Chapter 48 : Translation and Its Regulation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Translation and Its Regulation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap48-1.gif /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap48-2.gif


This chapter reviews the current status of translation in since publication of a paper on translational specificity by Hager and Rabinowitz. It describes the important features of a ribosome binding site (RBS) as distinct from an RBS and suggests a subtly different mechanism for initiation, taking into account the known requirements for efficient initiation. From these features, potential sites for translational regulation governing the overall yield of protein product is proposed, and a discussion of known translational regulatory mechanisms in follows. Finally, the chapter compares and contrasts the translational characteristics of other gram-positive organisms, including those from the high-G+C-content actinomycete group. Although this discussion has focused on control at the level of initiation of translation, other means determine the translatability of a message in . The production of an antisense RNA transcript controls the synthesis of RepH and, in turn, the replica of pC194.

Citation: Vellanoweth R. 1993. Translation and Its Regulation, p 699-711. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch48

Key Concept Ranking

DNA Synthesis
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Phylogenetic relationships among selected eubacteria and translational specificity. Groupings are based on binary association coefficients (Ss) ( ) of 16S rRNA sequences.

Citation: Vellanoweth R. 1993. Translation and Its Regulation, p 699-711. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch48
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Schematics of alternative secondary structures involved in translational attenuation of the gene. See text for discussion.

Citation: Vellanoweth R. 1993. Translation and Its Regulation, p 699-711. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch48
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Adams, C. W.,, J. A. Fornwald,, F. J. Schmidt,, M. Rosenberg,, and M. E. Brawner. 1988. Gene organization and structure of the Streptomyces lividans gal operon. J. Bacteriol. 170:203212.
2. Alexieva, Z.,, E. J. Duvall,, N. P. Ambulos, Jr.,, V. J. Kim,, and P. S. Lovett. 1988. Chloramphenicol induction of cat-86 requires ribosome stalling at a specific site in the leader. Proc. Natl. Acad. Sci. USA 85:30573061.
3. Alonso, J. C.,, and R. H. Tailor. 1989. Initiation of plasmid pC194 replication and its control in Bacillus subtilis. Mol. Gen. Genet. 210:476484.
4. Ambulos, N. P., Jr.,, E. J. Duvall,, and P. S. Lovett. 1986. Analysis of the regulatory sequences needed for induction of the chloramphenicol acetyltransferase gene cat-86 by chloramphenicol and amecetin. J. Bacteriol. 167:842849.
5. Ambulos, N. P., Jr.,, T. Smith,, W. Mulbry,, and P. S. Lovett. 1990. CUG as a mutant start codon for cat-86 and xylE in Bacillus subtilis. Gene 94:125128.
6. Band, L.,, and D. J. Henner. 1984. Bacillus subtilis requires a “stringent” Shine-Dalgarno region for gene expression. DNA 3:1721.
7. Bear, D. G.,, R. Ng,, D. van Deever,, N. P. Johnson,, G. Thomas,, T. Schleich,, and H. F. Noller. 1976. Alteration of polynucleotide secondary structure by ribosomal protein SI. Proc. Natl. Acad. Sci. USA 73:18241828.
8. Bechhofer, D. H. 1990. Triple post-transcriptional control. Mol. Microbiol. 4:14191423.
9. Bechhofer, D. H.,, and D. Dubnau. 1987. Induced mRNA stability in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 84:498502.
10. Bechhofer, D. H.,, and K. Zen. 1989. Mechanism of erythromycin-induced ermC mRNA stability in Bacillus subtilis. J. Bacteriol. 171:58035811.
11. Bennetzen, J. L.,, and B. D. Hall. 1982. Codon selection in yeast. J. Biol. Chem. 257:30263031.
12. Bibb, M. J.,, and S. N. Cohen. 1982. Gene expression in Streptomyces: construction and application of promoter-probe plasmid vectors in Streptomyces lividans. Mol. Gen. Genet. 187:265277.
13. Breidt, F.,, and D. Dubnau. 1990. Identification of cis-acting sequences required for translational autoregula-tion of the ermC methylase. J. Bacteriol. 172:36613668.
14. Bruckner, R.,, T. Dick,, H. Matzura,, and E. Zyprian,. 1988. Regulation of inducible Staphylococcus aureus CAT gene by translational attenuation, p. 263266. In A. T. Ganesan, and J. A. Hoch (éd.). Genetics and Biotechnology of Bacilli. Academic Press, Inc., San Diego, Calif..
15. Bruckner, R.,, and H. Matzura. 1985. Regulation of the inducible chloramphenicol aceryltransferase gene of the Staphylococcus aureus plasmid pUB110. EMBO J. 4:22952300.
16. Calcutt, M. J.,, and E. Cundliffe. 1989. Use of a fractionated, coupled transcription-translation system in the study of ribosomal resistance mechanisms in antibiotic-producing Streptomyces. J. Gen. Microbiol. 135:10711081.
17. Canonaco, M. A.,, R. A. Calogero,, and C. O. Gualerzl. 1986. Mechanism of translational initiation in procary-otes. Evidence for a direct effect of IF2 on the activity of the 30S ribosomal subunit. FEBS Lett. 207:198204.
18. Chen, N.-Y.,, and H. Paulus. 1988. Mechanism of expression of the overlapping genes of Bacillus subtilis aspar-tokinase II. J. Biol. Chem. 263:95269532.
19. Collins, J. R., 1979. The Bacillus licheniformis β-lacta-mase system, p. 351368. In M. T. Hamilton-Miller, and J. T. Smith (ed.), Beta-Lactamases. Academic Press Ltd., London.
20. Cone, K. C,, and D. A. Steege. 1985. Messenger RNA conformation and ribosome selection of translational reinitiation sites in the lac represser mRNA. J. Mol. Biol. 186:725732.
21. Denoya, C. D.,, D. H. Bechhofer,, and D. Dubnau. 1986. Translational autoregulation of ermC 23S rRNA meth-yltransferase expression in Bacillus subtilis. J. Bacterial. 168:11331141.
22. de Smit, M. H.,, and J. van Duin. 1990. Control of procaryotic translational initiation by mRNA secondary structure. Prog. Nucleic Acid Res. Mol. Biol. 38:135.
23. de Smit, M. H.,, and J. van Duin. 1990. Secondary structure of the ribosome binding site determines translational efficiency. Proc. Natl. Acad. Sci. USA 87: 76687672.
24. Dick, T.,, and H. Matzura. 1988. Positioning ribosomes on leader mRNA for translational activation of the message of an inducible Staphylococcus aureus cat gene. Mol. Gen. Genet. 214:108111.
25. Dreher, J.,, and H. Matzura. 1991. Chloramphenicol-induced stabilization of cat messenger RNA in Bacillus subtilis. Mol. Microbiol. 5:30253034.
26. Duvall, E. J.,, N. P. Ambulos, Jr.,, and P. S. Lovett. 1987. Drug-free induction of a chloramphenicol acetyltransferase gene in Bacillus subtilis by stalling ribosomes in a regulatory leader. J. Bacteriol. 169:42354241.
27. Duvall, E. J.,, and P. S. Lovett. 1986. Chloramphenicol induces translation of the mRNA for a chloramphenicol-resistance gene in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 83:39393943.
28. Duvall, E. J.,, D. M. Williams,, P. S. Lovett,, C. Rudolph,, N. Vasantha,, and M. Guyer. 1983. Chloramphenicol-inducible gene expression in Bacillus subtilis. Gene 24:170177.
29. Farwell, M. A.,, and J. C. Rablnowltz. 1991. Protein synthesis in vitro by Micrococcus lut eus. J. Bacteriol. 173:35143522.
29a.. Farwell, M. A.,, M. W. Roberts,, and J. C. Rabinowitz. 1992. The effect of ribosomal protein SI from Escherichia coli and Micrococcus luteus on protein synthesis in vitro by E. coli and Bacillus subtilis. Mol. Microbiol. 6:33753383.
30. Fox, G. E.,, E. Stackenbrandt,, R. B. Hespell,, J. Gibson,, J. Maniloff,, T. A. Dyer,, R. S. Wolfe,, W. E. Balch,, R. S. Tanner,, L. J. Magrum,, L. B. Zablen,, R. Blakemore,, R. Gupta,, L. Bonen,, B. J. Lewis,, D. A. Stahl,, K. R. Luehrsen,, K. N. Chen,, and C. R. Woese. 1980. The phylogeny of procaryotes. Science 209:457463.
31. Friden, H.,, L. Rutberg,, K. Magnusson,, and L. Hederstedt. 1987. Genetic and biochemical characterization of Bacillus subtilis mutants defective in expression and function of cytochrome b-558. Eur. J. Biochem. 168: 695701.
32. Fujiwara, S.,, N. Tsubokura,, Y. Kurusu,, K. Minami,, and Y. Kobayashi. 1990. Heat-inducible translational coupling in Bacillus subtilis. Nucleic Acids Res. 18:739744.
33. Ganoza, M. C.,, E. C. Kofold,, P. Marliere,, and B. G. Louis. 1987. Potential secondary structure at translation-initiation sites. Nucleic Acids Res. 15:345360.
34. Gheysen, D.,, D. Iserentant,, C. Derom,, and W. Fiers. 1982. Systematic alteration of the nucleotide sequence preceding the translation initiation codon and the effects on bacterial expression of the cloned SV40 small-t antigen gene. Gene 17:5563.
34a.. Gold, L. Unpublished data.
35. Gold, L. 1988. Posttranscriptional regulatory mechanisms in Escherichia coli. Annu. Rev. Biochem. 57:199233.
36. Gold, L.,, D. Pribnow,, T. Schneider,, S. Shinedling,, B. S. Singer,, and G. Stormo. 1981. Translational initiation in procaryotes. Annu. Rev. Microbiol. 35:365403.
37. Gold, L.,, and G. Stormo,. 1987. Translational initiation, p. 13021307. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 2. American Society for Microbiology, Washington, D.C..
38. Gold, L.,, and G. D. Stormo. 1990. High-level translation initiation. Methods Enzymol. 185:8993.
39. Gold, L.,, G. Stormo,, and R. Saunders. 1984. Escherichia coli translational initiation factor IF3: a unique case of translational regulation. Proc. Natl. Acad. Sci. USA 81:70617065.
40. Gouy, M.,, and C. Gautier. 1982. Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res. 10:70557074.
41. Graves, M. C.,, G. T. Mullenbach,, and J. C. Rabinowitz. 1985. Cloning and nucleotide sequence determination of the Clostridium pasteurianum ferredoxin gene. Proc. Natl. Acad. Sci. USA 82:16531657.
42. Green, C. J.,, G. C. Stewart,, M. A. Hollis,, B. S. Void,, and K. F. Bott. 1985. Nucleotide sequence of the Bacillus subtilis ribosomal RNA operon, rrnB. Gene 37:261266.
43. Gryczan, T. J.,, G. Grandi,, J. Hahn,, R. Grandi,, and D. Dubnau. 1980. Conformational alteration of mRNA structure and the posttranscriptional regulation of erythromycin-induced drug resistance. Nucleic Acids Res. 8:60816097.
44. Gualerzl, C.,, G. Risuleo,, and C. L. Pon. 1977. Initial rate kinetic analysis of the mechanism of initiation complex formation and the role of initiation factor IF3. Biochemistry 16:16841689.
45. Gualerzl, C. O.,, R. A. Calogero,, M. A. Canonaco,, M. Brombach,, and C. L. Pon,. 1987. Selection of mRNA by ribosomes during procaryotic translation initiation, p. 317330. In M. F. Tuite,, M. Picard,, and M. Bolotin-Fukuhara (ed.), Genetics of Translation: New Approaches. Springer-Verlag, Heidelberg, Germany.
46. Gualerzl, C. O.,, and C. L. Pon,. 1981. Protein biosynthesis in procaryotic cells: mechanism of 30S initiation complex formation in Escherichia coli, p. 805826. In M. Balaban (ed.). Structural Aspects of Recognition and Assembly in Biological Macromolecules. Int. Sci. Serv., Rehovot, Israel.
47. Gualerzl, C. O.,, C. L. Pon,, R. T. Pawlik,, M. A. Canonaco,, M. Paci,, and W. Wintermeyer,. 1986. Role of the initiation factors in Escherichia coli translational initiation, p. 621641. In B. Hardesty, and G. Kramer (éd.), Structure, Function and Genetics of Ribosomes. Springer-Verlag, New York.
48. Hager, P. W.,, and J. C. Rabinowitz. 1985. Inefficient translation of T7 late mRNA by Bacillus subtilis ribosomes. J Biol. Chem. 260:1516315167.
49. Hager, P. W.,, and J. C,. Rablnowitz. 1985. Translational specificity in Bacillus subtilis, p. 129. In D. Dubnau (ed.), The Molecular Biology of the Bacilli. Academic Press, Inc., New York.
50. Hahn, J.,, G. Grandi,, T. J. Gryczan,, and D. Dubnau. 1982. Translational attenuation of ermC: a deletion analysis. Mol. Gen. Genet. 186:204216.
51. Hall, M. X.,, J. Gabay,, M. Débarbouille,, and M. Schwartz. 1982. A role for mRNA secondary structure in the control of translation initiation. Nature (London) 295:616618.
52. Hartz, D.,, D. S. McPheeters,, and L. Gold. 1991. Influence of mRNA determinants on translation initiation in Escherichia coli. J. Mol. Biol. 218:8397.
53. Harwood, C. R.,, D. E. Bell,, and A. R. Winston. 1987. The effects of deletions in the leader sequence of cat-86, a chloramphenicol-resistance gene isolated from Bacillus pumilus. Gene 54:267273.
54. Healy, J.,, J. Weir,, I. Smith,, and R. Losick. 1991. Post-transcriptional control of a sporulation regulatory gene encoding transcription factor σH in Bacillus subtilis. Mol. Microbiol. 5:477487.
55. Hershey, J. W. B., 1987. Protein synthesis, p. 613647. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C..
56. Higo, K. 1973. Functional correspondence between 30S ribosomal proteins of Escherichia coli and Bacillus stearothermophilus. Proc. Natl. Acad. Sci. USA 70:944948.
57. Higo, K.,, E. Otaka,, and S. Osawa. 1982. Purification and characterization of 30S ribosomal proteins from Bacillus subtilis: correlation to Escherichia coli 30S proteins. Mol. Gen. Genet. 185:239244.
58. Himes, R. H.,, M. R. Stallcup,, and J. C. Rablnowitz. 1972. Translation of synthetic and endogenous messenger ribonucleic acid in vitro by ribosomes and polyri-bosomes from Clostridium pasteurianum. J. Bacteriol. 112:10571069.
59. Hoch, S. O.,, C. W. Roth,, I. P. Crawford,, and E. W. Nester. 1971. Control of tryptophan biosynthesis by the methyltryptophan resistance gene in Bacillus subtilis. J. Bacteriol. 105:3845.
60. Hopwood, D. A.,, M. J. Bibb,, K. F. Chater,, G. R. Janssen,, F. Malpartida,, and C. P. Smith,. 1986. Regulation of gene expression in antibiotic-producing Streptomyces, p. 251276. In I. R. Booth, and C. F. Higgins (ed.), Regulation of Gene Expression. 25 Years On. Cambridge University Press, Cambridge.
61. Horinouchi, S.,, K. Furuya,, M. Nishiyama,, H. Suzuki,, and T. Beppu. 1987. Nucleotide sequence of the strep-tothricin acetyltransferase gene from Streptomyces lav-endulae and its expression in heterologous hosts. J. Bacteriol. 169:19291937.
62. Horinouchi, S.,, and B. Weisblum. 1980. Posttranscrip-tional modification of mRNA conformation: mechanism that regulates erythromycin-induced resistance. Proc. Natl. Acad. Sci. USA 77:70797083.
63. Huang, W. M.,, S.-Z. Ao,, S. Casjens,, R. Orlandi,, R. Zelkus,, R. Weiss,, D. Winge,, and M. Fang. 1988. A persistent untranslated sequence within bacteriophage T4 DNA topoisomerase gene 60. Science 239:10051012.
64. Hung, A.,, J. Thillet,, and R. Pictet. 1989. In vivo selected promoter and ribosome binding site up-mutations: demonstration that the Escherichia coli bla promoter and Shine-Dalgarno region with low complementarity to the 16 S ribosomal RNA function in Bacillus subtilis. Mol. Gen. Genet. 219:129136.
65. Ikemura, T. 1985. Codon usage and tRNA content in unicellular and multicellular organisms. Mol. Biol. Evol. 2:1334.
66. Imanaka, T.,, T. Himeno,, and S. Alba. 1987. Cloning and nucleotide sequence of the penicillinase antirepres-sor gene penJ of Bacillus licheniformis. J. Bacteriol. 169:38673872.
67. Isono, K.,, and S. Isono. 1976. Lack of ribosomal protein S1 in Bacillus stearothermophilus. Proc. Natl. Acad. Sci. USA 73:767770.
68. Jinks-Robertson, S.,, and M. Nomura,. 1987. Ribosomes and tRNA, p. 13581385. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 2, American Society for Microbiology, Washington, D.C..
69. Kano, A.,, Y. Andachi,, T. Ohama,, and S. Osawa. 1991. Novel anticodon composition of transfer RNAs in Mi-crococcus luteus, a bacterium with a high genomic G+C content. Correlation with codon usage. J. Mol. Biol. 221:387401.
70. Klnnaird, J. H.,, and P. A. Burns. 1991. An apparent rare-codon effect on the rate of translation of a Neu-rospora gene. J. Mol. Biol. 221:733736.
71. Knight, J. A.,, L. W. Hardy,, D. Rennel,, D. Herrick,, and A. R. Poteete. 1987. Mutations in an upstream regulatory sequence that increase expression of the bacteriophage T4 lysozyme gene. J. Bacteriol. 169:46304636.
72. Kobayashi, T.,, Y. F. Zhu,, X. J. Xicholls,, and J. O. Lampen. 1987. A second regulatory gene, blaRl, encoding a potential penicillin-binding protein required for induction of β-lactamase in Bacillus licheniformis. J. Bacteriol. 169:38733878.
73. Kolb, A.,, J. M. Hermosa,, J. O. Thomas,, and W. Szer. 1977. Nucleic acid helix unwinding properties of ribosomal protein S1 and the role of S1 in mRNA binding to ribosomes. Proc. Natl. Acad. Sci. USA 74:23792383.
74. Kubo, M.,, and T. Imanaka. 1989. mRNA secondary structure in an open reading frame reduces translation efficiency in Bacillus subtilis. J. Bacteriol. 171:40804082.
75. Kuroda, M. I.,, D. Henner, and C. Yanofsky. 1988. cis-acting sequences in the transcript of the Bacillus subtilis trp operon regulate the expression of the operon. J. Bacteriol. 170:30803088.
76. Landick, R.,, and C. Yanofsky,. 1987. Transcription attenuation, p. 12761301. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 2. American Society for Microbiology, Washington, D.C..
77. Laredo, J.,, V. Wolff,, and P. S. Lovett. 1988. Chloramphenicol acetyltransferase specified by cat-86: gene and protein relationships. Gene 73:209214.
78. Leonhardt, H. 1990. Identification of a low copy number mutation within the pUB110 replicon and its effect on plasmid stability in Bacillus subtilis. Gene 94:121124.
79. Leskiw, B. K.,, M. J. Bibb,, and K. F. Chater. 1991. The use of a rare codon specifically during development? Mol. Microbiol 5:28612867.
80. Lin, C.K.,, D. S. Goldfarb,, R. H. Doi,, and R. L. Rodriguez. 1985. Mutations that affect the translation efficiency of Tn9-derived cat gene in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 82:173177.
81. Lodish, H. F. 1969. Species specificity of polypeptide chain initiation. Nature (London) 224:867870.
82. Lodish, H. F. 1970. Specificity in bacterial protein synthesis: role of initiation factors and ribosomal sub-units. Nature (London) 226:705707.
83. Lovett, P. S. 1990. Translational attenuation as the regulator of inducible cat genes. J. Bacteriol. 172:16.
84. Mason, J. M.,, P. Fajardo-Cavazos,, and P. Setlow. 1988. Levels of mRNAs which code for small, acid-soluble spore proteins and their LacZ gene fusions in sporulat-ing cells of Bacillus subtilis. Nucleic Acids Res. 16:65676583.
85. Mayford, M.,, and B. Weisblum. 1989. Conformational alterations in the ermC transcript in vivo during induction. EMBO J. 8:43074314.
86. Mayford, M.,, and B. Weisblum. 1989. ermC leader peptide. Amino acid sequence critical for induction by translational attenuation. J. Mol. Biol. 206:6979.
87. McLaughlin, J. R.,, C. L. Murray,, and J. C. Rabinowitz. 1981. Unique features of the ribosomes binding site sequence of the Gram-positive Staphylococcus aureus /3-lactamase gene. J. Biol. Chem. 256:1128311291.
88. McPheeters, D. S.,, A. Christensen,, E. T. Young,, G. Stormo,, and L. Gold. 1986. Translational regulation of expression of the bacteriophage T4 lysozyme gene. Nucleic Acids Res. 14:58135826.
89. Melin, L.,, L. Rutberg,, and A. von Gabain. 1989. Tran-scriptional and posttranscriptional control of the Bacillus subtilis succinate dehydrogenase operon. J. Bacteriol. 171:21102115.
90. Mikulik, K.,, J. Smardova,, A. Jiranova,, and P. Branny. 1986. Molecular and functional properties of protein SSI from small ribosomal subunits of Streptomyces aureofaciens. Eur. J. Biochem. 155:557563.
91. Mongkolsuk, S.,, N. P. Ambulos, Jr.,, and P. S. Lovett. 1984. Chloramphenicol-inducible gene expression in Bacillus subtilis is independent of the chloramphenicol acetyltransferase structural gene and its promoter. J. Bacteriol. 160:18.
92. Mongkolsuk, S.,, Y.-W. Chiang,, R. B. Reynolds,, and P. S. Lovett. 1983. Restriction fragments that exert promoter activity during postexponential growth of Bacillus subtilis. J. Bacteriol. 155:13991406.
93. Mountain, A., 1989. Gene expression systems for Bacillus subtilis, p. 73114. In C. R. Harwood (éd.), Bacillus. Plenum Press, New York.
94. Mowa, N. R.,, K. Nakamura,, and M. Inouye. 1980. Gene structure of the ompA protein, a major surface protein of Escherichia coli required for cell-cell interaction. J. Mol. Biol. 143:317328.
95. Muralikrishna, P.,, and T. Suryanarayana. 1985. Comparison of ribosomes from Gram-positive and Gram-negative bacteria with respect to the presence of protein S1. Biochem. Int. 11:691699.
96. Murayama, T.,, T. Gojobori,, S. Aota,, and T. Ikemura. 1986. Codon usage tabulated from the GenBank genetic sequence data. Nucleic Acids Res. 14:rl51rl97.
97. Nakamura, K.,, R. M. Plrtle,, I. L. Pirtle,, K. Takeish,, and M. Inouye. 1980. Messenger ribonucleic acid of the lipoprotein of the Escherichia coli outer membrane. II. The complete nucleotide sequence. J. Biol. Chem. 255: 210216.
98. Narayanan, C. S.,, and D. Dubnau. 1985. Evidence for the translational attenuation model: ribosome-binding studies and structural analysis with an in vitro run off transcript of ermC. Nucleic Acids Res. 13:73077326.
99. Narayanan, C. S.,, and D. Dubnau. 1987. Demonstration of erythromicin-dependent stalling of ribosome on the ermC leader transcript. J. Biol. Chem. 262:17661771.
100. Narayanan, C. S.,, and D. Dubnau. 1987. An in vitro study of the translational attenuation model of ermC regulation. J. Biol. Chem. 262:17561765.
101. Noller, H. F.,, and M. Nomura,. 1987. Ribosomes, p. 104125. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (éd.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C..
102. Ogasawara, N. 1985. Markedly unbiased codon usage in Bacillus subtilis. Gene 40:145150.
103. Ohama, T.,, A. Muto,, and S. Osawa. 1989. Spectinomycin operon of Micrococcus luteus: evolutionary implications of organization and novel codon usage. J. Mol. Evol. 29:381395.
104. Peijnenburg, A. A. C. M.,, G. Venema,, and S. Bron. 1990. Translational coupling in a penP-lacZ gene fusion in Bacillus subtilis and Escherichia coli: use of AUA as a restart codon. Mol. Gen. Genet. 221:267272.
105. Pirotta, V. 1979. Operators and promoters in the O R region of phage 434. Nucleic Acids Res. 6:14951508.
106. Pon, C. L.,, M. Brombach,, S. Thamm,, and C. O. Gualerzi. 1989. Cloning and characterization of a gene cluster from Bacillus stearothermophilus comprising infC, rpml and rplT. Mol. Gen. Genet. 218:355357.
107. Ptashne, M.,, K. Backman,, M. Z. Humayun,, A. Jeffrey,, R. Mauer,, B. Meyer,, and R. T. Sauer. 1976. Autoregulation and function of a represser in bacteriophage lambda. Science 194:156161.
108. Qi, F.-X.,, and R. H. Doi. 1990. Localization of a second SigH promoter in the Bacillus subtilis sigA operon and regulation of dnaE expression by the promoter. J. Bacteriol. 172:56315636.
109. Rabinowitz, J. C.,, and M. Roberts,. 1986. Translational barriers limiting expression of E. coli genes in Bacillus and other Gram-positive organisms, p. 297312. In S. B. Levy, and R. P. Novick (éd.), Antibiotic Resistance Genes: Ecology, Transfer, and Expression. Banbury Report 24. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y..
110. Reddy, P.,, A. Peterkofsky,, and K. McKenney. 1985. Translational efficiency of the Escherichia coli adenyl-ate cyclase gene: mutating the UUG initiation codon to GUG or AUG results in increased gene expression. Proc. Natl. Acad. Sci. USA 82:56565660.
111. Roberts, M. W.,, and J. C. Rabinowitz. 1989. The effect of Escherichia coli ribosomal protein SI on the translational specificity of bacterial ribosomes. J. Biol. Chem. 264:22282235.
112. Rogers, E. J.,, N. P. Ambulos, Jr.,, and P. S. Lovett. 1990. Complementarity of Bacillus subtilis 16S rRNA with sites of antibiotic-dependent ribosome stalling in cat and erm leaders. J. Bacteriol. 172:62826290.
113. Rogers, E. J.,, U. J. Kim,, N. P. Ambulos, Jr.,, and P. S. Lovett. 1990. Four codons in the cat-86 leader define a chloramphenicol-sensitive ribosome stall sequence. J. Bacteriol. 172:110115.
114. Rogers, E. J.,, and P. S. Lovett. 1990. Erythromycin induces expression of the chloramphenicol acetyltransferase gene cat-86. J. Bacteriol. 172:46944695.
115. Sandier, P.,, and B. Weisblum. 1988. Erythromycin-induced stabilization of ermA messenger RNA in Staphylococcus aureus and Bacillus subtilis. J. Mol. Biol. 203:905915.
116. Sandier, P.,, and B. Weisblum. 1989. Erythromycin-induced ribosome stall in the ermA leader: a barricade to the 5'-to-3' nucleotide cleavage of the ermA transcript. J. Bacteriol. 171:66806688.
117. Scherer, G. F. E.,, M. D. Walkinshaw,, S. Arnott,, and D. J. Morre. 1980. The ribosome binding sites recognized by E. coli ribosomes have regions with signal character in both the leader and protein coding segments. Nucleic Acids Res. 8:38953907.
118. Schneider, T. D.,, G. D. Stormo,, L. Gold,, and A. Ehren-feucht. 1986. Information content of binding sites on nucleotide sequences. J. Mol. Biol. 188:415431.
119. Schnier, J.,, and G. Falst. 1985. Comparative studies on the structural gene for the ribosomal protein SI in ten bacterial species. Mol. Gen. Genet. 200:476481.
120. Schottel, J. L.,, M. J. Bibb,, and S. N. Cohen. 1981. Cloning and expression in Streptomyces lividans of antibiotic resistance genes derived from Escherichia coli. J. Bacteriol. 146:360368.
121. Sharp, P. M.,, and W.-H. LI. 1986. Codon usage in regulatory genes in Escherichia coli does not reflect selection for 'rare' codons. Nucleic Acids Res. 14:77377749.
122. Sharp, P. M.,, T. M. F. Touhy,, and K. R. Mosurskl. 1986. Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res. 14:51255143.
123. Shields, D. C.,, and P. M. Sharp. 1987. Synonymous codon usage in Bacillus subtilis reflects both translational selection and mutational biases. Nucleic Acids Res. 15:80238040.
124. Shimotsu, H.,, M. I. Kuroda,, C. Yanofsky,, and D. J. Henner. 1986. Novel form of transcription attenuation regulates expression of the Bacillus subtilis tryptophan operon. J. Bacteriol. 166:461471.
125. Shine, J.,, and L. Dalgarno. 1974. The 3-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc. Natl. Acad. Set. USA 71:13421346.
126. Simons, R. W.( and N. Kleckner. 1983. Translational control of IS 10 transposition. Cell 34:683691.
127. Skeggs, P. A.,, J. Thompson,, and E. Cundllffe. 1985. Methylation of 16S ribosomal RNA and resistance to aminoglycoside antibiotics in clones of Streptomyces lividans carrying DNA from Streptomyces tenjimariensis. Mol. Gen. Genet. 200:415421.
128. Stallcup, M. R.,, W. J. Sharrock,, and J. C. Rabinowitz. 1976. Specificity of bacterial ribosomes and messenger ribonucleic acids in protein synthesis reaction in vitro. J. Biol. Chem. 251:24992510.
129. Steitz, J. A. 1969. Polypeptide chain initiation: nucleo-tide sequence of the three ribosome binding sites of Rl7 phage RNA. Nature (London) 224:957964.
130. Stormo, G. D., 1986. Translation initiation, p. 195224. In W. Reznikoff, and L. Gold (éd.), Maximizing Gene Expression. Butterworths, Mass..
131. Stormo, G. D.,, T. D. Schneider,, and L. M. Gold. 1982. Characterization of translational initiation sites in E. coli. Nucleic Acids Res. 10:29712996.
132. Subramanian, A. R. 1983. Structure and functions of ribosomal protein SI. Prog. Nucleic Acids Res. Mol. Biol. 28:101142.
133. Subramanian, A. R. 1984. Structure and functions of the largest Escherichia coli ribosomal protein. Trends Biochem. Sci. 9:491494.
134. Szer, W.,, J. M. Hermosa,, and M. Boublik. 1976. Destabilization of the secondary structure of RNA by ribosomal protein SI of Escherichia coli. Biochem. Biophys. Res. Commun. 70:957964.
135. Tessier, L.-H.,, P. Sondermeyer,, T. Faure,, D. Dreyer,, A. Benavente,, D. Villeral,, M. Courtney,, and J.-P. Lecocq. 1984. The influence of mRNA primary and secondary structure on human IFN-γ gene expression in Escherichia coli. Nucleic Acids Res. 12:76637675.
136. Thomas, D. Y.,, G. Dubuc,, and S. Narang. 1982. Escherichia coli plasmid vectors containing synthetic translational initiation sequences and ribosome binding sites fused with the lacZ gene. Gene 19:211219.
137. Thomas, J. O.,, A. Kalb,, and W. Szer. 1978. Structure of single-stranded nucleic acids in the presence of ribosomal protein SI. J. Mol. Biol. 123:163176.
138. Thomas, J. O.,, and W. Szer. 1982. RNA helix destabilizing proteins. Prog. Nucleic Acid Res. Mol. Biol. 27: 157187.
139. Thompson, C. J.,, and G. S. Gray. 1983. Nucleotide sequence of a streptomycete aminoglycoside phospho-transferase gene and its relationship to phosphotrans-ferases encoded by resistance plasmids. Proc. Natl. Acad. Sci. USA 80:51905194.
140. Thompson, J.,, S. Rae,, and E. Cundllffe. 1984. Coupled transcription-translation in extracts of Streptomyces lividans. Mol. Gen. Genet. 195:3943.
141. van Dieijen, G.,, P. H. van Knippenberg,, and J. van Duin. 1976. The role of ribosomal protein S1 in the recognition of native phage RNA. Eur. J. Biochem. 64:511518.
142. Vellanoweth, R. L.,, and J. C. Rabinowitz. 1992. The influence of ribosome binding site elements on translational efficiency in Bacillus subtilis and Escherichia coli in vivo. Mol. Microbiol. 6:11051114.
143. Weaver, J. R.,, and P. A. Pattee. 1964. Inducible resistance to erythromycin in Staphylococcus aureus. J. Bacteriol. 88:574580.
144. Weisblum, B.,, C. Siddhikol,, C.-J. Lai,, and V. Demohn. 1971. Erythromycin-inducible resistance in Staphylococcus aureus: requirements for induction. J. Bacteriol. 106:835847.
145. Whitehead, T. R.,, and J. C. Rabinowitz. 1988. Nucleotide sequence of the Clostridium acidiurici (“Clostridium acidiurici”) gene for 10-formyltetrahydrofolate syn-thetase shows extensive amino acid homology with the trifunctional enzyme C,-tetrahydrofolate synthetase from Saccharomyces cerevisiae. J. Bacteriol. 170:32553261.
146. Williams, D. M.,, E. J. Duvall,, and P. S. Lovett. 1981. Cloning restriction fragments that promote expression of a gene in Bacillus subtilis. J. Bacteriol. 146:11621165.
147. Wood, C. R.,, M. A. Boss,, T. P. Patel,, and J. S. Emtage. 1984. The influence of messenger-RNA secondary structure on expression of an immunoglobulin heavy-chain in Escherichia coli. Nucleic Acids Res. 12:39373950.
148. Zaghloul, T. I.,, and R. H. Doi. 1987. In vitro expression of a Tn9-derived chloramphenicol acetyltransferase gene fusion by using a Bacillus subtilis system. J. Bacteriol 169:12121216.
149. Zaghloul, T. I.,, F. Kawamura,, and R. H. Doi. 1985. Translational coupling in Bacillus subtilis of a heterologous Bacillus subtilis-Escherichia coli gene fusion. J. Bacteriol. 164:550555.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error