1887

Chapter 52 : AbrB, a Transition State Regulator

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

AbrB, a Transition State Regulator, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap52-1.gif /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap52-2.gif

Abstract:

Studies of isolated ribosomes from Spo versus Spo mutants indicated that led to alterations or deficiencies in one or more ribosomal proteins. The first three residues of the predicted protein are Met-Phe-Met, but another study of the AbrB protein produced from an expression vector in revealed that the amino terminus of the purified protein begins at the second methionine residue. Although AbrB appears to play three different roles (repressor, “preventer,” and activator), the overall purpose of AbrB-mediated regulation is to prevent the expression of postexponential-phase genes at inappropriate times, such as during vegetative growth on good nutrient sources. A physical interaction of bound AbrB with other transition state regulators may be a hallmark of the regulatory mechanism at “prevented” genes. A complete understanding of how AbrB regulates transition state gene expression requires understanding how AbrB itself is regulated. The current model of the role AbrB plays in the regulation of transition state events. Some regulate other homeotic selector genes, and some are subject to autoregulation. During vegetative growth, AbrB prevents inappropriate functions from being expressed by (i) direct repression, (ii) action in concert with other regulators (preventers), or (iii) activation of other transition state repressors-preventers (such as Hpr).

Citation: Strauch M. 1993. AbrB, a Transition State Regulator, p 757-764. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch52

Key Concept Ranking

Gene Expression and Regulation
0.83398414
Transcription Start Site
0.56284726
0.83398414
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

AbrB binding regions on seven negatively controlled genes. The extents and locations of AbrB-afforded protection from DNase I cleavage are shown relative to the start points of transcription (+1). In the cases of and ORF1, two promoters transcribe the gene. Binding on is shown relative to the P2 promoter; the PI start site would be at -14 relative to P2. Binding on ORF1 is shown relative to the P2 promoter; the P1 start site in this case would be at -71. There are two transcriptional start sites located 3 bp apart for the gene, but it is not known whether these have common -10 and -35 elements ( ). The heavy line from -14 to -43 in the -protected region indicates a higher-affinity binding site ( ). An additional binding region on the gene from +169 to +231 is required for AbrB binding to and repression of the promoter-located site ( ).

Citation: Strauch M. 1993. AbrB, a Transition State Regulator, p 757-764. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch52
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

AbrB regulation of transition state gene expression. +, positive regulation; -, negative regulation. The conversion of the Spo0A protein to a form that is active in repressing transcription occurs at the end of exponential growth and involves phosphorylation. t, time zero.

Citation: Strauch M. 1993. AbrB, a Transition State Regulator, p 757-764. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch52
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818388.chap52
1. Albano, M. J. Hahn, and D. Dubnau. 1987. Expression of competence genes in Bacillus subtilis. J. Bacteriol. 169: 31103117.
2. Banner, C. D. B.,, C. P. Moran, Jr.,, and R. Losick. 1983. Deletion analysis of a complex promoter for a developmentally regulated gene from Bacillus subtilis. J. Mol. Biol. 168:351365.
3. Bol, D.,, and R. Yasbin. Personal communication.
4. Bracco, L.,, D. Kottarz,, A. Kolb,, S. Diekmann,, and H. Buc. 1989. Synthetic curved DNA sequences can act as transcriptional activators in Escherichia coli. EMBO J. 8:42894296.
5. Brennan, R. G.,, and B. W. Matthews. 1989. The helix-turn-helix DNA binding motif. J. Biol. Chem. 264:19031906.
6. Churchill, M. E. A.,, and A. A. Travers. 1991. Protein motifs that recognize structural features of DNA. Trends Biochem. Sci. 16:9297.
7. Ferrari, E. Personal communication.
8. Flashner, Y.,, and J. D. Gralla. 1988. DNA dynamic flexibility and protein recognition: differential stimulation by bacterial histone-like protein HU. Cell 54:713721.
9. Furbass, R.,, M. Gocht,, P. Zuber,, and M. A. Marahiel. 1991. Interaction of AbrB, a transcriptional regulator from Bacillus subtilis, with the promoter of the transition state-activated genes tycA and spoVG. Mol. Gen. Genet. 225:347354.
10. Furbass, R.,, and M. A. Marahiel. 1991. Mutant analysis of interaction of the Bacillus subtilis transcription regulator AbrB with the antibiotic biosynthesis gene tycA. FEBS Lett. 287:153156.
11. Gaur, N. K.,, J. Oppenheim,, and I. Smith. 1991. The Bacillus subtilis sin gene, a regulator of alternate development processes, codes for a DNA-binding protein. J. Bacteriol. 173:678686.
12. Greene, J. R.,, S. M. Brennan,, D. J. Andrew,, C. C. Thompson,, S. H. Richards,, R. L. Heinrickson,, and E. P. Geiduschek. 1984. Sequence of the bacteriophage SPOl gene coding for transcription factor 1, a viral homologue of the bacterial type II DNA-binding proteins. Proc. Natl. Acad. Sci. USA 81:70317035.
13. Greene, J. R.,, L. M. Morrissey,, L. M. Foster,, and E. P. Geiduschek. 1986. DNA binding by the bacteriophage SPOl-encoded type II DNA-binding protein, transcription factor 1. J. Biol. Chem. 261:1282012827.
14. Guespin-Michel, J. F. 1971. Phenotypic reversion in some early blocked sporulation mutants of Bacillus subtilis. Genetic studies of polymyxin-resistant partial revertants. Mol. Gen. Genet. 112:243254.
15. Guespin-Michel, J. F. 1971. Phenotypic reversion in some early blocked sporulation mutants of Bacillus subtilis: isolation and phenotype identification of partial revertants. J. Bacteriol. 109:241247.
16. Hayashi, S.,, and M. P. Scott. 1990. What determines the specificity of action of Drosophila homeodomain proteins? Cell 63:883894.
17. Hoch, J. A. Personal communication.
18. Ito, J. 1973. Pleiotropic nature of bacteriophage tolerant mutants obtained in early-blocked asporogenous mutants of Bacillus subtilis 168. Mol. Gen. Genet. 124:97106.
19. Ito, J.,, G. Mildner,, and J. Spizizen. 1971. Early blocked asporogenous mutants of Bacillus subtilis 168. I. Isolation and characterization of mutants resistant to antibiotic(s) produced by sporulating Bacillus subtilis 168. Mol. Gen. Genet. 112:104109.
20. Kallio, P. T.,, J. E. Fagelson,, J. A. Hoch,, and M. A. Strauch. 1991. The transition state regulator Hpr of Bacillus subtilis is a DNA-binding protein. J. Biol. Chem. 266:1341113417.
21. Koo, H.-S.,, H.-M. Wu,, and D. M. Crothers. 1986. DNA bending at adenine-thymine tracts. Nature (London) 320: 501506.
22. Marahiel, M. A.,, P. Zuber,, G. Czekay,, and R. Losick. 1987. Identification of the promoter for a peptide antibiotic biosynthesis gene from Bacillus brevis and its regulation in Bacillus subtilis. J. Bacteriol. 169:22152222.
23. McAllister, C. F.,, and E. C. Achberger. 1988. Effect of polyadenine-containing curved DNA on promoter utilization in Bacillus subtilis. . J. Biol. Chem. 263:1174311749.
24. McAllister, C. F.,, and E. C. Achberger. 1989. Rotational orientation of upstream curved DNA affects promoter function in Bacillus subtilis. J. Biol. Chem. 264:1045110456.
25. Milton, D. L.,, M. L. Casper,, N. M. Wills,, and R. F. Gesteland. 1990. Guanine tracts enhance sequence directed DNA bends. Nucleic Acids Res. 18:817820.
26. Mirel, D.,, and M. Chamberlain. Personal communication.
27. Nelson, H. C. M.,, J. T. Finch,, B. F. Luisi,, and A. Klug. 1987. The structure of an oligo(dA)-oligo(dT) tract and its biological implications. Nature (London) 330:221226.
28. Perego, M.,, and J. A. Hoch. 1991. Negative regulation of Bacillus subtilis sporulation by the Spo0E gene product. J. Bacteriol. 173:25142520.
29. Perego, M.,, G. B. Spiegelman,, and J. A. Hoch. 1988. Structure of the gene for the transition state regulator, abrB: regulator synthesis is controlled by the Spo0A sporulation gene in Bacillus subtilis. Mol. Microbiol. 2:689699.
30. Robertson, J. B.,, M. Gocht,, M. A. Marahiel,, and P. Zuber. 1989. AbrB, a regulator of gene expression in Bacillus, interacts with the transcription initiation regions of a sporulation gene and an antibiotic biosynthesis gene. Proc. Natl. Acad. Sci. USA 86:84578461.
31. Scott, M. P.,, J. W. Tamkun,, and G. W. Hartzell HI. 1989. The structure and function of the homeodomain. Biochim. Biophys. Acta 989:2548.
32. Shiflett, M. A.,, and J. A. Hoch,. 1978. Alterations of ribosomal proteins causing changes in the phenotype of Spo0A mutants of Bacillus subtilis, p. 136138. In G. Chambliss, and J. C. Vary (ed.), Spores VII. American Society for Microbiology, Washington, D.C.
33. Slack, F. J.,, J. P. Mueller,, M. A. Strauch,, C. Mathiopoulos,, and A. L. Sonenshein. 1991. Transcriptional regulation of a Bacillus subtilis dipeptide transport operon. Mol. Microbiol. 5:19151925.
34. Smith, I. Personal communication.
35. Sonenshein, A. L. Personal communication.
36. Spiegelmann, G. B. Personal communication.
37. Strauch, M. A. Unpublished data.
38. Strauch, M. A.,, and J. A. Hoch,. 1991. Control of post-exponential gene expression by transition state regulators, p. 105121. In R. H. Doi (ed.). Biology of Bacilli-Applications to Industry. Butterworths, Stoneham, Mass.
39. Strauch, M. A.,, M. Perego,, D. Burbulys,, and J. A. Hoch. 1989. The transition state transcription regulator AbrB of Bacillus subtilis is autoregulated during vegetative growth. Mol. Microbiol. 3:12031210.
40. Strauch, M. A.,, G. B. Spiegelman,, M. Perego,, W. C. Johnson,, D. Burbulys,, and J. A. Hoch. 1989. The transition state transcription regulator abrB of Bacillus subtilis is a DNA binding protein. EMBO J. 8:16151621.
41. Strauch, M. A.,, V. Webb,, G. Spiegelman,, and J. A. Hoch. 1990. The Spo0A protein of Bacillus subtilis is a repressor of the abrB gene. Proc. Natl. Acad. Sci. USA 87:18011805.
42. Struhl, K. 1989. Helix-turn-helix, zinc-finger, and leucine-zipper motifs for eucaryotic transcriptional regulatory proteins. Trends Biochem. Sci. 14:137140.
43. Su, W.,, S. Porter,, S. Kustu,, and H. Echols. 1990. DNA-Iooping and enhancer activity: association between DNA-bound NtrC activator and RNA polymerase at the bacterial gink promoter. Proc. Natl. Acad. Sci. USA 87: 55045508.
44. Trach, K.,, D. Burbulys,, M. Strauch,, J.-J. Wu,, R. Jonas,, N. Dhillon,, C. Hanstein,, P. Kallio,, M. Perego,, T. Bird,, G. Spiegelman,, C. Fogher,, and J. A. Hoch. 1991. Control of the initiation of sporulation in Bacillus subtilis by a phosphorelay. Res. Microbiol. 142:815823.
45. Trowsdale, J.,, S. M. H. Chen,, and J. A. Hoch,. 1978. Genetic analysis of phenotype revertants of Spo0A mutants in Bacillus subtilis: a new cluster of ribosomal genes, p. 131135. In G. Chambliss, and J. C. Vary (ed.), Spores VII. American Society for Microbiology, Washington, D.C.
46. Trowsdale, J.,, S. M. H. Chen,, and J. A. Hoch. 1979. Genetic analysis of a class of polymyxin-resistant partial revertants of stage 0 sporulation mutants of Bacillus subtilis; map of the chromosome region near the origin of replication. Mol. Gen. Genet. 173:6170.
47. Trowsdale, J.,, M. Shiflett,, and J. A. Hoch. 1978. New cluster of ribosomal genes in Bacillus subtilis with regulatory role in sporulation. Nature (London) 272:179180.
48. Valle, F.,, and E. Ferrari,. 1989. Subtilisin: a redundantly temporally regulated gene?, p. 131146. In I. Smith,, R. A. Slepecky,, and P. Setlow (ed.), Regulation ofProcaryotic Development. American Society for Microbiology, Washington, D.C.
49. Weir, J.,, M. Predich,, E. Dubnau,, G. Nair,, and I. Smith. 1991. Regulation of Spo0H, a gene coding for the Bacillus subtilis σH factor. J. Bacteriol. 173:521529.
50. Zuber, P. Personal communication.
51. Zuber, P.,, and R. Losick. 1987. Role of AbrB in Spo0A-and Spo0B-dependent utilization of a sporulation promoter in Bacillus subtilis.J. Bacteriol. 169:22222230.

Tables

Generic image for table
Table 1

Transition state events controlled by AbrB

Citation: Strauch M. 1993. AbrB, a Transition State Regulator, p 757-764. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch52

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error