1887

Chapter 45 : RNA Polymerase and Transcription Factors

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

RNA Polymerase and Transcription Factors, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap45-1.gif /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap45-2.gif

Abstract:

Gene expression in bacteria is regulated primarily at the level of transcription. Transcription and its regulation have been studied extensively in several gram-negative bacteria, especially , but mostly neglected in gram-positive bacteria. The major exception is , which because of its amenability to genetic analysis has served as a paradigm for understanding transcription in gram-positive bacteria. This chapter attempts to provide an overview of the roles of the major families of proteins required for transcription and its regulation in . Emphasis is placed on comparing the roles of these factors in and gram-negative bacteria. The product from , associates with RNA polymerase after initiation of transcription and remains associated with the elongation complex. The sigma subunit of RNA polymerase determines the specificity of promoter utilization. There are at least 10 different sigma factors in , each of which directs RNA polymerase to a different set of promoters. Two regions in most sigma factors in bacteria probably determine the specificity of promoter utilization by making sequence-specific contacts at two regions of promoters located approximately 10 and 35 bp upstream from the start point of transcription. Examples of the use of altered specificity mutations in sigma factors to determine the role of these factors during sporulation are also described.

Citation: Moran, Jr. C. 1993. RNA Polymerase and Transcription Factors, p 653-667. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch45

Key Concept Ranking

Transcription Start Point
0.5538879
Structural Genes
0.40645733
0.5538879
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Model of interactions of with a consensus promoter. Nucleotide sequences are the canonical hexameric sequences found at the −10 and −35 regions of consensus -dependent promoters. Above the promoter sequences are the amino acid sequences (one-letter code) in that may interact with the −35 and −10 regions of promoters. Used with permission from the publisher ( ).

Citation: Moran, Jr. C. 1993. RNA Polymerase and Transcription Factors, p 653-667. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch45
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

The -10 recognition regions of sigma factors. Amino acid sequences are those of the regions in sigma factors that may interact with the −10 regions of promoters. Sigma factors are from except for two from ( and ). Circles indicate positions at which amino acid substitutions specifically suppress the effects of mutations in the −10 regions of promoters, ( ), ( ), ( ), and ( ). Conserved regions are shaded. Used with permission of the publisher ( ).

Citation: Moran, Jr. C. 1993. RNA Polymerase and Transcription Factors, p 653-667. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch45
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

The −35 recognition regions of sigma factors. Amino acid sequences are those of the regions in sigma factors that may interact with the -35 regions of promoters. Sigma factors are from except for two from ( and ). Circles indicate positions at which amino acid substitutions specifically suppress the effects of mutations in the −35 regions of promoters, ( ), and A ( ) or in F to change the specificity to - and -like ( ). Sequences are aligned and conserved regions are shaded according to Stragier et al. ( ).

Citation: Moran, Jr. C. 1993. RNA Polymerase and Transcription Factors, p 653-667. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch45
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Morphological stages of endospore formation in . Stages of endospore development are described in the text. The vegetative cell begins endospore development during stage 0. Completion of the asymmetric cell division marks stage II. Engulfment of the forespore protoplast is completed in stage III. The spore coat begins to accumulate in stage IV. Subsequent maturation of the spore during the late stages culminates in mother cell lysis and release of the mature spore. Accumulation and activities of the RNA polymerase sigma factors during the endospore development are also indicated, and H are active during the earliest stage of sporulation. The concentration of increases fourfold at the onset of sporulation (active factors are indicated with boldface type). is shown in both the mother cell and the forespore; however, it is active predominantly in the forespore. The symbol― indicates that is held inactive until after septation and that is held inactive until after engulfment of the forespore. is produced predominantly in the forespore, and is produced predominantly in the mother cell. This figure is based on results described in the text and a similar figure in reference .

Citation: Moran, Jr. C. 1993. RNA Polymerase and Transcription Factors, p 653-667. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch45
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818388.chap45
1. Adams, L. F.,, K. L. Brown,, and J. R. Whitely. 1991. Molecular cloning and characterization of two genes encoding sigma factors that direct transcription from a Bacillus thuringiensis crystal protein gene promoter. J. Bacteriol. 173: 3846 3854.
2. Adhya, S.,, and S. Garges. 1990. Positive control. J. Biol. Chem. 265: 10797 10800.
3. Allison, L. A.,, M. Moyle,, M. Shales, and C. J. Ingles. 1985. Extensive homology among the largest subunits of eukaryotic and prokaryotic RNA polymerases. Cell 42: 599 610.
4. Amster-Choder, O.,, F. Houman,, and A. Wright. 1989. Protein phosphorylation regulates transcription of the /3-glucoside utilization operon in E. coli. Cell 58: 847 855.
5. Arnosti, D. N.,, and M. J. Chamberlin. 1989. Secondary σ factor controls transcription of flagellar and chemo-taxis genes in Escherichia coli. Proc. Natl. Acad. Sci. USA 86: 830 834.
6. Baldus, J.,, and C. P. Moran, Jr. 1992. Unpublished data.
7. Benson, A. K.,, and W. G. Haldenwang. 1992. Characterization of a regulatory network that controls σ 8 expression in Bacillus subtilis. J. Bacteriol. 174: 749 757.
8. Biggs, J.,, L. L. Searles,, and A. L. Greenleaf. 1985. Structure of the eukaryotic transcription apparatus: features of the gene for the largest subunit of Dros-ophila RNA polymerase II. Cell 42: 611 621.
9. Binnie, C.,, M. Lampe,, and R. Losick. 1986. Gene encoding the σ37 species of RNA polymerase σ factor from Bacillus subtilis. Proc. Natl. Acad. Sci. USA 83: 5943 5947.
10. Bohannon, D. E.,, and A. L. Sonenshein. 1989. Positive regulation of glutamate biosynthesis in Bacillus subtilis. J. Bacteriol. 171: 4718 4727.
11. Boylan, S. A.,, J.-W. Suh,, S. M. Thomas,, and C. W. Price. 1989. Gene encoding the alpha core subunit of Bacillus subtilis RNA polymerase is cotranscribed with the genes for initiation factor 1 and ribosomal proteins B, S13, S11, and L17. J. Bacteriol. 171: 2553 2562.
12. Boylan, S. A.,, M. D. Thomas,, and C. W. Price. 1991. Genetic method to identify régulons controlled by non-essential elements: isolation of a gene dependent on alternate transcription factor σB of Bacillus subtilis. J. Bacteriol. 173: 7856 7866.
13. Burbulys, D.,, K. A. Trach,, and J. A. Hoch. 1991. Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell 64: 545 552.
14. Buttner, M. J.,, and N. L. Brown. 1985. RNA poly-merase-DNA interactions in Streptomyces. J. Mol. Biol. 185: 177 188.
15. Buttner, M. J.,, K. F. Chater,, and M. J. Bibb. 1990. Cloning, disruption, and transcriptional analysis of three RNA polymerase sigma factor genes of Streptomyces coelicolor A3(2). J. Bacteriol. 172: 3367 3378.
16. Buttner, M. J.,, A. M. Smith,, and M. J. Bibb. 1988. At least three different RNA polymerase holoenzymes direct transcription of the agarose gene (dagA) of Streptomyces coelicolor A3(2). Cell 52: 599 607.
17. Caparon, M. G.,, and J. R. Scott. 1987. Identification of a gene that regulates expression of M protein, the major virulence determinant of group A streptococci. Proc. Natl. Acad. Sci. USA 84: 8677 8681.
18. Carlson, H. C.,, and W. G. Haldenwang. 1989. The σE subunit of Bacillus subtilis RNA polymerase is present in both forespore and mother cell compartments. J. Bacteriol. 171: 2216 2218.
19. Carter, H. L., III,, L. F. Wang,, R. H. Doi,, and C. P. Moran, Jr. 1988. rpoD operon promoter used by σ H-RNA polymerase in Bacillus subtilis. J. Bacteriol. 170: 1617 1621.
20. Coppolecchia, R.,, H. DeGrazia,, and C. P. Moran, Jr. 1991. Deletion of spoilAB blocks endospore formation in Bacillus subtilis at an early stage. J. Bacteriol. 173: 6678 6685.
21. Crutz, A.,, M. Steinmetz,, S. Aymerich,, R. Richter,, and D. LeCoq. 1990. Induction of levansucrase in Bacillus subtilis: an antitermination mechanism negatively controlled by the phosphotransferase system. J. Bacteriol. 172: 1043 1050.
22. Cutting, S.,, A. Drlks,, R. Schmidt,, B. Kunkel,, and R. Losick. 1991. Forespore-specific transcription of a gene in the signal transduction pathway that governs pro-σK processing in Bacillus subtilis. Genes Dev. 5: 456 466.
23. Cutting, S.,, V. Oke,, A. Drlks,, R. Losick,, S. Lu,, and L. Kroos. 1990. A forespore checkpoint for mother cell gene expression during development in B. subtilis. Cell 62: 239 250.
24. Cutting, S.,, S. Panzer,, and R. Losick. 1989. Regulatory studies on the promoter for a gene governing synthesis and assembly of the spore coat in Bacillus subtilis. J. Mol. Biol. 207: 393 404.
25. Dahl, M. K.,, T. Msadek,, F. Kunst,, and G. Rapoport. 1991. Mutational analysis of the Bacillus subtilis DegU regulator and its phosphorylation by the DegS protein kinase. J. Bacteriol. 173: 2539 2547.
26. Daniels, D.,, P. Zuber,, and R. Losick. 1990. Two amino acids in an RNA polymerase σ factor involved in the recognition of adjacent base pairs in the -10 region of a cognate promoter. Proc. Natl. Acad. Sci. USA 87: 8075 8079.
27. Débarbouille, M.,, I. Martin-Verstraete,, A. Klier,, and G. Rapoport. 1991. The transcriptional regulator LevR of Bacillus subtilis has domains homologous to both ?54-and phosphotransferase system-dependent regulators. Proc. Natl. Acad. Sci. USA 88: 2212 2216.
28. Débarbouille, M.,, I. Martin-Verstraete,, F. Kunst,, and G. Rapoport. 1991. The Bacillus subtilis sigL gene encodes an equivalent of σ54 from gram-negative bacteria. Proc. Natl. Acad. Sci. USA 88: 9092 9096.
29. Doi, R. H.,, T. Kudo,, and C. Dickel. 1981. RNA polymerase forms in vegetative and sporulating cells of Bacillus subtilis, p. 219 223. In H. S. Levinson,, A. L. Sonenshein,, and D. J. Tipper (ed.), Sporulation and Germination. American Society for Microbiology, Washington, D.C.
30. Doi, R. H.,, and L.-F. Wang. 1986. Multiple procaryotic ribonucleic polymerase sigma factors. Microbiol. Rev. 50: 227 243.
31. Drlks, A.,, and R. Losick. 1991. Compartmentalized expression of a gene under the control of sporulation transcription factor crE in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 88: 9934 9938.
32. Dubnau, D., 1989. The competence regulon of Bacillus subtilis, p. 147 166. In I. Smith,, R. A. Slepecky,, and P. Setlow (ed.). Regulation of Procaryotic Development. American Society for Microbiology, Washington, D.C.
33. Dubnau, E.,, J. Weir,, G. Nair,, H. L. Carter III,, C. P. Moran, Jr.,, and I. Smith. 1988. Bacillus sporulation gene spoOH codes for σ 30H). J. Bacteriol. 170: 1054 1062.
34. Duncan, M. L.,, S. S. Kalman,, S. M. Thomas,, and C. W. Price. 1987. Gene encoding the 37,000-dalton minor sigma factor of Bacillus subtilis RNA polymerase: isolation, nucleotide sequence, chromosomal locus, and cryptic function. J. Bacteriol. 169: 771 778.
35. Eiglmeier, K.,, N. Honore,, S. Luchi,, E. C. C. Lin,, and S. T. Cole. 1989. Molecular genetic analysis of FNR-dependent promoters. Mol. Microbiol. 3: 869 878.
36. Ferrari, F. A.,, K. Trach,, D. LeCoq,, J. Spence,, E. Ferrari,, and J. A. Hoch. 1985. Characterization of the spoOA Locus and its deduced product. Proc. Natl. Acad. Sci. USA 82: 2647 2651.
37. Fouet, A.,, and A. L. Sonenshein. 1990. A target for carbon source-dependent negative regulation of the citB promoter of Bacillus subtilis. J. Bacteriol. 172: 835 844.
38. Foulger, D.,, and J. Errington. 1991. Sequential activation of dual promoters by different sigma factors maintains spoVJ expression during successive developmental stages of Bacillus subtilis. Mol. Microbiol. 5: 1363 1373.
39. Friedman, D. I.,, E. R. Olson,, C. Georgopoulos,, K. Tilly,, I. Herskowitz, and F. Banuett. 1984. Interactions of bacteriophage and host macromolecules in the growth of bacteriophage. Microbiol. Rev. 48: 299 325.
40. Fujita, Y.,, and T. Fujita. 1987. The gluconate operon gnt of Bacillus subtilis encodes its own transcriptional negative regulator. Proc. Natl. Acad. Sci. USA 84: 4524 4528.
41. Fujita, Y.,, and Y. Miwa. 1989. Identification of an operator sequence for the Bacillus subtilis gnt operon. J. Biol. Chem. 264: 4201 4206.
42. Gardella, T.,, H. Moyle,, and M. M. Sussklnd. 1989. A mutant E. coli σ 70 subunit of RNA polymerase with altered promoter specificity. J. Mol. Biol. 206: 579 590.
43. Gamier, T.,, and S. T. Cole. 1988. Studies of UV-inducible promoters from Clostridium perfringens in vivo and in vitro. Mol. Microbiol. 2: 607 614.
44. Gaur, N. K.,, J. Oppenhelm,, and I. Smith. 1991. The Bacillus subtilis sin gene, a regulator of alternate developmental processes, codes for a DNA-binding protein. J. Bacteriol. 173: 678 686.
45. Gentry, D. R.,, and R. R. Burgess. 1986. The cloning and sequence of the gene encoding the omega subunit of Escherichia coli RNA polymerase. Gene 48: 33 40.
46. Gholamhoseinian, A.,, and P. J. Piggot. 1989. Timing of spoil gene expression relative to septum formation during sporulation of Bacillus subtilis. J. Bacteriol. 171: 5747 5749.
47. Gilman, M. Z.,, J. L. Wings,, and M. J. Chamberlin. 1981. Nucleotide sequence of two Bacillus subtilis promoters used by Bacillus subtilis sigma-28 RNA polymerase. Nucleic Acids Res. 9: 5991 6000.
48. Gitt, M. A.,, L. F. Wang,, and R. H. Doi. 1985. A strong sequence homology exists between RNA polymerase sigma factors of Bacillus subtilis and Escherichia coli. J. Biol. Chem. 260: 7178 7185.
49. Gollnick, P.,, S. Ishino,, M. I. Kuroda,, D. J. Henner, and C. Yanofsky. 1990. The mtr locus is a two-gene operon required for transcription attenuation in the trp operon of Bacillus subtilis. Proc. Natl. Acad. Sci. USA 87: 8726 8730.
50. Gralla, J. D. 1991. Transcriptional control—lessons from an E. coli promoter data base. Cell 66: 415 418.
51. Gutowski, J. C.,, and H. J. Schreier. 1992. Interaction of the Bacillus subtilis glnRA repressor with operator and promoter sequences in vivo. J. Bacteriol. 174: 671 681.
52. Guzman, P.,, J. Westpheling,, and P. Youngman. 1988. Characterization of the promoter region of the Bacillus subtilis spoIIE operon. J. Bacteriol. 170: 1598 1609.
53. Healy, J.,, J. Weir,, I. Smith,, and R. Losick. 1991. Post-transcriptional control of a sporulation regulatory gene encoding transcription factor oH in Bacillus subtilis. Mol. Microbiol. 5: 477 487.
54. Helman, J. D.,, and M. J. Chamberlin. 1988. Structure and function of bacterial sigma factors. Annu. Rev. Biochem. 57: 839 879.
55. Helman, J. D.,, L. M. Marquez,, and J. J. Chamberlin. 1988. Cloning, sequencing and disruption of the Bacillus subtilis alb gene. J. Bacteriol. 170: 1568 1574.
56. Henikoff, S.,, G. W. Haughn,, J. M. Calvo,, and J. C. Wallace. 1988. A large family of bacterial activator proteins. Proc. Natl. Acad. Sci. USA 85: 6602 6606.
57. Henkin, T. M.,, and A. L. Sonenshein. 1987. Mutations of the Escherichia coli lacUVS promoter resulting in increased expression in Bacillus subtilis. Mol. Gen. Genet. 209: 467 474.
58. Henner, D. J.,, M. Yang,, and E. Ferrari. 1988. Localization of Bacillus subtilis sacU(Hy) mutations to two linked genes with similarities to the conserved family of two-component signalling systems. J. Bacteriol. 170: 5102 5109.
59. Hirschman, J.,, P. K. Wong,, K. Sei,, J. Keener,, and S. Kustu. 1985. Products of nitrogen regulatory genes ntrA and ntrC of enteric bacteria activate glnA transcription in vifro: evidence that the ntrA product is a sigma factor. Proc. Natl. Acad. Sci. USA 82: 7525 7529.
60. Hunt, T. P.,, and B. Magasanik. 1985. Transcription of glnA by purified Escherichia coli components: core RNA polymerase and the products of glnF, glnG and glnL. Proc. Natl. Acad. Sci. USA 82: 8453 8457.
61. Igo, M.,, M. Lampe,, C. Ray,, W. Schafer,, C. P. Moran, Jr.,, and R. Losick. 1987. Genetic studies of a secondary RNA polymerase sigma factor in Bacillus subtilis. J. Bacteriol. 169: 3464 3469.
62. Illing, N.,, and J. Errington. 1991. Genetic regulation of morphogenesis in Bacillus subtilis: roles of σE and σF in prespore engulfment. J. Bacteriol. 173: 3159 3169.
63. Imanaka, T.,, T. Himeno,, and S. Alba. 1987. Cloning and nucleotide sequence of the penicillinase antirepres-sor gene penJ of Bacillus licheniformis. J. Bacteriol. 169: 3867 3872.
64. Iordanescu, S. 1991. The Staphylococcus aureus chromosomal gene plaC, identified by mutations amplifying plasmid pT181, encodes a sigma factor. Nucleic Acids Res. 19: 4921 4924.
65. Jaacks, K. J.,, J. Healy,, R. Losick,, and A. Grossman. 1989. Identification and characterization of genes controlled by the sporulation-regulatory gene spoOH in Bacillus subtilis. J. Bacteriol. 171: 4121 4129.
66. Johnson, W. C.,, C. P. Moran, Jr.,, and R. Losick. 1983. Two RNA polymerase σ from Bacillus subtilis discriminate between overlapping promoters for a develop-mentally regulated gene. Nature (London) 302: 800 804.
67. Jonas, R. M.,, and W. G. Haldenwang. 1989. Influence of spo mutations of σE synthesis in Bacillus subtilis. J. Bacteriol. 171: 5226 5228.
68. Jones, C. H.,, and C. P. Moran, Jr. 1991. A mutant sigma factor blocks the transition between promoter binding and initiation of transcription. Proc. Natl. Acad. Sci. USA 89: 1958 1962.
69. Kalman, S.,, M. L. Duncan,, S. M. Thomas,, and C. W. Price. 1990. Similar organization of the sigB and spoil A opérons encoding alternate sigma factor of Bacillus subtilis RNA polymerase. J. Bacteriol. 172: 5575 5585.
70. Karmazyn-Campelli, C.,, C. Bonamy,, B. Savelll,, and P. Stragier. 1989. Tandem gene encoding σ factors for consecutive steps of development in Bacillus subtilis. Genes Dev. 3: 150 157.
71. Kenney, T. J.,, P. A. Kirchman,, and C. P. Moran, Jr. 1988. Gene encoding σE is transcribed from a σA-like promoter in Bacillus subtilis. J. Bacteriol. 170: 3058 3064.
72. Kenney, T. J.,, and C. P. Moran, Jr. 1987. Organization and regulation of an operon that encodes a sporulation-essential sigma factor in Bacillus subtilis. J. Bacteriol. 169: 3329 3339.
73. Kenney, T. J.,, and C. P. Moran, Jr. 1991. Genetic evidence for interaction of σA with two promoters in Bacillus subtilis. J. Bacteriol. 173: 3282 3290.
74. Kenney, T. J.,, K. York,, P. Youngman,, and C. P. Moran, Jr. 1989. Genetic evidence that RNA polymerase associated with σA uses a sporulation-specific promoter in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 86: 9109 9113.
74a. Kirchman, P.,, and C. P. Moran. Unpublished data.
75. Kobayashi, T.,, Y. F. Zhu,, X. J. Nlcholls,, and J. O. Lampen. 1987. A second regulatory gene, blaRl, encoding a potential penicillin-binding protein for induction of /3-lactamase in Bacillus licheniformis. J. Bacteriol. 169: 3873 3878.
76. Kroos, L.,, B. Kunkel,, and R. Losick. 1989. Developmental regulatory protein from Bacillus subtilis. Science 243: 526 528.
77. Kunkel, B.,, L. Kroos,, H. Poth,, P. Youngman,, and R. Losick. 1989. Temporal and spatial control of the mother-cell regulatory gene spoIIID of Bacillus subtilis. Genes Dev. 3: 1735 1744.
78. Kunkel, B.,, R. Losick,, and P. Stragier. 1990. The Bacillus subtilis gene for the developmental transcription factor σK is generated by excision of a dispensable DNA element containing a sporulation recombinase gene. Genes Dev. 4: 525 535.
79. Kunkel, B.,, K. Sandman,, S. Panzer,, P. Youngerman,, and R. Losick. 1988. Identification of the promoter for the Bacillus subtilis sporulation locus spoVC and its use in studies of temporal and spatial control of gene expression. J. Bacteriol. 170: 3515 3522.
80. Kunst, F.,, M. Débarbouille,, T. Msadek,, M. Young,, C. Mauel,, D. Karamata,, A. Klier,, G. Rapoport,, and R. Dedonder. 1988. Deduced polypeptides encoded by the Bacillus subtilis sacU locus share homology with two-component sensor-regulator systems. J. Bacteriol. 170: 5093 5101.
81. Kuroda, M. I.,, D. Henner, and C. Yanofsky. 1988. cis-acting sites in the transcript of the Bacillus subtilis trp operon regulate expression of the operon. J. Bacteriol. 170: 3038 3088.
82. LaBell, T. J.,, J. E. Trempy,, and W. G. Haldenwang. 1987. Sporulation-specific σ factor σ29 of Bacillus subtilis is synthesized from a precursor protein, P31. Proc. Natl. Acad. Sci. USA 84: 1784 1788.
83. Lampe, M.,, C. Binnie,, R. Schmidt,, and R. Losick. 1988. Cloned gene encoding the delta subunit of Bacillus subtilis RNA polymerase. Gene 67: 13 19.
84. Losick, R.,, and J. Pero. 1981. Cascades of sigma factors. Cell 25: 582 584.
85. Losick, R.,, and P. Stragier. 1992. Crisscross regulation of cell-type-specific gene expression during development in Bacillus subtilis. Nature (London) 353: 601 604.
86. Mandic-Mulec, I.,, N. Gaur,, U. Bai,, and I. Smith. 1992. Sin, a stage-specific repressor of cellular differentiation. J. Bacteriol. 174: 3561 3569.
87. Margolis, P.,, A. Driks,, and R. Losick. 1991. Establishment of cell type of compartmentalized activation of a transcription factor. Science 254: 562 565.
88. McClure, W. 1985. Annu.Rev.Biochem. 54: 171 204.
89. Mirel, D. B.,, and M. J. Chamberlin. 1989. The Bacillus subtilis flagellin gene (hag) is transcribed by the σ28 form of RNA polymerase. J. Bacteriol. 171: 3095 3101.
90. Miwa, Y.,, and Y. Fujita. 1988. Purification and characterization of a repressor for the Bacillus subtilis gnt operon. J. Biol. Chem. 263: 13252 13257.
91. Moran, C. P., Jr., 1989. Sigma factors and the regulation of transcription, p. 167 184. In I. Smith,, R. Slepecky,, and P. Setlow (ed.), Regulation of Procaryotic Development. American Society for Microbiology, Washington, D.C.
92. Moran, C. P., Jr.,, N. Lang,, S. F. J. LeGrice,, G. Lee,, M. Stephens,, A. L. Sonnenshein,, J. Pero,, and R. Losick. 1982. Nucleotide sequences that signal the initiation of transcription and translation in Bacillus subtilis. Mol. Gen. Genet. 186: 339 346.
93. Mukai, K.,, M. Kawata,, and T. Tanaka. 1990. Isolation and phosphorylation of the Bacillus subtilis degS and degU gene products. J. Biol. Chem. 265: 20000 20006.
94. Nicholson, W. L.,, Y. Park,, T. M. Henkin,, M. Won,, M. J. Weikert,, J. A. Gaskell,, and G. H. Chambliss. 1987. Catabolite repression-resistant mutations of the Bacillus subtilis alpha-amylase promoter affect transcription levels and are in an operator-like sequence. J. Mol. Biol. 198: 609 618.
95. Nicholson, W. L.,, D. Sun,, B. Setlow,, and P. Setlow. 1989. Promoter specificity of oG-containing RNA polymerase from sporulating cells of Bacillus subtilis: identification of a group of forespore-specific promoters. J. Bacteriol. 171: 2708 2718.
96. Ohnishl, H.,, K. Kusukake,, H. Suzuki,, and T. lino. 1990. Gene fliA encodes an alternative sigma factor specific for flagellar opérons in Salmonella typhimurium. Mol. Gen. Genet. 221: 139 147.
97. Olmedo, G.,, E. G. Ninfa,, J. Stock,, and P. Youngman. 1990. Novel mutations that alter the regulation of sporulation in Bacillus subtilis. Evidence that phos-phorylation of regulatory protein SpoOA controls the initiation of sporulation. J. Mol. Biol. 215: 359 372.
98. Oskouian, B.,, and G. C. Stewart. 1990. Repression and catabolite repression of the lactose operon of Staphylo-coccus aureus. J. Bacteriol. 172: 3804 3812.
99. Panzer, S.,, R. Losick,, D. Sun,, and P. Setlow. 1989. Evidence for an additional temporal class of gene expression in the forespore compartment of sporulating Bacillus subtilis. J. Bacteriol. 171: 561 564.
100. Perego, M.,, G. B. Splegelman,, and J. A. Hoch. 1988. Structure of the gene for the transition state regulator, abrB: regulator synthesis is controlled by the spoOA sporulation gene in Bacillus subtilis. Mol. Microbiol. 2: 689 699.
101. Pich, A.,, and H. Bahl. 1991. Purification and characterization of the DNA-dependent RNA polymerase from Clostridium acetobutylicum. J. Bacteriol. 173: 2120 2124.
102. Price, C. W. 1992. Personal communication.
103. Rather, P. N.,, R. Coppolecchia,, H. DeGrazia,, and C. P. Moran, Jr. 1990. Negative regulator of σG-controlled gene expression in stationary-phase Bacillus subtilis. J. Bacteriol. 172: 709 715.
104. Ray, C.,, R. E. Hay,, H. L. Carter III,, and C. P. Moran, Jr. 1985. Mutations that affect utilization of a promoter in stationary-phase Bacillus subtilis. J. Bacteriol. 163: 610 614.
105. Robbins, J. C.,, J. G. Spanier,, S. J. Jones,, W. J. Simpson,, and P. P. Cleary. 1987. Streptococcus pyrogenes type 12 M protein gene regulation by upstream sequences. J. Bacteriol. 169: 5633 5640.
106. Robertson, J. B.,, M. Gocht,, M. A. Marahlel,, and P. Zuber. 1989. AbrB, a regulator of gene expression in Bacillus, interacts with the transcription initiation regions of a sporulation gene and an antibiotic biosynthesis gene. Proc. Natl. Acad. Sci. USA 86: 8457 8461.
107. Roels, S.,, A. Driks,, and R. Losick. 1992. Characterization of spoTVA, a sporulation gene involved in coat morphogenesis in Bacillus subtilis. J. Bacteriol. 174: 575 585.
108. Ronson, C. W.,, B. T. Nixon,, and F. M. Ausubel. 1987. Conserved domains in bacterial regulatory proteins that respond to environmental stimuli. Cell 49: 579 581.
109. Sasse-Dwight, S.,, and J. D. Gralla. 1990. Role of eukaryotic-type functional domains found in the prokaryotic enhancer receptor factor σ54. Cell 62: 945 954.
110. Sato, T.,, Y. Samori,, and Y. Kobayashi. 1990. The cisA cistron of Bacillus subtilis gene spoTVC encodes a protein homologous to a site-specific recombinase. J. Bacteriol. 172: 1092 1098.
111. Satola, S.,, P. Klrchman,, and C. P. Moran, Jr. 1991. SpoOA binds to a promoter used by σA RNA polymerase during sporulation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 88: 4533 4537.
112. Satola, S. W.,, J. M. Baldus,, and C. P. Moran, Jr. 1992. Binding of SpoOA stimulates spoIIG promoter activity in Bacillus subtilis. J. Bacteriol. 174: 1448 1453.
113. Schmidt, R.,, P. Margolis,, L. Duncan,, R. Coppolecchia,, C. P. Moran, Jr., and R. Losick. 1990. Control of developmental transcription factor &F by sporulation regulatory proteins SpoIIAA and SpoIIAB in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 87: 9221 9225.
114. Schreier, H. J.,, S. W. Brown,, K. D. Hirschi,, J. F. Nomellini,, and A. L. Sonenshein. 1989. Regulation of Bacillus subtilis glutamine synthetase gene expression by the product of the glnR gene. J. Mol. Biol. 210: 51 63.
115. Seki, T.,, H. Yoshikawa,, H. Takahashi,, and H. Saito. 1987. Cloning and nucleotide sequence of phoP, the regulatory gene for alkaline phosphotase and phosphor-diesterase in Bacillus subtilis. J. Bacteriol. 169: 2913 2916.
116. Setlow, P. 1973. Inability to detect cAMP in vegetative or sporulating cells or dormant spores of Bacillus megaterium. Biochem. Biophys. Res. Commun. 52: 365 372.
117. Shimotsu, H.,, and D. J. Henner. 1984. Characterization of the Bacillus subtilis tryptophan promoter region. Proc. Natl. Acad. Sci. USA 81: 6315 6319.
118. Shimotsu, H.,, M. I. Kuroda,, C. Yanofsky,, and D. J. Henner. 1986. Novel form of transcription attenuation regulates expression of the Bacillus subtilis tryptophan operon. J. Bacteriol. 166: 461 471.
119. Shorenstein, R. G.,, and R. Losick. 1973. Comparative size and properties of sigma subunits of ribonucleic acid polymerase from Bacillus subtilis and Escherichia coli. J. Biol. Chem. 248: 6170 6173.
120. Siegle, D. A.,, J. C. Hu,, W. A. Walter,, and C. A. Gross. 1989. Altered promoter recognition by mutant forms of the σ70 subunit of Escherichia coli RNA polymerase. J. Mol. Biol. 206: 591 603.
121. Smith, I.,, R. Slepecky,and P.Setlow(ed.). 1989. Regulation of Procaryotic Development. American Society for Microbiology, Washington,D.C.
122. Stetter, K. O.,, and W. Zillig. 1974. Transcription in Lactobacillaceae. Eur. J. Biochem. 48: 527 540.
123. Stevens, C. M.,, and J. Errington. 1990. Differential gene expression during sporulation in Bacillus subtilis: structure and regulation of the spoIIID gene. Mol. Microbiol. 4: 543 551.
124. Stock, J. B.,, A. J. Ninfa,, and A. M. Stock. 1989. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol. Rev. 53: 450 490.
125. Stragier, P.,, B. Kunkel,, L. Kroos,, and R. Losick. 1989. Chromosomal rearrangement generating a composite gene for a developmental transcription factor. Science 243: 507 512.
126. Stragier, P.,, and R. Losick. 1990. Cascades of sigma factors revisited. Mol. Microbiol. 4: 1801 1806.
127. Strauch, M.,, V. Webb,, G. Splegelman,, and J. A. Hoch. 1990. The SpoOA protein of Bacillus subtilis is a repres-sor of the abrB gene. Proc. Natl. Acad. Sci. USA 87: 1801 1805.
128. Strauch, M. A.,, G. B. Splegelman,, M. Perego,, W. C. Johnson,, D. Burbulys,, and J. A. Hoch. 1989. The transition state transcription regulator abrB of Bacillus subtilis is a DNA binding protein. EMBO J. 8: 1615 1621.
129. Sun, D.,, P. Fajardo-Cavazos,, D. Sussman,, F. Tovar-Rojo,, R. Cabera-Martinez,, and P. Setlow. 1991. Effect of chromosome location of Bacillus subtilis forespore genes on their spo gene dependence and transcription by Eσ;TF: identification of features of good EoF-depen-dent promoters. J. Bacteriol. 173: 7867 7874.
130. Sun, D.,, P. Stragier,, and P. Setlow. 1989. Identification of a new σ-factor involved in compartmentalized gene expression in Bacillus subtilis. Genes Dev. 3: 141 149.
131. Tanaka, K.,, T. Shiina,, and H. Takahashi. 1991. Nucleotide sequence of genes hrdA, hrdC, and hrdD from Streptomyces coelicolor A3(2) having similarity to rpoD genes. Mol. Gen. Genet. 229: 334 340.
132. Tatti, K. M.,, H. L. Carter III,, A. Moir,, and C. P. Moran, Jr. 1989. Sigma H-directed transcription of citG in Bacillus subtilis. J. Bacteriol. 171: 5928 5932.
133. Tattl, K. M.,, C. H. Jones,, and C. P. Moran, Jr. 1991. Genetic evidence for interaction of oE with the spoIIID promoter in Bacillus subtilis. J. Bacteriol. 173: 7828 7833.
134. Tatti, K. M.,, and C. P. Moran, Jr. 1984. Promoter recognition by sigma-37 RNA polymerase from Bacillus subtilis. J. Mol. Biol. 175: 285 297.
135. Tjian, R.,, R. Losick,, J. Pero,, and A. Hlnnenbush. 1977. Purification and comparative properties of the delta and sigma subunits of RNA polymerase from Bacillus subtilis. Eur. J. Biochem. 74: 149 154.
136. Trach, K.,, D. Burbulys,, M. Strauch,, J.-J. Wu,, N. Dhillon,, R. Jonas,, C. Hanstein,, P. Kallio,, M. Perego,, T. Bird,, G. Spiegelman,, C. Fogher,, and J. A. Hoch. 1991. Control of the initiation of sporulation in Bacillus subtilis by a phosphorelay. Res. Microbiol. 142: 815 823.
137. Waldburger, C.,, T. Gardella,, R. Wong,, and M. M. Susskind. 1990. Changes in conserved region 2 of Escherichia coli σ70 affecting promoter recognition. J. Mol. Biol. 215: 267 276.
138. Westpheling, J.,, M. Ranes,, and R. Losick. 1985. RNA polymerase heterogeneity in Streptomyces coelicolor. Nature (London) 313: 22 27.
139. Wittman, V.,, and H. C. Wong. 1988. Regulation of the penicillinase genes of Bacillus licheniformis: interaction of the pen repressor with its operators. J. Bacteriol. 170: 3206 3212.
140. Wu, J.-J.,, P. J. Piggot,, K. M. Tatti,, and C. P. Moran, Jr. 1991. Transcription of the Bacillus subtilis spoil A locus. Gene 101: 113 116.
141. Yamashita, H.,, H. Yoshikawa,, F. Kawamura,, H. Takahashi,, T. Yamamoto,, Y. Kobayashi,, and H. Saito. 1986. The effect olspoO mutations on the expression of spoOA-and spoOF-lacZ fusions. Mol. Gen. Genet. 205: 28 33.
142. York, K.,, T. J. Kenney,, S. Satola,, C. P. Moran, Jr.,, H. Poth,, and P. Youngman. 1991. SpoOA controls the σ A-dependent activation of Bacillus subtilis sporulation-specific transcription unit spoIIE. J. Bacteriol. 174: 2648 2658.
143. Yudkin, M. D. 1987. Structure and function in a Bacillus subtilis sporulation-specific sigma factor: molecular nature of mutations in spoIIAC. J. Gen. Microbiol. 133: 475 481.
144. Zalkin, H.,, and D. J. Ebbole. 1988. Organization and regulation of genes encoding biosynthetic enzymes in Bacillus subtilis. J. Biol. Chem. 263: 1595 1598.
145. Zheng, L.,, and R. Losick. 1990. Cascade regulation of spore coat gene expression in Bacillus subtilis. J. Mol. Biol. 212: 645 660.
146. Zuber, P.,, J. Healy,, H. L. Carter III,, S. Cutting,, C. P. Moran, Jr., and R. Losick. 1989. Mutation changing the specificity of an RNA polymerase sigma factor. J. Mol. Biol. 206: 605 614.
147. Zuber, P.,, and R. Losick. 1983. Use of a lacZ fusion to study developmental regulation by the spoO genes of Bacillus subtilis. Cell 35: 275 283.
148. Zuberi, A.R.,, C. Ying,, M. R. Weinreich,, and G. Ordal. 1990. Transcriptional organization of a cloned chemo-taxis locus of Bacillus subtilis. J. Bacteriol. 172: 1870 1876.

Tables

Generic image for table
Table 1

Subunits of core RNA polymerase in gram-positive bacteria

Citation: Moran, Jr. C. 1993. RNA Polymerase and Transcription Factors, p 653-667. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch45
Generic image for table
Table 2

Sigma factors in

Citation: Moran, Jr. C. 1993. RNA Polymerase and Transcription Factors, p 653-667. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch45
Generic image for table
Table 3

Examples of transcription activators in gram-positive bacteria

Citation: Moran, Jr. C. 1993. RNA Polymerase and Transcription Factors, p 653-667. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch45
Generic image for table
Table 4

Some examples of transcription repressors in spp.

Citation: Moran, Jr. C. 1993. RNA Polymerase and Transcription Factors, p 653-667. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch45

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error