1887

Chapter 50 : Two-Component Regulatory Systems

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Two-Component Regulatory Systems, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap50-1.gif /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap50-2.gif

Abstract:

Originally characterized for nitrogen regulation (NtrB-NtrC), chemotaxis (CheA-CheY-CheB), osmoregulation (EnvZ-OmpR), and regulation of phosphate uptake (PhoR-PhoB) in and , the family of two-component systems has rapidly expanded, and new examples continue to emerge. More than 30 of these regulatory pairs have been identified in both gram-negative and gram-positive bacteria; they control functions ranging from virulence gene expression in (VirA-VirG), (PhoQ-PhoP), and (BvgSBvgA) to complex developmental pathways such as sporulation (SpoIIJ-SpoOF-SpoOA) and competence for transformation by exogenous DNA (ComP-ComA and DegS-DegU) in . These pairs are the focus of this chapter. Sequence similarities to other two-component systems suggest the conserved His-189 residue of the DegS protein kinase and Asp-56 residue of the DegU response regulator as likely candidates for the respective phosphorylation sites of the two proteins. A large number of proteins belonging to the histidine protein kinase-response regulator family have been characterized in gram-positive bacteria. It appears that a considerable amount of overlap exists between the different systems controlling postexponential-phase responses in . Thus, DegS-DegU, ComP-ComA, and SpoOA are all involved in controlling competence gene expression, and the SpoOA phosphorelay and DegS-DegU both control protease gene expression.

Citation: Msadek T, Kunst F, Rapoport G. 1993. Two-Component Regulatory Systems, p 729-745. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch50

Key Concept Ranking

Transcription Start Site
0.49505413
Gene Expression and Regulation
0.4652876
Bacterial Proteins
0.45563588
Toxic Shock Syndrome
0.40879247
0.49505413
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Alignment of conserved regions within the carboxy-terminal domains of histidine protein kinases from gram-positive bacteria. Multiple protein sequence alignments were carried out by using the CLUSTAL V program ( ). Protein sequences are from the references in Table 1 . Homologous residues are indicated by black boxes, stars indicate invariant residues, and numbers indicate positions in the amino acid sequences of the respective proteins. Accepted conservative substitutions are as follows: I, L, V, and M; K and R; S and T; D and E; F and Y; N and Q; G and A.

Citation: Msadek T, Kunst F, Rapoport G. 1993. Two-Component Regulatory Systems, p 729-745. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch50
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Conserved carboxy-terminal domains of response regulators from gram-positive bacteria. Numbers correspond to positions in the respective amino acid sequences. References for the response regulators from gram-positive bacteria are listed in Table 1 . Comparisons were carried out as indicated in the legend to Fig. 1 . (A) Alignment of the OmpR-PhoP subfamily with OmpR of ( ) and ToxR of ( ). (B) Alignment of the UhpA-DegU subfamily with the regulatory proteins RcsA and MalT of . ( ); RmpA of ( ); LasR and AgmR of . ( ); LuxR of ( ); BrpA of S. ( ); and GerE ( ) and sigma factors σ(46), σ ( ), and σ ( ) of A potential DNA-binding helix-turn-helix motif within this region is underlined.

Citation: Msadek T, Kunst F, Rapoport G. 1993. Two-Component Regulatory Systems, p 729-745. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch50
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Regulation of competence gene expression in Arrows indicate positive regulation, and perpendicular bars indicate negative regulation. The ComP-ComA and DegS-DegU two-component systems form two parallel pathways controlling competence gene expression ( ).

Citation: Msadek T, Kunst F, Rapoport G. 1993. Two-Component Regulatory Systems, p 729-745. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch50
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Pleiotropic regulation by the DegS-DegU signal transduction pathway controlling degradative enzyme synthesis and competence gene expression in Arrows indicate positive regulation, and perpendicular bars indicate negative regulation. Regulation by DegS-DegU, DegQ, and DegR may be indirect.

Citation: Msadek T, Kunst F, Rapoport G. 1993. Two-Component Regulatory Systems, p 729-745. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch50
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Alignment of the conserved amino-terminal domains of response regulators from gram-positive bacteria. References for protein sequences are listed in Table 1 . Numbers correspond to positions in the respective amino acid sequences. Comparisons were carried out as indicated in the legend to Fig. 1 .

Citation: Msadek T, Kunst F, Rapoport G. 1993. Two-Component Regulatory Systems, p 729-745. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch50
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818388.chap50
1. Aiba, H.,, T. Mizuno,, and S. Mizushlma. 1989. Transfer of phosphoryl group between two regulatory proteins involved in osmoregulatory expression of the ompF and ompC genes in Escherichia coli. J. Biol. Chem. 264:85638567.
2. Aiba, H.,, F. Nakasai,, S. Mizushima,, and T. Mizuno. 1989. Evidence for the physiological importance of the phosphotransfer between the two regulatory components, EnvZ and OmpR, in osmoregulation in Escherichia coli. J. Biol. Chem. 264:1409014094.
3. Albright, L. M.,, E. Huala,, and F. M. Ausubel. 1989. Prokaryotic signal transduction mediated by sensor and regulator pairs. Annu. Rev. Genet. 23:311336.
4. Allen, P.,, C. A. Hart,, and J. R. Saunders. 1987. Isolation from Klebsiella and characterization of two rcs genes that activate colanic acid capsular biosynthesis in Escherichia coli. J. Gen. Microbiol. 133:331340.
5. Altschul, S. F.,, W. Gish,, W. Miller,, E. W. Myers,, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403410.
6. Amemura, M.,, K. Makino,, H. Shinagawa,, and A. Nakata. 1990. Cross talk to the phosphate regulon of Escherichia coli by PhoM protein: PhoM is a histidine protein kinase and catalyzes phosphorylation of PhoB and PhoM-open reading frame 2. J. Bacteriol. 172:63006307.
7. Amory, A.,, F. Kunst,, E. Aubert,, A. Klier,, and G. Rapoport. 1987. Characterization of the sacQ genes from Bacillus licheniformis and Bacillus subtilis. J. Bacteriol. 169:324333.
8. Antonlewski, C.,, B. Savelli,, and P. Stragier. 1990. The spoIIJ gene, which regulates early development steps in Bacillus subtilis, belongs to a class of environmentally responsive genes. J. Bacteriol. 172:8693.
9. Arico, B.,, J. F. Miller,, C. Roy,, S. Stlbitz,, D. Monack,, S. Falkow,, R. Gross,, and R. Rappuoli. 1989. Sequences required for expression of Bordetella pertussis virulence factors share homology with prokaryotic signal transduction proteins. Proc. Natl. Acad. Sci. USA 86:66716675.
10. Arthur, M.,, C. Molinas,, and P. Courvalln. 1992. The VanS-VanR two-component regulatory system controls synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium strain BM4147. J. Bacteriol. 173: 25822591.
11. Aymerich, S.,, G. Gonzy-Triboul,, and M. Steinmetz. 1986. 5'-noncoding region sacR is the target of all identified regulation affecting the levansucrase gene in Bacillus subtilis. J. Bacteriol. 166:993998.
12. Ayusawa, D.,, Y. Yoneda,, K. Yamane,, and B. Maruo. 1975. Pleiotropic phenomena in autolytic enzyme(s) content, flagellation, and simultaneous hyperproduction of extracellular a-amylase and protease in a Bacillus subtilis mutant. J. Bacteriol. 124:459469.
13. Bernhard, F.,, K. Poetter,, K. Geider,, and D. L. Coplin. 1990. The rcsA gene from Erwinia amylovora: identification, nucleotide sequence, and regulation of exopolysaccharide biosynthesis. Mol. Plant Microbe Interact. 3:429437.
14. Berry, A.,, J. D. DeVault,, and A. M. Chakrabarty. 1989. High osmolality is a signal for enhanced algD transcription in mucoid and nonmucoid Pseudomonas aeruginosa strains. J. Bacteriol. 171:23122317.
15. Binnle, C.,, M. Lampe,, and R. Losick. 1986. Gene encoding the ��37 species of RNA polymerase �� factor from Bacillus subtilis. Proc. Natl. Acad. Sci. USA 83:59435947.
16. Bischoff, D. S.,, and G. W. Ordal. 1991. Sequence and characterization of Bacillus subtilis CheB, a homolog of Escherichia coli CheY, and its role in a different mechanism of chemotaxis. J. Biol. Chem. 266:1230112305.
17. Bischoff, D. S.,, and G. W. Ordal. 1992. Bacillus subtilis chemotaxis: a deviation from the Escherichia coli paradigm. Mol. Microbiol. 6:2328.
18. Bourret, R. B.,, K. A. Borkovich,, and M. I. Simon. 1991. Signal transduction pathways involving protein phosphorylation in prokaryotes. Annu. Rev. Biochem. 60: 401441.
19. Bourret, R. B.,, J. F. Hess,, K. A. Borkovich,, A. A. Pakula,, and M. I. Simon. 1989. Protein phosphorylation in chemotaxis and two-component regulatory systems of bacteria. J. Biol. Chem. 264:70857088.
20. Bourret, R. B.,, J. F. Hess,, and M. I. Simon. 1990. Conserved aspartate residues and phosphorylation in signal transduction by the chemotaxis protein CheY. Proc. Natl. Acad. Sci. USA 87:4145.
21. Bouvier, J.,, P. Stragier,, C. Bonamy,, and J. Szulmajster. 1984. Nucleotide sequence of the spo0B gene of Bacillus subtilis and regulation of its expression. Proc. Natl. Acad. Sci. USA 81:70127016.
22. Buikema, W. J.,, W. W. Szeto,, P. V. Lemley,, W. H. Orme-Johnson,, and F. M. Ausubel. 1985. Nitrogen fixation specific regulatory genes of Klebsiella pneumoniae and Rhizobium meliloti share homology with the general nitrogen regulatory gene ntrC of K. pneumoniae. Nucleic Acids Res. 13:45394555.
23. Burbulys, D.,, K. A. Trach,, and J. A. Hoch. 1991. Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell 64:545552.
23a. Chesnut, R. S.,, C. Bookstein,, and F. M. Hulett. 1991. Separate promoters direct expression of phoAIII, a member of the Bacillus subtilis alkaline phosphatase multigene family, during phosphate starvation and sporulation. Mol. Microbiol. 5:21812190.
23b. Chesnut, R. S.,, and F. M. Hulett. 1993. Personal communication.
24. Choi, S. H.,, and E. P. Greenberg. 1991. The C-terminal region of the Vibrio fischeri LuxR protein contains an inducer-independent lux gene activating domain. Proc. Natl. Acad. Sci. USA 88:1111511119.
25. Cole, S. T.,, and O. Raibaud. 1986. The nucleotide sequence of the malT gene encoding the positive regulator of the Escherichia coli maltose regulon. Gene 42:201208.
26. Coleman, M.,, R. Pearce,, E. Hitchin,, F. Busfield,, J. W. Mansfield,, and I. S. Roberts. 1990. Molecular cloning, expression and nucleotide sequence of the rcsA gene of Erwinia amylovora, encoding a positive regulator of capsule expression: evidence for a family of related capsule activator proteins. J. Gen. Microbiol. 136:17991806.
27. Comeau, D. E.,, K. Ikenaka,, K. Tsung,, and M. Inouye. 1985. Primary characterization of the protein products of the Escherichia coli ompB locus: structure and regulation of synthesis of the OmpR and EnvZ proteins. J. Bacteriol. 164:578584.
28. Cutting, S.,, and J. Mandelstam. 1986. The nucleotide sequence and the transcription during sporulation of the gerE gene of Bacillus subtilis. J. Gen. Microbiol. 132:30133024.
29. Dahl, M. K.,, T. Msadek,, and F. Kunst. 1992. Unpublished results.
30. Dahl, M. K.,, T. Msadek,, F. Kunst,, and G. Rapoport. 1991. Mutational analysis of the Bacillus subtilis DegU regulator and its phosphorylation by the DegS protein kinase. J. Bacteriol. 173:25392547.
31. Dahl, M. K.,, T. Msadek,, F. Kunst,, and G. Rapoport. 1992. The phosphorylation state of the DegU response regulator acts as a molecular switch allowing either degradative enzyme synthesis or expression of genetic competence in Bacillus subtilis. J. Biol. Chem. 267: 1450914514.
32. Débarbouillé, M.,, I. Martin-Verstraete,, A. Klier,, and G. Rapoport. 1991. The levanase regulator LevR of Bacillus subtilis has domains homologous to both ��54- and PTS-dependent regulators. Proc. Natl. Acad. Sci. USA 88:22122216.
33. Débarbouillé, M.,, I. Martin-Verstraete,, F. Kunst,, and G. Rapoport. 1991. The Bacillus subtilis sigL gene encodes an equivalent of ��54 from Gram-negative bacteria. Proc. Natl. Acad. Sci. USA 88:90929096.
34. De Vault, J. D.,, A. Berry,, T. K. Misra,, A. Darzins,, and A. M. Chakrabarty. 1989. Environmental sensory signals and microbial pathogenesis: Pseudomonas aeruginosa infection in cystic fibrosis. Bio/Technology 7:352357.
35. Devine, J. H.,, C. Countryman,, and T. O. Baldwin. 1988. Nucleotide sequence of the luxR and luxI genes and structure of the primary regulatory region of the lux regulon of Vibrio fischeri ATCC 7744. Biochemistry 27: 837842.
36. Drummond, M.,, P. Whitty,, and J. Wootton. 1986. Sequence and domain relationships of ntrC and nifA from Klebsiella pneumoniae: homologies to other regulatory proteins. EMBO J. 5:441447.
37. Dubnau, D. 1991. Genetic competence in Bacillus subtilis. Microbiol. Rev. 55:395424.
38. Dubnau, D.,, and M. Roggiani. 1990. Growth medium-independent genetic competence mutants of Bacillus subtilis. J. Bacteriol. 172:40484055.
39. Engebrecht, J.,, and M. Silverman. 1987. Nucleotide sequence of the regulatory locus controlling expression of bacterial genes for bioluminescence. Nucleic Acids Res. 15:1045510467.
40. Ferrari, F. A.,, K. Trach,, D. LeCoq,, J. Spence,, E. Ferrari,, and J. A. Hoch. 1985. Characterization of the spoOA locus and its deduced product. Proc. Natl. Acad. Sci. USA 82:26472651.
41. Forst, S.,, D. Comeau,, S. Norioka,, and M. Inouye. 1987. Localization and membrane topology of EnvZ, a protein involved in osmoregulation of OmpF and OmpC in Escherichia coli. J. Biol. Chem. 262:1643316438.
42. Forst, S.,, J. Delgado,, and M. Inouye. 1989. Phosphorylation of OmpR by the osmosensor EnvZ modulates expression of the ompF and ompC genes in Escherichia coli. Proc. Natl. Acad. Sci. USA 86:60526056.
43. Friedrich, M. J.,, and R. J. Kadner. 1987. Nucleotide sequence of the uhp region of Escherichia coli. J. Bacteriol. 169:35563563.
44. Fuhrer, D. K.,, and G. W. Ordal. 1991. Bacillus subtilis CheN, a homolog of CheA, the central regulator of chemotaxis in Escherichia coli. J. Bacteriol. 173:74437448.
45. Gambello, M. J.,, and B. H. Iglewskl. 1991. Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J. Bacteriol. 173:30003009.
46. Gitt, M. A.,, L.-F. Wang,, and R. H. Doi. 1985. A strong sequence homology exists between the major RNA polymerase a factors of Bacillus subtilis and Escherichia coli. J. Biol. Chem. 260:71787185.
47. Gross, R.,, B. Arico,, and R. Rappuoli. 1989. Families of bacterial signal-transducing proteins. Mol. Microbiol. 3:16611667.
48. Hahn, J.,, and D. Dubnau. 1991. Growth stage signal transduction and the requirements for srfA induction in development of competence. J. Bacteriol. 173:72757282.
49. Hahn, J.,, and D. Dubnau. 1992. Personal communication.
50. Hanks, S. K.,, A. M. Quinn,, and T. Hunter. 1988. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241:4252.
51. Helmann, J. D. 1991. Alternative sigma factors and the regulation of flagellar gene expression. Mol. Microbiol. 5:28752882.
52. Helmann, J. D.,, L. M. Marquez,, V. L. Singer,, and M. J. Chamberlin,. 1988. Cloning and characterization of the Bacillus subtilis sigma-28 gene, p. 189193. In A. T. Ganesan,, and J. A. Hoch (ed.), Genetics and Biotechnology of Bacilli, vol. 2. Academic Press, Inc., San Diego.
53. HenikoCf, S.,, J. C. Wallace,, and J. P. Brown. 1990. Finding protein similarities with nucleotide sequence databases. Methods Enzymol. 183:111132.
54. Henner, D. J.,, E. Ferrari,, M. Perego,, and J. A. Hoch. 1988. Location of the targets of the hpr-97, sacU32(Hy), and sacQ36(Hy) mutations in upstream regions of the subtilisin promoter. J. Bacteriol. 170:296300.
55. Henner, D. J.,, E. Ferrari,, M. Perego,, and J. A. Hoch,. 1988. Upstream activating sequences in Bacillus subtilis, p. 39. In A. T. Ganesan, and J. A. Hoch (ed.), Genetics and Biotechnology of Bacilli, vol. 2. Academic Press, Inc., San Diego.
56. Henner, D. J.,, M. Yang,, L. Band,, H. Shimotsu,, M. Ruppen,, and E. Ferrari,. 1987. Genes of Bacillus subtilis that regulate the expression of degradative enzymes, p. 8190. In M. Alacevic,, D. Hranueli,, and Z. Toman (ed.). Genetics of Industrial Microorganisms. Proceedings of the Fifth International Symposium on the Genetics of Industrial Microorganisms. Pliva, Zagreb, Yugoslavia.
57. Henner, D. J.,, M. Yang,, and E. Ferrari. 1988. Localization of Bacillus subtilis sacU(Hy) mutations to two linked genes with similarities to the conserved procar-yotic family of two-component signaling systems. J. Bacteriol. 170:51025109.
58. Hess, J. F.,, R. B. Bourret,, and M. I. Simon. 1988. Histidine phosphorylation and phosphoryl group transfer in bacterial chemotaxis. Nature (London) 336:139143.
59. Higgins, D. G.,, and P. M. Sharp. 1988. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 73:237244.
60. Higgins, D. G.,, and P. M. Sharp. 1989. Fast and sensitive multiple sequence alignments on a microcomputer. Comput. Appl. Biosci. 5:151153.
61. Holland, S. K.,, S. Cutting,, and J. Mandelstam. 1987. The possible DNA-binding nature of the regulatory proteins, encoded by spoIID and gerE, involved in the sporulation of Bacillus subtilis. J. Gen. Microbiol. 133: 23812391.
62. Hulett, F. M.,, E. E. Kim,, C. Bookstein,, X. V. Kapp,, C. W. Edwards,, and H. W. Wyckoff. 1991. Bacillus subtilis alkaline phosphatases III and IV. Cloning, sequencing and comparisons of deduced amino acid sequence with Escherichia coli alkaline phosphatase three-dimensional structure. J. Biol. Chem. 266:10771084.
63. Igo, M. M.,, A. J. Xinfa,, J. B. Stock,, and T. J. Silhavy. 1989. Phosphorylation and dephosphorylation of a bacterial transcriptional activator by a transmembrane receptor. Genes Dev. 3:17251734.
64. Igo, M. M.,, J. M. Slauch,, and T. J. Silhavy. 1990. Signal transduction in bacteria:kinases that control gene expression. New Biol. 2:59.
65. Jin, S.,, R. K. Prusti,, T. Roitsch,, R. G. Ankenbauer,, and E. W. Xester. 1990. Phosphorylation of the VirG protein of Agrobacterium tumefaciens by the autophosphory-lated VirA protein: essential role in biological activity of VirG. J. Bacteriol. 172:49454950.
66. Jin, S.,, T. Roitsch,, R. G. Ankenbauer,, M. P. Gordon,, and E. W. Xester. 1990. The VirA protein of Agrobacterium tumefaciens is autophosphorylated and is essential for vir gene regulation. J. Bacteriol. 172:525530.
67. Kahn, D.,, and G. Ditta. 1991. Modular structure of FixJ: homology of the transcriptional activator domain with the -35 binding domain of sigma factors. Mol. Microbiol. 5:987997.
68. Keener, J.,, and S. Kustu. 1988. Protein kinase and phosphoprotein phosphatase activities of nitrogen regulatory proteins NTRB and NTRC of enteric bacteria: roles of the conserved amino-terminal domain of NTRC. Proc. Natl. Acad. Sci. USA 85:49764980.
69. Kemp, B. E.,, and R. B. Pearson. 1990. Protein kinase recognition sequence motifs. Trends Biochem. Sci. 15: 342346.
70. Klier, A.,, T. Msadek,, and G. Rapoport. 1992. Positive regulation in the Gram-positive bacterium: Bacillus subtilis. Annu. Rev. Microbiol. 46:429459.
71. Kofoid, E. C.,, and J. S. Parkinson. 1988. Transmitter and receiver modules in bacterial signaling proteins. Proc. Natl. Acad. Sci. USA 85:49814985.
72. Kofoid, E. C.,, and J. S. Parkinson. 1991. Tandem translation starts in the cheA locus of Escherichia coli. J. Bacteriol. 173:21162119.
73. Kornblum, J.,, B. N. Kreiswirth,, S. J. Projan,, H. Ross,, and R. P. Novlck,. 1990. Agr: a polycistronic locus regulating exoprotein synthesis in Staphylococcus aureus, p. 373402. In R. P. Novick (ed.). Molecular Biology of the Staphylococci. VCH, New York.
74. Kroos, L. 1991. Gene regulation in the mother-cell compartment of sporulating Bacillus subtilis. Semin. Dev. Biol. 2:6371.
75. Kunst, F.,, A. Amory,, M. Debarbouillé,. I . Martin,, A. Klier,, and G. Rapoport,. 1988. Polypeptides activating the synthesis of secreted enzymes, p. 2731. In A. T. Ganesan, and J. A. Hoch (ed.), Genetics and Biotechnology of Bacilli, vol. 2. Academic Press Inc., San Diego.
76. Kunst, F.,, M. Dgbarbouilll,, T. Msadek,, M. Young,, C. Mauel,, D. Karamata,, A. Klier,, G. Rapoport,, and R. Dedonder. 1988. Deduced polypeptides encoded by the Bacillus subtilis sacU locus share homology with two-component sensor-regulator systems. J. Bacteriol. 170: 50935101.
77. Kunst, F.,, and T. Msadek. 1991. Unpublished results.
78. Kunst, F.,, M. Pascal,, J. Lepesant-Kejzlarová,, J.-A. Le-pesant,, A. Billault,, and R. Dedonder. 1974. Pleiotropic mutations affecting sporulation conditions and the synthesis of extracellular enzymes in Bacillus subtilis 168. Biochimie 56:14811489.
79. Lepesant, J.-A.,, F. Kunst,, J. Lepesant-Kejzlarova,, and R. Dedonder. 1972. Chromosomal location of mutations affecting sucrose metabolism in Bacillus subtilis Marburg. Mol. Gen. Genet. 118:135160.
80. Leroux, B.,, M. F. Yanofsky,, S. C. Winans,, J. E. Ward,, S. F. Ziegler,, and E. W. Nester. 1987. Characterization of the virA locus of Agrobacterium tumefaciens: a transcriptional regulator and host range determinant. EMBO J. 6:849856.
81. Lukat, G. S.,, B. H. Lee,, J. M. Mottonen,, A. M. Stock,, and J. B. Stock. 1991. Roles of the highly conserved aspartate and lysine residues in the response regulator of bacterial chemotaxis. J. Biol. Chem. 266:83488354.
82. Lukat, G. S.,, W. R. McCleary,, A. M. Stock,, and J. B. Stock. 1992. Phosphorylation of bacterial response regulator proteins by low molecular weight phospho-do-nors. Proc. Natl. Acad. Sci. USA 89:718722.
83. Lukat, G. S.,, A. M. Stock,, and J. B. Stock. 1990. Divalent metal ion binding to the CheY protein and its significance to phosphotransfer in bacterial chemotaxis. Biochemistry 29:54365442.
84. Lupas, A.,, and J. Stock. 1989. Phosphorylation of an N-terminal regulatory domain activates the CheB methylesterase in bacterial chemotaxis. J. Biol. Chem. 264:1733717342.
85. MacFarlane, S. A.,, and M. Merrick. 1985. The nucleotide sequence of the nitrogen regulation gene ntrB and the glnA-ntrBC intergenic region of Klebsiella pneumoniae. Nucleic Acids Res. 13:75917606.
86. Magasanik, B. 1982. Genetic control of nitrogen assimilation in bacteria. Annu. Rev. Genet. 16:135168.
87. Magasanik, B. 1988. Reversible phosphorylation of an enhancer binding protein regulates the transcription of bacterial nitrogen utilization genes. Trends Biochem. Sci. 13:475479.
88. Maklno, K.,, H. Shinagawa,, M. Amemura,, T. Kawamoto,, M. Yamada,, and A. Nakata. 1989. Signal transduction in the phosphate regulon of Escherichia coli involves phosphotransfer between PhoR and PhoB proteins. J. Mol. Biol. 210:551559.
89. Maklno, K.,, H. Shinagawa,, M. Amemura,, and A. Nakata. 1986. Nucleotide sequence of the phoB gene, the positive regulatory gene for the phosphate regulon of Escherichia coli K-12. J. Mol. Biol. 190:3744.
90. Maklno, K.,, H. Shinagawa,, M. Amemura,, and A. Nakata. 1986. Nucleotide sequence of the phoR gene, a regulatory gene for the phosphate regulon of Escherichia coli. J. Mol. Biol. 192:549556.
91. Marquez, L. M.,, J. D. Helmann,, E. Ferrari,, H. M. Parker,, G. W. Ordal,, and M. J. Chamberlin. 1990. Studies of ��D-dependent functions in Bacillus subtilis. J. Bacteriol. 172:34353443.
92. Melchers, L. S.,, T. J. G. Regensburg-Tuink,, R. B. Bourret,, N. J. A. Sedee,, R. A. Schllperoort,, and P. J. J. Hooykaas. 1989. Membrane topology and functional analysis of the sensory protein VirA of Agrobacterium tumefaciens. EMBO J. 8:19191925.
93. Melchers, L. S.,, D. V. Thompson,, K. B. Idler,, R. A. Schllperoort,, and P. J. J. Hooykaas. 1986. Nucleotide sequence of the virulence gene virG of the Agrobacterium tumefaciens octopine Ti plasmid: significant homology between virG and the regulatory genes ompR, phoB and dye of E. coli. Nucleic Acids Res. 14:99339942.
94. Miki, T.,, Z. Minami,, and Y. Ikeda. 1965. The genetics of alkaline phosphatase formation in Bacillus subtilis. Genetics 52:10931100.
95. Miller, J. F.,, J. J. Mekalanos,, and S. Falkow. 1989. Coordinate regulation and sensory transduction in the control of bacterial virulence. Science 243:916922.
96. Miller, S. I.,, A. M. Kukral,, and J. J. Mekalanos. 1989. A two-component regulatory system (phoP phoQ) controls Salmonella typhimurium virulence. Proc. Natl. Acad. Sci. USA 86:50545058.
97. Miller, V. L.,, R. K. Taylor,, and J. J. Mekalanos. 1987. Cholera toxin transcriptional activator ToxR is a transmembrane DNA binding protein. Cell 48:271279.
98. Miranda-Rios, J.,, R. Sánchez-Pescador,, M. Urdea,, and A. A. Covarrubias. 1987. The complete nucleotide sequence of the glnALG operon of Escherichia coli K12. Nucleic Acids Res. 15:27572770.
99. Mitamura, T.,, R. V. Ebora,, T. Nakai,, Y. Maklno,, S. Negoro,, I. Urabe,, and H. Okada. 1990. Structure of isozyme genes of glucose dehydrogenase from Bacillus megaterium IAM1030. J. Ferment. Bioeng. 70:363369.
100. Mizuno, T.,, and S. Mizushima. 1990. Signal transduction and gene regulation through the phosphorylation of two regulatory components: the molecular basis for the osmotic regulation of the porin genes. Mol. Microbiol. 4:10771082.
101. Mizuno, T.,, E. T. Wurtzel,, and M. Inouye. 1982. Osmoregulation of gene expression. II. DNA sequence of the envZ gene of the ompB operon of Escherichia coli and characterization of its gene products. J. Biol. Chem. 257:1369213698.
102. Moir, A.,, and E. H. Kemp. 1991. Personal communication.
103. Msadek, T.,, and F. Kunst. 1991. Unpublished results.
104. Msadek, T.,, F. Kunst,, D. Henner,, A. Klier,, G. Rapoport,, and R. Dedonder. 1990. Signal transduction pathway controlling synthesis of a class of degradative enzymes in Bacillus subtilis: expression of the regulatory genes and analysis of mutations in degS and degU. J. Bacteriol. 172:824834.
105. Msadek, T.,, F. Kunst,, A. Klier,, and G. Rapoport. 1991. DegS-DegU and ComP-ComA modulator-effector pairs control expression of the Bacillus subtilis pleiotropic regulatory gene degQ. J. Bacteriol. 173:23662377.
106. Msadek, T.,, F. Kunst,, A. Klier,, G. Rapoport,, and R. Dedonder,. 1990. The Deg signal transduction pathway: mutations and regulation of expression of degS, degU and degQ, p. 245255. In M. M. Zukowski,, A. T. Ganesan,, and J. A. Hoch (ed.). Genetics and Biotechnology of Bacilli, vol. 3. Academic Press, Inc., San Diego.
107. Mueller, J. P.,, G. Bukusoglu,, and A. L. Sonenshein. 1992. Transcriptional regulation of Bacillus subtilis glucose starvation inducible genes: control of gsiA by the ComP-ComA signal transduction system. J. Bacteriol. 174:43614373.
108. Mukal, K.,, M. Kawata,, and T. Tanaka. 1990. Isolation and phosphorylation of the Bacillus subtilis degS and degU gene products. J. Biol. Chem. 265:2000020006.
109. Mutoh, N.,, and M. I. Simon. 1986. Nucleotide sequence corresponding to five chemotaxis genes in Escherichia coli. J. Bacteriol. 165:161166.
110. Nagami, Y.,, and T. Tanaka. 1986. Molecular cloning and nucleotide sequence of a DNA fragment from Bacillus natto that enhances production of extracellular proteases and levansucrase in Bacillus subtilis. J. Bacteriol. 166:2028.
111. Nakano, M. M.,, L. A. Xia,, and P. Zuber. 1991. Transcription initiation region of the srfA operon, which is controlled by the comP-comA signal transduction system in Bacillus subtilis. J. Bacteriol. 173:54875493.
112. Nakano, M. M.,, and P. Zuber. 1991. The primary role of ComA in establishment of the competent state in Bacillus subtilis is to activate expression of srfA. J. Bacteriol. 173:72697274.
113. Nassif, X.,, N. Honore,, T. Vasselon,, S. T. Cole,, and P. J. Sansonetti. 1989. Positive control of colanic acid synthesis in Escherichia coli by rmpA and rmpB, two virulence-plasmid genes of Klebsiella pneumoniae. Mol. Microbiol. 3:13491359.
114. Ninfa, A. J.,, and R. L. Bennett. 1991. Identification of the site of autophosphorylation of the bacterial protein kinase/phosphatase NRII. J. Biol. Chem. 266:68886893.
115. Ninfa, A. J.,, and B. Magasanik. 1986. Covalent modification of the glnG product, NRI, by the glnL product, NRII, regulates the transcription of the glnALG operon in Escherichia coli. Proc. Natl. Acad. Sci. USA 83:59095913.
116. Ninfa, A. J.,, E. G. Ninfa,, A. N. Lupas,, A. Stock,, B. Magasanik,, and J. Stock. 1988. Crosstalk between bacterial chemotaxis signal transduction proteins and regulators of transcription of the Ntr regulon: evidence that nitrogen assimilation and chemotaxis are controlled by a common phosphotransfer mechanism. Proc. Natl. Acad. Sci. USA 85:54925496.
117. Nixon, B. T.,, C. W. Ronson,, and F. M. Ausubel. 1986. Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genes ntrB and ntrC. Proc. Natl. Acad. Sci. USA 83:78507854.
118. Olmedo, G.,, E. Gottlin Ninfa,, J. Stock,, and P. Young-man. 1990. Novel mutations that alter the regulation of sporulation in Bacillus subtilis: evidence that phosphorylation of regulatory protein Spo0A controls the initiation of sporulation. J. Mol. Biol. 215:359372.
119. Parkinson, J. S. 1988. Protein phosphorylation in bacterial chemotaxis. Cell 53:12.
120. Peng, H.-L.,, R. P. Novick,, B. Kreiswirth,, J. Kornblum,, and P. Schlievert. 1988. Cloning, characterization, and sequencing of an accessory gene regulator (agr) in Staphylococcus aureus. J. Bacteriol. 170:43654372.
121. Perego, M.,, S. P. Cole,, D. Burbulys,, K. Trach,, and J. A. Hoch. 1989. Characterization of the gene for a protein kinase which phosphorylates the sporulation-regula-tory proteins Spo0A and Spo0F of Bacillus subtilis. J. Bacteriol. 171:61876196.
122. Poetter, K.,, and D. L. Coplin. 1991. Structural and functional analysis of the rcsA gene from Erwinia stewartii. Mol. Gen. Genet. 229:155160.
123. Raibaud, A.,, M. Zalacain,, T. G. Holt,, R. Tizard,, and C. J. Thompson. 1991. Nucleotide sequence analysis reveals linked N-acetyl hydrolase, thioesterase, transport, and regulatory genes encoded by the bialaphos biosynthetic gene cluster of Streptomyces hygroscopicus. J. Bacteriol. 173:44544463.
124. Richet, E.,, and O. Raibaud. 1989. MalT, the regulatory protein of the Escherichia coli maltose system, is an ATP-dependent transcriptional activator. EMBO J. 8:981987.
125. Roggiani, M.,, J. Hahn,, and D. Dubnau. 1990. Suppression of early competence mutations in Bacillus subtilis by mec mutations. J. Bacteriol. 172:40564063.
126. Ronson, C. W.,, B. T. Nixon,, and F. M. Ausubel. 1987. Conserved domains in bacterial regulatory proteins that respond to environmental stimuli. Cell 49:579581.
127. Rossmann, M. G.,, D. Moras,, and K. W. Olsen. 1974. Chemical and biological evolution of a nucleotide-binding protein. Nature (London) 250:194199.
128. Ruppen, M. E.,, G. L. Van Alstine,, and L. Band. 1988. Control of intracellular serine protease expression in Bacillus subtilis. J. Bacteriol. 170:136140.
129. Sanders, D. A.,, B. L. Gillece-Castro,, A. M. Stock,, A. L. Burlingame,, and D. E. Koshland, Jr. 1989. Identification of the site of phosphorylation of the chemotaxis response regulator protein, CheY. J. Biol. Chem. 264: 2177021778.
130. Scarlato, V.,, A. Prugnola,, B. Arico,, and R. Rappuoli. 1990. Positive transcriptional feedback at the bvg locus controls expression of virulence factors in Bordetella pertussis. Proc. Natl. Acad. Sci. USA 87:67536757.
131. Schaeffer, P.,, J. Millet,, and J.-P. Aubert. 1965. Catabolic repression of bacterial sporulation. Proc. Natl. Acad. Sci. USA 54:704711.
132. Schweizer, H. P. 1991. The agmR gene, an environmentally responsive gene, complements defective glpR, which encodes the putative activator for glycerol metabolism in Pseudomonas aeruginosa. J. Bacteriol. 173: 67986806.
133. Seki, T.,, H. Yoshikawa,, H. Takahashi,, and H. Saito. 1987. Cloning and nucleotide sequence of phoP, the regulatory gene for alkaline phosphatase and phosphodiesterase in Bacillus subtilis. J. Bacteriol. 169:29132916.
134. Seki, T.,, H. Yoshikawa,, H. Takahashi,, and H. Saito. 1988. Nucleotide sequence of the Bacillus subtilis phoR gene. J. Bacteriol. 170:59355938.
135. Shimotsu, H.,, and D. J. Henner. 1986. Modulation of Bacillus subtilis levansucrase gene expression by sucrose and regulation of the steady-state mRNA level by sacU and sacQ genes. J. Bacteriol. 168:380388.
136. Simms, S. A.,, M. G. Keane,, and J. Stock. 1985. Multiple forms of the CheB methylesterase in bacterial chemosensing.J. Biol. Chem. 260:1016110168.
137. Smith, I.,, E. Dubnau,, M. Predich,, and R. Rudner. 1992. Early spo gene expression in Bacillus subtilis: the role of interrelated signal transduction systems. Biochimie 74: 669678.
138. Smith, I.,, I. Mandic-Mulec,, and N. Gaur. 1991. The role of negative control in sporulation. Res. Microbiol. 142: 831839.
139. Sonenshein, A. L., 1989. Metabolic regulation of sporulation and other stationary-phase phenomena, p. 109130. In I. Smith,, R. A. Slepecky,, and P. Setlow (ed.), Regulation of Procaryotic Development: Structural and Functional Analysis of Bacterial Sporulation and Germination. American Society for Microbiology, Washington, D.C.
140. Sorokin, A.,, and S. D. Ehrlich. 1991. Personal communication.
141. Spiegelman, G.,, B. Van Hoy,, M. Perego,, J. Day,, K. Trach,, and J. A. Hoch. 1990. Structural alterations in the Bacillus subtilis Spo0A regulatory protein which suppress mutations at several spo0 loci. J. Bacteriol. 172:50115019.
142. Stewart, R. C.,, and F. W. Dahlquist. 1988. N-terminal half of CheB is involved in methylesterase response to negative chemotactic stimuli in Escherichia coli. J. Bacteriol. 170:57285738.
143. Stock, A.,, T. Chen,, D. Welsh,, and J. Stock. 1988. CheA protein, a central regulator of bacterial chemotaxis, belongs to a family of proteins that control gene expression in response to changing environmental conditions. Proc. Natl. Acad. Sci. USA 85:14031407.
144. Stock, A. M.,, J. M. Mottonen,, J. B. Stock,, and C. E. Schutt. 1989. Three-dimensional structure of CheY, the response regulator of bacterial chemotaxis. Nature (London) 337:745749.
145. Stock, J. B.,, G. S. Lukat,, and A. M. Stock. 1991. Bacterial chemotaxis and the molecular logic of intracellular signal transduction networks. Annu. Rev. Biophys. Biophys. Chem. 20:109136.
146. Stock, J. B.,, A. J. Nfinfa,, and A. M. Stock. 1989. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol. Rev. 53:450490.
147. Stock, J. B.,, A. M. Stock,, and J. M. Mottonen. 1990. Signal transduction in bacteria. Nature (London) 344: 395400.
148. Stout, V.,, A. Torres-Cabassa,, M. R. Maurizi,, D. Gut-nick,, and S. Gottesman. 1991. RcsA, an unstable positive regulator of capsular polysaccharide synthesis. J. Bacteriol. 173:17381747.
149. Stragier, P.,, J. Bouvier,, C. Bonamy,, and J. Szulmajster. 1984. A developmental gene product of Bacillus subtilis homologous to the sigma factor of Escherichia coli. Nature (London) 312:376378.
150. Tanaka, T.,, and M. Kawata. 1988. Cloning and characterization of Bacillus subtilis iep, which has positive and negative effects on production of extracellular proteases. J. Bacteriol. 170:35933600.
151. Tanaka, T.,, M. Kawata,, and K. Mukai. 1991. Altered phosphorylation of Bacillus subtilis DegU caused by single amino acid changes in DegS. J. Bacteriol. 173: 55075515.
152. Tanaka, T.,, M. Kawata,, Y. Nagami,, and H. Uchiyama. 1987. prtR enhances the mRNA level of the Bacillus subtilis extracellular proteases. J. Bacteriol. 169:30443050.
153. Taylor, S. S. 1989. cAMP-dependent protein kinase. J. Biol. Chem. 264:84438446.
154. Tokishita, S.,, A. Kojima,, H. Alba,, and T. Mizuno. 1991. Transmembrane signal transduction and osmoregulation in Escherichia coli—functional importance of the periplasmic domain of the membrane-located protein kinase, EnvZ. J. Biol. Chem. 266:67806785.
155. Trach, K.,, D. Burbulys,, G. Spiegelman,, M. Perego,, B. Van Hoy,, M. Strauch,, J. Day,, and J. A. Hoch,. 1990. Phosphorylation of the Spo0A protein: a cumulative environsensory activation mechanism, p. 357365. In M. M. Zukowski,, A. T. Ganesan,, and J. A. Hoch (ed.), Genetics and Biotechnology of Bacilli, vol. 3. Academic Press, Inc., San Diego.
156. Trach, K. A.,, J. W. Chapman,, P. J. Piggot,, and J. A. Hoch. 1985. Deduced product of the stage 0 sporulation gene spoOF shares homology with Spo0A, OmpR, and SfrA proteins. Proc. Natl. Acad. Sci. USA 82:72607264.
157. Tseng, H.-C.,, and C. W. Chen. 1991. A cloned ompR-like gene of Streptomyces lividans 66 suppresses defective melCl, a putative copper-transfer gene. Mol. Microbiol. 5:11871196.
158. van Sinderen, D. 1991. Personal communication.
159. van Sinderen, D.,, S. Withoff,, H. Boels,, and G. Venema. 1990. Isolation and characterization of comL, a transcription unit involved in competence development of Bacillus subtilis. Mol. Gen. Genet. 224:396404.
160. Vasselon, T.,, P. J. Sansonetti,, and X. Nassif. 1991. Nucleotide sequence of rmpB, a Klebsiella pneumoniae gene that positively controls colanic biosynthesis in Escherichia coli. Res. Microbiol. 142:4754.
161. Volz, K.,, and P. Matsumura. 1991. Crystal structure of Escherichia coli CheY refined at 1.7 resolution. J. Biol. Chem. 266:1551115519.
162. Wanner, B. L.,, and P. Latterell. 1980. Mutants affected in alkaline phosphatase expression: evidence for multiple positive regulators of the phosphate regulon in Escherichia coli. Genetics 96:353366.
163. Weinrauch, Y.,, N. Guillen,, and D. A. Dubnau. 1989. Sequence and transcription mapping of Bacillus subtilis competence genes comB and comA, one of which is related to a family of bacterial regulatory determinants. J. Bacteriol. 171:53625375.
164. Weinrauch, Y.,, T. Msadek,, F. Kunst,, and D. Dubnau. 1991. Sequence and properties of comQ, a new competence regulatory gene of Bacillus subtilis. J. Bacteriol. 173:56855693.
165. Weinrauch, Y.,, R. Penchev,, E. Dubnau,, I. Smith,, and D. Dubnau. 1990. A Bacillus subtilis regulatory gene product for genetic competence and sporulation resembles sensor protein members of the bacterial two-component signal-transduction systems. Genes Dev. 4:860872.
166. Winans, S. C.,, P. R. Ebert,, S. E. Stachel,, M. P. Gordon,, and E. W. Nester. 1986. A gene essential for Agrobacterium virulence is homologous to a family of positive regulatory loci. Proc. Natl. Acad. Sci. USA 83:82788282.
167. Wurtzel, E. T.,, M. Y. Chou,, and M. Inouye. 1982. Osmoregulation of gene expression. I. DNA sequence of the ompR gene of the ompB operon of Escherichia coli and characterization of its gene product. J. Biol. Chem. 257:1368513691.
168. Wylie, D.,, A. Stock,, C.-Y. Wong,, and J. Stock. 1988. Sensory transduction in bacterial chemotaxis involves phosphotransfer between Che proteins. Biochem. Biophys. Res. Commun. 151:891896.
169. Yamada, M.,, K. Makino,, M. Amemura,, H. Shinegawa,, and A. Nakata. 1989. Regulation of the phosphate regulon of Escherichia coli: analysis of mutant phoB and phoR genes causing different phenotypes. J. Bacteriol. 171:56015606.
170. Yamane, K.,, and B. Maruo. 1987. Alkaline phosphatase possessing alkaline phosphodiesterase activity and other phosphodiesterases in Bacillus subtilis. J. Bacteriol. 134:108114.
171. Yang, M.,, E. Ferrari,, E. Chen,, and D. J. Henner. 1986. Identification of the pleiotropic sacQ gene of Bacillus subtilis. J. Bacteriol. 166:113119.
172. Yang, M.,, H. Shimotsu,, E. Ferrari,, and D. J. Henner. 1987. Characterization and mapping of the Bacillus subtilis prtR gene. J. Bacteriol. 169:434437.
173. Yoshikawa, H.,, J. Kazami,, S. Yamashita,, T. Chibazakura,, H. Sone,, F. Kawamura,, M. Oda,, M. Isaka,, Y. Kobayashi,, and H. Saito. 1986. Revised assignment for the Bacillus subtilis spo0F gene and its homology with spo0A and with two Escherichia coli genes. Nucleic Acids Res. 14:10631072.

Tables

Generic image for table
Table 1

Two-component regulatory pairs of gram-positive bacteria

Citation: Msadek T, Kunst F, Rapoport G. 1993. Two-Component Regulatory Systems, p 729-745. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch50
Generic image for table
Table 2

Mutations in and genes and associated phenotypes

Citation: Msadek T, Kunst F, Rapoport G. 1993. Two-Component Regulatory Systems, p 729-745. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch50

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error