlère,, and S. D. Ehrlich. 1984. Recombination between repeated DNA sequences occurs more often in plasmids than in the chromosome of Bacillus subtilis. Mol. Gen. Genet. 197: 46 54.
139. Noirot, P.,, and R. P. Novick. 1990. Initiation of rolling-circle replication in pT181 plasmid: initiator protein enhances cruciform extrusion at the origin. Proc. Natl. Acad. Sci. USA 87: 8560 8564.
140. Noirot, P.,, M.-A. Petit,, and S. D. Ehrlich. 1987. Plasmid replication stimulates DNA recombination in Bacillus subtilis. J. Mol. Biol. 196: 39 48.
140a.. Nomura, N.,, H. Masai,, M. Inuzuka,, C. Miyazaki,, E. Ohtsubo,, T. Itoh,, S. Sasamoto,, M. Matsui,, R. Ishizaki,, and K.-I. Aral. 1991. Identification of eleven single-strand initiation sequences (ssi) for priming of DNA replication in the F, R6K, R100 and ColE2 plasmids. Gene 108: 15 22.
141. Nordström, K. 1990. Control of plasmid replication— how do DNA itérons set the replication frequency? Cell 63: 1121 1124.
141a.. Novick, R. P. Personal communication.
142. Novick, R. P. 1963. Analysis by transduction of mutations affecting penicillinase formation in Staphylococcus aureus. J. Gen. Microbiol. 33: 121 136.
143. Novick, R. P. 1989. Staphylococcal plasmids and their replication. Annu. Rev. Microbiol. 43: 537 565.
144. Novick, R. P. 1991. Genetic systems in staphylococci. Methods Enzymol. 204: 587 636.
145. Novick, R. P.,, S. Iordanescu,, S. J. Projan,, J. Kornblum,, and I. Edelman. 1989. pT181 plasmid replication is regulated by a countertranscript-driven transcriptional attenuator. Cell 59: 395 404.
146. O’Connor, M. B.,, J. J. Kilbane,, and M. H. Malamy. 1986. Site-specific and illegitimate recombination in the oriVI region of the F factor: DNA sequences involved in recombination and resolution. J. Mol. Biol. 189: 85 102.
147. Ogasawara, N.,, M. Q. Fujita,, S. Moriya,, T. Fukuoka,, M. Hirano,, and H. Yoshikawa,. 1990. Comparative anatomy of oriC of eubacteria, p. 287 295. In K. Drlica, and M. Riley (éd.), The Bacterial Chromosome. American Society for Microbiology, Washington, D.C.
148. Oskam, L.,, D. J. Hillenga,, G. Venema,, and S. Bron. 1991. The large Bacillus plasmid pTB19 contains two integrated rolling-circle plasmids carrying mobilization functions. Plasmid 26: 30 39.
149. Oultram, J. D.,, and M. Young. 1985. Conjugal transfer of plasmid pAMβ1 from Streptococcus lactis and Bacillus subtilis to Clostridium acetobutylicum. FEMS Microbiol. Lett. 27: 129 134.
150. Peeters, B.,, J. de Voer,, S. Bron,, and G. Venema. 1988. Structural plasmid instability in Bacillus subtilis: effect of direct and inverted repeats. Mol. Gen. Genet. 212: 450 458.
151. Perez-Martin, J.,, and M. Espinosa. 1991. The RepA represser can act as a transcriptional activator by inducing DNA bends. EMBO J. 10: 1375 1382.
151a.. Perkins, D. R.,, and S. R. Barnum. 1992. DNA sequence and analysis of a cryptic 4.2 kb plasmid from the filamentous cyanobacterium, Plectonema sp. strain pCC6402. Plasmid 28: 170 176.
152. Petit, M.-A.,, C. Bruand,, L. Jannlère,, and S. D. Ehrlich. 1990. Tn10-derived transposons active in Bacillus subtilis. J. Bacteriol. 172: 6736 6740.
153. Petit, M.-A.,, G. Joliff,, J. M. Mesas,, A. Klier,, G. Rapo-port,, and S. D. Ehrlich. 1990. Hypersécrétion of a cellulase from Clostridium thermocellum in Bacillus subtilis by induction of chromosomal DNA amplification. Bio/Technology 8: 559 563.
154. Petit, M.-A.,, J. M. Mesas,, P. Noirot,, F. Morel,, and S. D. Ehrlich. 1992. Induction of DNA amplification in the Bacillus subtilis chromosome. EMBO J. 11: 1317 1326.
154a.. Polak, J. Personal communication.
155. Poyart-Salmeron, C.,, P. Trieu-Cuot,, C. Carlier,, and P. Courvalin. 1989. Molecular characterization of two proteins involved in the excision of the conjugative transposon Tn 1545: homologies with other site-specific recombinases. EMBO J. 8: 2425 2433.
156. Projan, S.,, S. Moghazeh,, and R. Novick. 1988. Nucleotide sequence of pS194, a streptomycin-resistance plasmid from Staphylococcus aureus. Nucleic Acids Res. 16: 2179 2187.
157. Projan, S.,, M. Monod,, C. Narayanan,, and D. Dubnau. 1987. Replication properties of pIM13, a naturally occurring plasmid found in Bacillus subtilis, and of its close relative pE5, a plasmid native to Staphylococcus aureus. J. Bacteriol. 169: 5131 5139.
158. Projan, S.,, and R. Novick. 1988. Comparative analysis of five related staphylococcal plasmids. Plasmid 19: 203 221.
159. Pucci, M. J.,, M. E. Monteschio,, and C. L. Kemker. 1988. Intergeneric and intrageneric conjugal transfer of plas-mid-encoded antibiotic resistance determinants in Leuconostoc spp. Appl. Environ. Microbiol. 54: 281 287.
159a.. Pujol, C.,, S. D. Ehrlich,, and L. J annlère. The promiscuous plasmids pIP501 and pAMβl from gram-positive bacteria encode cross-reacting resolution functions. Submitted for publication.
160. Rabinovich, P. M.,, M. Y. Haykinson,, L. S. Arutyunova,, Y. V. Yomantas,, and A. I. Stepanov,. 1985. T he structure and source of plasmid DNA determine the cloning properties of vectors for Bacillus subtilis, p. 635 652. In D. R. Helinski,, S. N. Cohen,, D. B. Clewell,, D. A. Jackson,, and A. Hollaender (ed.), Plasmids in Bacteria. Plenum Press, New York.
161. Rood, J. I.,, and S. T. Cole. 1991. Molecular genetics and pathogenesis of Clostridium perfringens. Microbiol. Rev. 55: 621 648.
162. Sadowski, P. 1986. Site-specific recombinases: changing partners and doing the twist. J. Bacteriol. 165: 341 347.
163. Seufert, W.,, and W. Messer. 1987. DnaA protein binding to the plasmid origin region can substitute for primo-some assembly during replication of pBR322 in vitro. Cell 48: 73 78.
164. Sherratt, D., 1989. Tn3-related transposable elements: site-specific recombination and transposition, p. 163 184. In D. E. Berg, and M. M. Howe (ed.), Mobile DNA. American Society for Microbiology, Washington, D.C.
165. Shrago, A. W.,, and W. J. Dobrogosz. 1988. Conjugal transfer of group B streptococcal plasmids and comobilization of Escherichia coli-Streptococcus shuttle plasmids to Lactobacillus plantarum. Appl. Environ. Microbiol. 54: 824 826.
166. Simon, D.,, and A. Chopin. 1988. Construction of a vector plasmid family and its use for molecular cloning in Streptococcus lactis. Biochimie 70: 559 566.
167. Skaugen, M. 1989. The complete nucleotide sequence of a small cryptic plasmid from Lactobacillus plantarum. Plasmid 22: 175 179.
168. Smith, H. O.,, A. M. Annau,, and S. Chandrasegaran. 1990. Finding sequence motifs in groups of functionally related proteins. Proc. Nail. Acad. Sci. USA 87: 826 830.
168a.. Sorokin, A. V. Personal communication.
169. Sorokln, A. V.,, and V. E. Khazak,. 1987. Structure of pSM19035 replication region and MLS-resistance gene, p. 269 281. In L. O. Butler,, C. Hartwood,, and B. E. B. Moseley (ed.), Genetic Transformation and Expression. Intercept Ltd., Andover, United Kingdom.
170. Sozhamannan, S.,, P. Dabert,, V. Moretto,, S. D. Ehrlich,, and A. Gruss. 1990. Plus-origin mapping of single-stranded DNA plasmid pE194 and nick site homologies with other plasmids. J. Bacteriol. 172: 4543 4548.
171. Stahl, F. W.,, J. M. Crasemann,, and M. M. Stahl. 1975. Rec-mediated recombinational hot spot activity in bac-teriophage lambda. J. Mol. Biol. 94: 203 212.
172. Swinfield, T. J.,, L. Jannière,, S. D. Ehrlich,, and N. P. Minton. 1991. Characterization of a region of the Enterococcus faecalis plasmid pAMβ1 which enhances the segregational stability of pAMβ1-derived cloning vectors in Bacillus subtilis. Plasmid 26: 209 221.
173. Swinfield, T. J.,, J. D. Oultram,, D. E. Thompson,, J. K. Brehm,, and N. P. Minton. 1990. Physical characterization of the replication region of the Streptococcus faecalis plasmid pAMβ1. Gene 87: 79 90.
174. Tannock, G. W. 1987. Conjugal transfer of plasmid pAMβ1 in Lactobacillus reuteri and between lactobacilli and Enterococcus faecalis. Appl. Environ. Microbiol. 53: 2693 2695.
175. Taylor, A. F., 1988. RecBCD enzyme in Escherichia coli, p. 231ndash; 263. In R. Kucherlapati, and G. R. Smith (éd.), Genetic Recombination. American Society for Microbiology, Washington, D.C.
176. te Riele, H.,, B. Michel,, and S. Ehrlich. 1986. Are single-stranded circles intermediates in plasmid DNA replication? EMBO J. 5: 631 637.
177. te Riele, H.,, B. Michel,, and S. Ehrlich. 1986. Single-stranded plasmid DNA in Bacillus subtilis and Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 83: 2541 2545.
178.Thomas, C. D., D. Balson, and W. V. Shaw. 1990. In vitro studies of the initiation of staphylococcal replication. J. Biol. Chem. 265: 55195530.
178a.. Thomas, C. M. Personal communication.
179.Thomas, C. M., and C. A. Smith. 1987. Incompatibility group P plasmids: genetics, evolution, and use in genetic manipulation. Annu. Rev. Microbiol. 41: 77101.
180. Thomas, W. D., Jr.,, and G. L. Archer. 1989. Identification and cloning of the conjugative transfer region of Staphylococcus aureus plasmid pGO1. J. Bacteriol. 171: 684 691.
181. Trieu-Cuot, P., C. Carlier, and P. Courvalin. 1988. Conjugative plasmid transfer from Enterococcus faecalis to Escherichia coli. J. Bacteriol. 170: 4388 4391.
182. Trieu-Cuot, P., C. Carlier, P. Martin, and P. Courvalin. 1987. Plasmid transfer by conjugation from Escherichia coli to gram-positive bacteria. FEMS Microbiol. Lett. 48: 289 294.
183. Trieu-Cuot, P., C. Carlier, C. Poyart-Salmeron, and P. Courvalin. 1991. Shuttle vectors containing a multiple cloning site and a lacZa gene for conjugal transfer of DNA from Escherichia coli to gram-positive bacteria. Gene 102: 99 104.
184. van der Lelie, D.,, S. Bron,, G. Venema,, and L. Oskam. 1989. Similarity of minus origins of replication and flanking open reading frames of plasmids pUBHO, pTB913 and pMV158. Nucleic Acids Res. 17: 7283 7294.
185. van Embden, J. D. A.,, N. Soedirman,, and H. W. B. Engel. 1978. Transferable drug resistance to group A and group B streptococci. Lancet i: 655 656.
186. Villafane, R.,, D. Bechhofer, C. Narayanan, and D. Dubnau. 1987. Replication control of genes of plasmid pE194. J Bacteriol. 169: 4822 4829.
187. Viret, J.-F.,, and J. C. Alonso. 1987. Generation of linear multigenome-length plasmid molecules in Bacillus subtilis. Nucleic Acids Res. 15: 6349 6367.
187a.. Vujcic, M.,, and L. Topisirovic. 1993. Molecular analysis of the rolling-circle replicating plasmid pAl of Lactobacillus plantarum Al 12. Appl. Environ. Microbiol. 59: 274 280.
188. Wang, P.-Z.,, S. Projan,, V. Henriquez,, and R. P. Novick. 1992. Specificity of origin recognition by replication initiator protein in plasmids of the pT181 family is determined by a six amino acid residue element. J. Mol. Biol. 223: 145 158.
189.West, C. A., and P. J. Warner. 1985. Plasmid profiles and transfer of plasmid-encoded antibiotic resistance in Lactobacillus plantarum. Appl. Environ. Microbiol. 50: 13191321.
190. Willetts, N.,, and R. Skurray,. 1987. Structure and function of the F factor and mechanism of conjugation, p. 1110 1133. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (éd.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology, Washington, D.C.
191. Willetts, N.,, and B. Wilkins. 1984. Processing of plasmid DNA during bacterial conjugation. Microbiol. Rev. 48: 24 41.
192. Xu, F.,, L. E. Pierce,, and P.-L. Yu. 1989. Genetic analysis of a lactococcal plasmid replicon. Mol. Gen. Genet. 227: 33 39.
193. Yakusawa, H.,, T. Hase,, A. Sakai,, and Y. Masamune. 1991. Rolling-circle replication of the plasmid pKYM isolated from a gram-negative bacterium. Proc. Natl. Acad. Sci. USA 88: 10282 10286.
194. Young, M.,, and S. D. Ehrlich. 1989. Stability of reiterated sequences in the Bacillus subtilis chromosome. J. Bacteriol. 171: 2653 2656.
195. Youngman, P., 1987. Plasmid vectors for recovering and exploiting Tn917 transpositions in Bacillus and other gram-positive bacteria, p. 79 103. In K. Hardy (ed.), Plasmids, a Practical Approach. IRL Press, Oxford.
196. Zavitz, K. H. ,and K. J. Marians. 1991. Dissecting the functional role of PriA protein-catalysed primosome assembly in Escherichia coli DNA replication. Mol. Microbiol. 5: 2869 2873.

Tables

Generic image for table
Table 1

Rolling-circle plasmids and their hosts of origin

Citation: Jannière L, Grass A, Ehrlich S. 1993. Plasmids, p 625-644. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch43
Generic image for table
Table 2

pAMβ1 plasmid family

Citation: Jannière L, Grass A, Ehrlich S. 1993. Plasmids, p 625-644. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch43
Generic image for table
Table 3

replicating plasmids which do not belong to the pAM1 family

Citation: Jannière L, Grass A, Ehrlich S. 1993. Plasmids, p 625-644. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch43

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error