1887

Chapter 48 : Translation and Its Regulation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Translation and Its Regulation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap48-1.gif /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap48-2.gif

Abstract:

This chapter reviews the current status of translation in since publication of a paper on translational specificity by Hager and Rabinowitz. It describes the important features of a ribosome binding site (RBS) as distinct from an RBS and suggests a subtly different mechanism for initiation, taking into account the known requirements for efficient initiation. From these features, potential sites for translational regulation governing the overall yield of protein product is proposed, and a discussion of known translational regulatory mechanisms in follows. Finally, the chapter compares and contrasts the translational characteristics of other gram-positive organisms, including those from the high-G+C-content actinomycete group. Although this discussion has focused on control at the level of initiation of translation, other means determine the translatability of a message in . The production of an antisense RNA transcript controls the synthesis of RepH and, in turn, the replica of pC194.

Citation: Vellanoweth R. 1993. Translation and Its Regulation, p 699-711. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch48

Key Concept Ranking

DNA Synthesis
0.45354205
0.45354205
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Phylogenetic relationships among selected eubacteria and translational specificity. Groupings are based on binary association coefficients (Ss) ( ) of 16S rRNA sequences.

Citation: Vellanoweth R. 1993. Translation and Its Regulation, p 699-711. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch48
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Schematics of alternative secondary structures involved in translational attenuation of the gene. See text for discussion.

Citation: Vellanoweth R. 1993. Translation and Its Regulation, p 699-711. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch48
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818388.chap48
1. Adams, C. W.,, J. A. Fornwald,, F. J. Schmidt,, M. Rosenberg,, and M. E. Brawner. 1988. Gene organization and structure of the Streptomyces lividans gal operon. J. Bacteriol. 170: 203 212.
2. Alexieva, Z.,, E. J. Duvall,, N. P. Ambulos, Jr.,, V. J. Kim,, and P. S. Lovett. 1988. Chloramphenicol induction of cat-86 requires ribosome stalling at a specific site in the leader. Proc. Natl. Acad. Sci. USA 85: 3057 3061.
3. Alonso, J. C.,, and R. H. Tailor. 1989. Initiation of plasmid pC194 replication and its control in Bacillus subtilis. Mol. Gen. Genet. 210: 476 484.
4. Ambulos, N. P., Jr.,, E. J. Duvall,, and P. S. Lovett. 1986. Analysis of the regulatory sequences needed for induction of the chloramphenicol acetyltransferase gene cat-86 by chloramphenicol and amecetin. J. Bacteriol. 167: 842 849.
5. Ambulos, N. P., Jr.,, T. Smith,, W. Mulbry,, and P. S. Lovett. 1990. CUG as a mutant start codon for cat-86 and xylE in Bacillus subtilis. Gene 94: 125 128.
6. Band, L.,, and D. J. Henner. 1984. Bacillus subtilis requires a “stringent” Shine-Dalgarno region for gene expression. DNA 3: 17 21.
7. Bear, D. G.,, R. Ng,, D. van Deever,, N. P. Johnson,, G. Thomas,, T. Schleich,, and H. F. Noller. 1976. Alteration of polynucleotide secondary structure by ribosomal protein SI. Proc. Natl. Acad. Sci. USA 73: 1824 1828.
8. Bechhofer, D. H. 1990. Triple post-transcriptional control. Mol. Microbiol. 4: 1419 1423.
9. Bechhofer, D. H.,, and D. Dubnau. 1987. Induced mRNA stability in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 84: 498 502.
10. Bechhofer, D. H.,, and K. Zen. 1989. Mechanism of erythromycin-induced ermC mRNA stability in Bacillus subtilis. J. Bacteriol. 171: 5803 5811.
11. Bennetzen, J. L.,, and B. D. Hall. 1982. Codon selection in yeast. J. Biol. Chem. 257: 3026 3031.
12. Bibb, M. J.,, and S. N. Cohen. 1982. Gene expression in Streptomyces: construction and application of promoter-probe plasmid vectors in Streptomyces lividans. Mol. Gen. Genet. 187: 265 277.
13. Breidt, F.,, and D. Dubnau. 1990. Identification of cis-acting sequences required for translational autoregula-tion of the ermC methylase. J. Bacteriol. 172: 3661 3668.
14. Bruckner, R.,, T. Dick,, H. Matzura,, and E. Zyprian,. 1988. Regulation of inducible Staphylococcus aureus CAT gene by translational attenuation, p. 263 266. In A. T. Ganesan, and J. A. Hoch (éd.). Genetics and Biotechnology of Bacilli. Academic Press, Inc., San Diego, Calif..
15. Bruckner, R.,, and H. Matzura. 1985. Regulation of the inducible chloramphenicol aceryltransferase gene of the Staphylococcus aureus plasmid pUB110. EMBO J. 4: 2295 2300.
16. Calcutt, M. J.,, and E. Cundliffe. 1989. Use of a fractionated, coupled transcription-translation system in the study of ribosomal resistance mechanisms in antibiotic-producing Streptomyces. J. Gen. Microbiol. 135: 1071 1081.
17. Canonaco, M. A.,, R. A. Calogero,, and C. O. Gualerzl. 1986. Mechanism of translational initiation in procary-otes. Evidence for a direct effect of IF2 on the activity of the 30S ribosomal subunit. FEBS Lett. 207: 198 204.
18. Chen, N.-Y.,, and H. Paulus. 1988. Mechanism of expression of the overlapping genes of Bacillus subtilis aspar-tokinase II. J. Biol. Chem. 263: 9526 9532.
19. Collins, J. R., 1979. The Bacillus licheniformis β-lacta-mase system, p. 351 368. In M. T. Hamilton-Miller, and J. T. Smith (ed.), Beta-Lactamases. Academic Press Ltd., London.
20. Cone, K. C,, and D. A. Steege. 1985. Messenger RNA conformation and ribosome selection of translational reinitiation sites in the lac represser mRNA. J. Mol. Biol. 186: 725 732.
21. Denoya, C. D.,, D. H. Bechhofer,, and D. Dubnau. 1986. Translational autoregulation of ermC 23S rRNA meth-yltransferase expression in Bacillus subtilis. J. Bacterial. 168: 1133 1141.
22. de Smit, M. H.,, and J. van Duin. 1990. Control of procaryotic translational initiation by mRNA secondary structure. Prog. Nucleic Acid Res. Mol. Biol. 38: 1 35.
23. de Smit, M. H.,, and J. van Duin. 1990. Secondary structure of the ribosome binding site determines translational efficiency. Proc. Natl. Acad. Sci. USA 87: 7668 7672.
24. Dick, T.,, and H. Matzura. 1988. Positioning ribosomes on leader mRNA for translational activation of the message of an inducible Staphylococcus aureus cat gene. Mol. Gen. Genet. 214: 108 111.
25. Dreher, J.,, and H. Matzura. 1991. Chloramphenicol-induced stabilization of cat messenger RNA in Bacillus subtilis. Mol. Microbiol. 5: 3025 3034.
26. Duvall, E. J.,, N. P. Ambulos, Jr.,, and P. S. Lovett. 1987. Drug-free induction of a chloramphenicol acetyltransferase gene in Bacillus subtilis by stalling ribosomes in a regulatory leader. J. Bacteriol. 169: 4235 4241.
27. Duvall, E. J.,, and P. S. Lovett. 1986. Chloramphenicol induces translation of the mRNA for a chloramphenicol-resistance gene in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 83: 3939 3943.
28. Duvall, E. J.,, D. M. Williams,, P. S. Lovett,, C. Rudolph,, N. Vasantha,, and M. Guyer. 1983. Chloramphenicol-inducible gene expression in Bacillus subtilis. Gene 24: 170 177.
29. Farwell, M. A.,, and J. C. Rablnowltz. 1991. Protein synthesis in vitro by Micrococcus lut eus. J. Bacteriol. 173: 3514 3522.
29a.. Farwell, M. A.,, M. W. Roberts,, and J. C. Rabinowitz. 1992. The effect of ribosomal protein SI from Escherichia coli and Micrococcus luteus on protein synthesis in vitro by E. coli and Bacillus subtilis. Mol. Microbiol. 6: 3375 3383.
30. Fox, G. E.,, E. Stackenbrandt,, R. B. Hespell,, J. Gibson,, J. Maniloff,, T. A. Dyer,, R. S. Wolfe,, W. E. Balch,, R. S. Tanner,, L. J. Magrum,, L. B. Zablen,, R. Blakemore,, R. Gupta,, L. Bonen,, B. J. Lewis,, D. A. Stahl,, K. R. Luehrsen,, K. N. Chen,, and C. R. Woese. 1980. The phylogeny of procaryotes. Science 209: 457 463.
31. Friden, H.,, L. Rutberg,, K. Magnusson,, and L. Hederstedt. 1987. Genetic and biochemical characterization of Bacillus subtilis mutants defective in expression and function of cytochrome b-558. Eur. J. Biochem. 168: 695 701.
32. Fujiwara, S.,, N. Tsubokura,, Y. Kurusu,, K. Minami,, and Y. Kobayashi. 1990. Heat-inducible translational coupling in Bacillus subtilis. Nucleic Acids Res. 18: 739 744.
33. Ganoza, M. C.,, E. C. Kofold,, P. Marliere,, and B. G. Louis. 1987. Potential secondary structure at translation-initiation sites. Nucleic Acids Res. 15: 345 360.
34. Gheysen, D.,, D. Iserentant,, C. Derom,, and W. Fiers. 1982. Systematic alteration of the nucleotide sequence preceding the translation initiation codon and the effects on bacterial expression of the cloned SV40 small-t antigen gene. Gene 17: 55 63.
34a.. Gold, L. Unpublished data.
35. Gold, L. 1988. Posttranscriptional regulatory mechanisms in Escherichia coli. Annu. Rev. Biochem. 57: 199 233.
36. Gold, L.,, D. Pribnow,, T. Schneider,, S. Shinedling,, B. S. Singer,, and G. Stormo. 1981. Translational initiation in procaryotes. Annu. Rev. Microbiol. 35: 365 403.
37. Gold, L.,, and G. Stormo,. 1987. Translational initiation, p. 1302 1307. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 2. American Society for Microbiology, Washington, D.C..
38. Gold, L.,, and G. D. Stormo. 1990. High-level translation initiation . Methods Enzymol. 185: 89 93.
39. Gold, L.,, G. Stormo,, and R. Saunders. 1984. Escherichia coli translational initiation factor IF3: a unique case of translational regulation. Proc. Natl. Acad. Sci. USA 81: 7061 7065.
40. Gouy, M.,, and C. Gautier. 1982. Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res. 10: 7055 7074.
41. Graves, M. C.,, G. T. Mullenbach,, and J. C. Rabinowitz. 1985. Cloning and nucleotide sequence determination of the Clostridium pasteurianum ferredoxin gene. Proc. Natl. Acad. Sci. USA 82: 1653 1657.
42. Green, C. J.,, G. C. Stewart,, M. A. Hollis,, B. S. Void,, and K. F. Bott. 1985. Nucleotide sequence of the Bacillus subtilis ribosomal RNA operon, rrnB. Gene 37: 261 266.
43. Gryczan, T. J.,, G. Grandi,, J. Hahn,, R. Grandi,, and D. Dubnau. 1980. Conformational alteration of mRNA structure and the posttranscriptional regulation of erythromycin-induced drug resistance. Nucleic Acids Res. 8: 6081 6097.
44. Gualerzl, C.,, G. Risuleo,, and C. L. Pon. 1977. Initial rate kinetic analysis of the mechanism of initiation complex formation and the role of initiation factor IF3. Biochemistry 16: 1684 1689.
45. Gualerzl, C. O.,, R. A. Calogero,, M. A. Canonaco,, M. Brombach,, and C. L. Pon,. 1987. Selection of mRNA by ribosomes during procaryotic translation initiation, p. 317 330. In M. F. Tuite,, M. Picard,, and M. Bolotin-Fukuhara (ed.), Genetics of Translation: New Approaches. Springer-Verlag, Heidelberg, Germany.
46. Gualerzl, C. O.,, and C. L. Pon,. 1981. Protein biosynthesis in procaryotic cells: mechanism of 30S initiation complex formation in Escherichia coli, p. 805 826. In M. Balaban (ed.). Structural Aspects of Recognition and Assembly in Biological Macromolecules. Int. Sci. Serv., Rehovot, Israel.
47. Gualerzl, C. O.,, C. L. Pon,, R. T. Pawlik,, M. A. Canonaco,, M. Paci,, and W. Wintermeyer,. 1986. Role of the initiation factors in Escherichia coli translational initiation, p. 621 641. In B. Hardesty, and G. Kramer (éd.), Structure, Function and Genetics of Ribosomes. Springer-Verlag, New York.
48. Hager, P. W.,, and J. C. Rabinowitz. 1985. Inefficient translation of T7 late mRNA by Bacillus subtilis ribosomes. J Biol. Chem. 260: 15163 15167.
49. Hager, P. W.,, and J. C,. Rablnowitz. 1985. Translational specificity in Bacillus subtilis, p. 1 29. In D. Dubnau (ed.), The Molecular Biology of the Bacilli. Academic Press, Inc., New York.
50. Hahn, J.,, G. Grandi,, T. J. Gryczan,, and D. Dubnau. 1982. Translational attenuation of ermC: a deletion analysis. Mol. Gen. Genet. 186: 204 216.
51. Hall, M. X.,, J. Gabay,, M. Débarbouille,, and M. Schwartz. 1982. A role for mRNA secondary structure in the control of translation initiation. Nature (London) 295: 616 618.
52. Hartz, D.,, D. S. McPheeters,, and L. Gold. 1991. Influence of mRNA determinants on translation initiation in Escherichia coli. J. Mol. Biol. 218: 83 97.
53. Harwood, C. R.,, D. E. Bell,, and A. R. Winston. 1987. The effects of deletions in the leader sequence of cat-86, a chloramphenicol-resistance gene isolated from Bacillus pumilus. Gene 54: 267 273.
54. Healy, J.,, J. Weir,, I. Smith,, and R. Losick. 1991. Post-transcriptional control of a sporulation regulatory gene encoding transcription factor σ H in Bacillus subtilis. Mol. Microbiol. 5: 477 487.
55. Hershey, J. W. B., 1987. Protein synthesis, p. 613 647. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C..
56. Higo, K. 1973. Functional correspondence between 30S ribosomal proteins of Escherichia coli and Bacillus stearothermophilus. Proc. Natl. Acad. Sci. USA 70: 944 948.
57. Higo, K.,, E. Otaka,, and S. Osawa. 1982. Purification and characterization of 30S ribosomal proteins from Bacillus subtilis: correlation to Escherichia coli 30S proteins. Mol. Gen. Genet. 185: 239 244.
58. Himes, R. H.,, M. R. Stallcup,, and J. C. Rablnowitz. 1972. Translation of synthetic and endogenous messenger ribonucleic acid in vitro by ribosomes and polyri-bosomes from Clostridium pasteurianum. J. Bacteriol. 112: 1057 1069.
59. Hoch, S. O.,, C. W. Roth,, I. P. Crawford,, and E. W. Nester. 1971. Control of tryptophan biosynthesis by the methyltryptophan resistance gene in Bacillus subtilis. J. Bacteriol. 105: 38 45.
60. Hopwood, D. A.,, M. J. Bibb,, K. F. Chater,, G. R. Janssen,, F. Malpartida,, and C. P. Smith,. 1986. Regulation of gene expression in antibiotic-producing Streptomyces, p. 251 276. In I. R. Booth, and C. F. Higgins (ed.), Regulation of Gene Expression. 25 Years On. Cambridge University Press, Cambridge.
61. Horinouchi, S.,, K. Furuya,, M. Nishiyama,, H. Suzuki,, and T. Beppu. 1987. Nucleotide sequence of the strep-tothricin acetyltransferase gene from Streptomyces lav-endulae and its expression in heterologous hosts. J. Bacteriol. 169: 1929 1937.
62. Horinouchi, S.,, and B. Weisblum. 1980. Posttranscrip-tional modification of mRNA conformation: mechanism that regulates erythromycin-induced resistance. Proc. Natl. Acad. Sci. USA 77: 7079 7083.
63. Huang, W. M.,, S.-Z. Ao,, S. Casjens,, R. Orlandi,, R. Zelkus,, R. Weiss,, D. Winge,, and M. Fang. 1988. A persistent untranslated sequence within bacteriophage T4 DNA topoisomerase gene 60. Science 239: 1005 1012.
64. Hung, A.,, J. Thillet,, and R. Pictet. 1989. In vivo selected promoter and ribosome binding site up-mutations: demonstration that the Escherichia coli bla promoter and Shine-Dalgarno region with low complementarity to the 16 S ribosomal RNA function in Bacillus subtilis. Mol. Gen. Genet. 219: 129 136.
65. Ikemura, T. 1985. Codon usage and tRNA content in unicellular and multicellular organisms. Mol. Biol. Evol. 2: 13 34.
66. Imanaka, T.,, T. Himeno,, and S. Alba. 1987. Cloning and nucleotide sequence of the penicillinase antirepres-sor gene penJ of Bacillus licheniformis. J. Bacteriol. 169: 3867 3872.
67. Isono, K.,, and S. Isono. 1976. Lack of ribosomal protein S1 in Bacillus stearothermophilus. Proc. Natl. Acad. Sci. USA 73: 767 770.
68. Jinks-Robertson, S.,, and M. Nomura,. 1987. Ribosomes and tRNA, p. 1358 1385. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 2, American Society for Microbiology, Washington, D.C..
69. Kano, A.,, Y. Andachi,, T. Ohama,, and S. Osawa. 1991. Novel anticodon composition of transfer RNAs in Mi-crococcus luteus, a bacterium with a high genomic G+C content. Correlation with codon usage. J. Mol. Biol. 221: 387 401.
70. Klnnaird, J. H.,, and P. A. Burns. 1991. An apparent rare-codon effect on the rate of translation of a Neu-rospora gene. J. Mol. Biol. 221: 733 736.
71. Knight, J. A.,, L. W. Hardy,, D. Rennel,, D. Herrick,, and A. R. Poteete. 1987. Mutations in an upstream regulatory sequence that increase expression of the bacteriophage T4 lysozyme gene. J. Bacteriol. 169: 4630 4636.
72. Kobayashi, T.,, Y. F. Zhu,, X. J. Xicholls,, and J. O. Lampen. 1987. A second regulatory gene, blaRl, encoding a potential penicillin-binding protein required for induction of β-lactamase in Bacillus licheniformis. J. Bacteriol. 169: 3873 3878.
73. Kolb, A.,, J. M. Hermosa,, J. O. Thomas,, and W. Szer. 1977. Nucleic acid helix unwinding properties of ribosomal protein S1 and the role of S1 in mRNA binding to ribosomes. Proc. Natl. Acad. Sci. USA 74: 2379 2383.
74. Kubo, M.,, and T. Imanaka. 1989. mRNA secondary structure in an open reading frame reduces translation efficiency in Bacillus subtilis. J. Bacteriol. 171: 4080 4082.
75. Kuroda, M. I.,, D. Henner, and C. Yanofsky. 1988. cis-acting sequences in the transcript of the Bacillus subtilis trp operon regulate the expression of the operon. J. Bacteriol. 170: 3080 3088.
76. Landick, R.,, and C. Yanofsky,. 1987. Transcription attenuation, p. 1276 1301. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 2. American Society for Microbiology, Washington, D.C..
77. Laredo, J.,, V. Wolff,, and P. S. Lovett. 1988. Chloramphenicol acetyltransferase specified by cat-86: gene and protein relationships. Gene 73: 209 214.
78. Leonhardt, H. 1990. Identification of a low copy number mutation within the pUB110 replicon and its effect on plasmid stability in Bacillus subtilis. Gene 94: 121 124.
79. Leskiw, B. K.,, M. J. Bibb,, and K. F. Chater. 1991. The use of a rare codon specifically during development? Mol. Microbiol 5: 2861 2867.
80. Lin, C.K.,, D. S. Goldfarb,, R. H. Doi,, and R. L. Rodriguez. 1985. Mutations that affect the translation efficiency of Tn9-derived cat gene in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 82: 173 177.
81. Lodish, H. F. 1969. Species specificity of polypeptide chain initiation. Nature (London) 224: 867 870.
82. Lodish, H. F. 1970. Specificity in bacterial protein synthesis: role of initiation factors and ribosomal sub-units. Nature (London) 226: 705 707.
83. Lovett, P. S. 1990. Translational attenuation as the regulator of inducible cat genes. J. Bacteriol. 172: 1 6.
84. Mason, J. M.,, P. Fajardo-Cavazos,, and P. Setlow. 1988. Levels of mRNAs which code for small, acid-soluble spore proteins and their LacZ gene fusions in sporulat-ing cells of Bacillus subtilis. Nucleic Acids Res. 16: 6567 6583.
85. Mayford, M.,, and B. Weisblum. 1989. Conformational alterations in the ermC transcript in vivo during induction. EMBO J. 8: 4307 4314.
86. Mayford, M.,, and B. Weisblum. 1989. ermC leader peptide. Amino acid sequence critical for induction by translational attenuation. J. Mol. Biol. 206: 69 79.
87. McLaughlin, J. R.,, C. L. Murray,, and J. C. Rabinowitz. 1981. Unique features of the ribosomes binding site sequence of the Gram-positive Staphylococcus aureus /3-lactamase gene. J. Biol. Chem. 256: 11283 11291.
88. McPheeters, D. S.,, A. Christensen,, E. T. Young,, G. Stormo,, and L. Gold. 1986. Translational regulation of expression of the bacteriophage T4 lysozyme gene. Nucleic Acids Res. 14: 5813 5826.
89. Melin, L.,, L. Rutberg,, and A. von Gabain. 1989. Tran-scriptional and posttranscriptional control of the Bacillus subtilis succinate dehydrogenase operon. J. Bacteriol. 171: 2110 2115.
90. Mikulik, K.,, J. Smardova,, A. Jiranova,, and P. Branny. 1986. Molecular and functional properties of protein SSI from small ribosomal subunits of Streptomyces aureofaciens. Eur. J. Biochem. 155: 557 563.
91. Mongkolsuk, S.,, N. P. Ambulos, Jr.,, and P. S. Lovett. 1984. Chloramphenicol-inducible gene expression in Bacillus subtilis is independent of the chloramphenicol acetyltransferase structural gene and its promoter. J. Bacteriol. 160: 1 8.
92. Mongkolsuk, S.,, Y.-W. Chiang,, R. B. Reynolds,, and P. S. Lovett. 1983. Restriction fragments that exert promoter activity during postexponential growth of Bacillus subtilis. J. Bacteriol. 155: 1399 1406.
93. Mountain, A., 1989. Gene expression systems for Bacillus subtilis, p. 73 114. In C. R. Harwood (éd.), Bacillus. Plenum Press, New York.
94. Mowa, N. R.,, K. Nakamura,, and M. Inouye. 1980. Gene structure of the ompA protein, a major surface protein of Escherichia coli required for cell-cell interaction. J. Mol. Biol. 143: 317 328.
95. Muralikrishna, P.,, and T. Suryanarayana. 1985. Comparison of ribosomes from Gram-positive and Gram-negative bacteria with respect to the presence of protein S1. Biochem. Int. 11: 691 699.
96. Murayama, T.,, T. Gojobori,, S. Aota,, and T. Ikemura. 1986. Codon usage tabulated from the GenBank genetic sequence data. Nucleic Acids Res. 14: rl51 rl97.
97. Nakamura, K.,, R. M. Plrtle,, I. L. Pirtle,, K. Takeish,, and M. Inouye. 1980. Messenger ribonucleic acid of the lipoprotein of the Escherichia coli outer membrane. II. The complete nucleotide sequence. J. Biol. Chem. 255: 210 216.
98. Narayanan, C. S.,, and D. Dubnau. 1985. Evidence for the translational attenuation model: ribosome-binding studies and structural analysis with an in vitro run off transcript of ermC. Nucleic Acids Res. 13: 7307 7326.
99. Narayanan, C. S.,, and D. Dubnau. 1987. Demonstration of erythromicin-dependent stalling of ribosome on the ermC leader transcript. J. Biol. Chem. 262: 1766 1771.
100. Narayanan, C. S.,, and D. Dubnau. 1987. An in vitro study of the translational attenuation model of ermC regulation. J. Biol. Chem. 262: 1756 1765.
101. Noller, H. F.,, and M. Nomura,. 1987. Ribosomes, p. 104 125. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (éd.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C..
102. Ogasawara, N. 1985. Markedly unbiased codon usage in Bacillus subtilis. Gene 40: 145 150.
103. Ohama, T.,, A. Muto,, and S. Osawa. 1989. Spectinomycin operon of Micrococcus luteus: evolutionary implications of organization and novel codon usage. J. Mol. Evol. 29: 381 395.
104. Peijnenburg, A. A. C. M.,, G. Venema,, and S. Bron. 1990. Translational coupling in a penP-lacZ gene fusion in Bacillus subtilis and Escherichia coli: use of AUA as a restart codon. Mol. Gen. Genet. 221: 267 272.
105. Pirotta, V. 1979. Operators and promoters in the O R region of phage 434. Nucleic Acids Res. 6: 1495 1508.
106. Pon, C. L.,, M. Brombach,, S. Thamm,, and C. O. Gualerzi. 1989. Cloning and characterization of a gene cluster from Bacillus stearothermophilus comprising infC, rpml and rplT. Mol. Gen. Genet. 218: 355 357.
107. Ptashne, M.,, K. Backman,, M. Z. Humayun,, A. Jeffrey,, R. Mauer,, B. Meyer,, and R. T. Sauer. 1976. Autoregulation and function of a represser in bacteriophage lambda. Science 194: 156 161.
108. Qi, F.-X.,, and R. H. Doi. 1990. Localization of a second SigH promoter in the Bacillus subtilis sigA operon and regulation of dnaE expression by the promoter. J. Bacteriol. 172: 5631 5636.
109. Rabinowitz, J. C.,, and M. Roberts,. 1986. Translational barriers limiting expression of E. coli genes in Bacillus and other Gram-positive organisms, p. 297 312. In S. B. Levy, and R. P. Novick (éd.), Antibiotic Resistance Genes: Ecology, Transfer, and Expression. Banbury Report 24. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y..
110. Reddy, P.,, A. Peterkofsky,, and K. McKenney. 1985. Translational efficiency of the Escherichia coli adenyl-ate cyclase gene: mutating the UUG initiation codon to GUG or AUG results in increased gene expression. Proc. Natl. Acad. Sci. USA 82: 5656 5660.
111. Roberts, M. W.,, and J. C. Rabinowitz. 1989. The effect of Escherichia coli ribosomal protein SI on the translational specificity of bacterial ribosomes. J. Biol. Chem. 264: 2228 2235.
112. Rogers, E. J.,, N. P. Ambulos, Jr.,, and P. S. Lovett. 1990. Complementarity of Bacillus subtilis 16S rRNA with sites of antibiotic-dependent ribosome stalling in cat and erm leaders. J. Bacteriol. 172: 6282 6290.
113. Rogers, E. J.,, U. J. Kim,, N. P. Ambulos, Jr.,, and P. S. Lovett. 1990. Four codons in the cat-86 leader define a chloramphenicol-sensitive ribosome stall sequence. J. Bacteriol. 172: 110 115.
114. Rogers, E. J.,, and P. S. Lovett. 1990. Erythromycin induces expression of the chloramphenicol acetyltransferase gene cat-86. J. Bacteriol. 172: 4694 4695.
115. Sandier, P.,, and B. Weisblum. 1988. Erythromycin-induced stabilization of ermA messenger RNA in Staphylococcus aureus and Bacillus subtilis. J. Mol. Biol. 203: 905 915.
116. Sandier, P.,, and B. Weisblum. 1989. Erythromycin-induced ribosome stall in the ermA leader: a barricade to the 5'-to-3' nucleotide cleavage of the ermA transcript. J. Bacteriol. 171: 6680 6688.
117. Scherer, G. F. E.,, M. D. Walkinshaw,, S. Arnott,, and D. J. Morre. 1980. The ribosome binding sites recognized by E. coli ribosomes have regions with signal character in both the leader and protein coding segments. Nucleic Acids Res. 8: 3895 3907.
118. Schneider, T. D.,, G. D. Stormo,, L. Gold,, and A. Ehren-feucht. 1986. Information content of binding sites on nucleotide sequences. J. Mol. Biol. 188: 415 431.
119. Schnier, J.,, and G. Falst. 1985. Comparative studies on the structural gene for the ribosomal protein SI in ten bacterial species. Mol. Gen. Genet. 200: 476 481.
120. Schottel, J. L.,, M. J. Bibb,, and S. N. Cohen. 1981. Cloning and expression in Streptomyces lividans of antibiotic resistance genes derived from Escherichia coli. J. Bacteriol. 146: 360 368.
121. Sharp, P. M.,, and W.-H. LI. 1986. Codon usage in regulatory genes in Escherichia coli does not reflect selection for 'rare' codons. Nucleic Acids Res. 14: 7737 7749.
122. Sharp, P. M.,, T. M. F. Touhy,, and K. R. Mosurskl. 1986. Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res. 14: 5125 5143.
123. Shields, D. C.,, and P. M. Sharp. 1987. Synonymous codon usage in Bacillus subtilis reflects both translational selection and mutational biases. Nucleic Acids Res. 15: 8023 8040.
124. Shimotsu, H.,, M. I. Kuroda,, C. Yanofsky,, and D. J. Henner. 1986. Novel form of transcription attenuation regulates expression of the Bacillus subtilis tryptophan operon. J. Bacteriol. 166: 461 471.
125. Shine, J.,, and L. Dalgarno. 1974. The 3-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc. Natl. Acad. Set. USA 71: 1342 1346.
126. Simons, R. W. ( and N. Kleckner. 1983. Translational control of IS 10 transposition. Cell 34: 683 691.
127. Skeggs, P. A.,, J. Thompson,, and E. Cundllffe. 1985. Methylation of 16S ribosomal RNA and resistance to aminoglycoside antibiotics in clones of Streptomyces lividans carrying DNA from Streptomyces tenjimariensis. Mol. Gen. Genet. 200: 415 421.
128. Stallcup, M. R.,, W. J. Sharrock,, and J. C. Rabinowitz. 1976. Specificity of bacterial ribosomes and messenger ribonucleic acids in protein synthesis reaction in vitro. J. Biol. Chem. 251: 2499 2510.
129. Steitz, J. A. 1969. Polypeptide chain initiation: nucleo-tide sequence of the three ribosome binding sites of Rl7 phage RNA. Nature (London) 224: 957 964.
130. Stormo, G. D., 1986. Translation initiation, p. 195 224. In W. Reznikoff, and L. Gold (éd.), Maximizing Gene Expression. Butterworths, Mass..
131. Stormo, G. D.,, T. D. Schneider,, and L. M. Gold. 1982. Characterization of translational initiation sites in E. coli. Nucleic Acids Res. 10: 2971 2996.
132. Subramanian, A. R. 1983. Structure and functions of ribosomal protein SI. Prog. Nucleic Acids Res. Mol. Biol. 28: 101 142.
133. Subramanian, A. R. 1984. Structure and functions of the largest Escherichia coli ribosomal protein. Trends Biochem. Sci. 9: 491 494.
134. Szer, W.,, J. M. Hermosa,, and M. Boublik. 1976. Destabilization of the secondary structure of RNA by ribosomal protein SI of Escherichia coli. Biochem. Biophys. Res. Commun. 70: 957 964.
135. Tessier, L.-H.,, P. Sondermeyer,, T. Faure,, D. Dreyer,, A. Benavente,, D. Villeral,, M. Courtney,, and J.-P. Lecocq. 1984. The influence of mRNA primary and secondary structure on human IFN-γ gene expression in Escherichia coli. Nucleic Acids Res. 12: 7663 7675.
136. Thomas, D. Y.,, G. Dubuc,, and S. Narang. 1982. Escherichia coli plasmid vectors containing synthetic translational initiation sequences and ribosome binding sites fused with the lacZ gene. Gene 19: 211 219.
137. Thomas, J. O.,, A. Kalb,, and W. Szer. 1978. Structure of single-stranded nucleic acids in the presence of ribosomal protein SI. J. Mol. Biol. 123: 163 176.
138. Thomas, J. O.,, and W. Szer. 1982. RNA helix destabilizing proteins. Prog. Nucleic Acid Res. Mol. Biol. 27: 157 187.
139. Thompson, C. J.,, and G. S. Gray. 1983. Nucleotide sequence of a streptomycete aminoglycoside phospho-transferase gene and its relationship to phosphotrans-ferases encoded by resistance plasmids. Proc. Natl. Acad. Sci. USA 80: 5190 5194.
140. Thompson, J.,, S. Rae,, and E. Cundllffe. 1984. Coupled transcription-translation in extracts of Streptomyces lividans. Mol. Gen. Genet. 195: 39 43.
141. van Dieijen, G.,, P. H. van Knippenberg,, and J. van Duin. 1976. The role of ribosomal protein S1 in the recognition of native phage RNA. Eur. J. Biochem. 64: 511 518.
142. Vellanoweth, R. L.,, and J. C. Rabinowitz. 1992. The influence of ribosome binding site elements on translational efficiency in Bacillus subtilis and Escherichia coli in vivo. Mol. Microbiol. 6: 1105 1114.
143. Weaver, J. R.,, and P. A. Pattee. 1964. Inducible resistance to erythromycin in Staphylococcus aureus. J. Bacteriol. 88: 574 580.
144. Weisblum, B.,, C. Siddhikol,, C.-J. Lai,, and V. Demohn. 1971. Erythromycin-inducible resistance in Staphylococcus aureus: requirements for induction. J. Bacteriol. 106: 835 847.
145. Whitehead, T. R.,, and J. C. Rabinowitz. 1988. Nucleotide sequence of the Clostridium acidiurici (“Clostridium acidiurici”) gene for 10-formyltetrahydrofolate syn-thetase shows extensive amino acid homology with the trifunctional enzyme C,-tetrahydrofolate synthetase from Saccharomyces cerevisiae. J. Bacteriol. 170: 3255 3261.
146. Williams, D. M.,, E. J. Duvall,, and P. S. Lovett. 1981. Cloning restriction fragments that promote expression of a gene in Bacillus subtilis. J. Bacteriol. 146: 1162 1165.
147. Wood, C. R.,, M. A. Boss,, T. P. Patel,, and J. S. Emtage. 1984. The influence of messenger-RNA secondary structure on expression of an immunoglobulin heavy-chain in Escherichia coli. Nucleic Acids Res. 12: 3937 3950.
148. Zaghloul, T. I.,, and R. H. Doi. 1987. In vitro expression of a Tn9-derived chloramphenicol acetyltransferase gene fusion by using a Bacillus subtilis system. J. Bacteriol 169: 1212 1216.
149. Zaghloul, T. I.,, F. Kawamura,, and R. H. Doi. 1985. Translational coupling in Bacillus subtilis of a heterologous Bacillus subtilis-Escherichia coli gene fusion. J. Bacteriol. 164: 550 555.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error