1887

Chapter 53 : Motility and Chemotaxis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Motility and Chemotaxis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap53-1.gif /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap53-2.gif

Abstract:

This chapter reviews the genetics and mapping of genes, then the mechanisms of motility and chemotaxis, and finally, what is known about regulation of gene expression in the system. It also concentrates on some important classes of mutations. Several mutations have been isolated on the basis of their abilities to reduce the level of autolytic enzyme expression. These strains were obtained by minimal mutagenesis and found to contain a single mutation that gave rise to a Lyt Fla phenotype. Chemotaxis in enteric bacteria is mediated through sets of cellular receptors that bind specific attractants. Such binding initiates a signal that is transduced through a series of protein intermediates by specific methylation-demethylation and phosphorylation-dephosphorylation. The most detailed information about the mechanisms involved in sensory transduction comes from studies of enteric bacteria, in which the majority of the genes involved in structural and regulatory roles are probably known and have been sequenced. As in , the methylated chemotaxis proteins (MCPs) of are integral membrane proteins that are methyl esterified on glutamate side chains as the result of methyl transfer from -adenosylmethionine. Expression of the genes of the sensory pathway is regulated in both and enteric bacteria by the composition of the growth medium, by the stage of cell growth, and by the expression of other genes needed for a functional sensory system.

Citation: Ordal G, Màrquez-Magaña L, Chamberlin M. 1993. Motility and Chemotaxis, p 765-784. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch53

Key Concept Ranking

Gene Expression and Regulation
0.58760405
Bacterial Proteins
0.44983172
Sodium Dodecyl Sulfate
0.44494817
Integral Membrane Proteins
0.43182516
0.58760405
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Map of region 140, originally designated the operon. The heavy dark line at the top represents the restriction map of this region, showing the five RI sites that span the region. The major promoter is shown as an arrow. Dashed lines lead to magnified maps of each region that show the individual open reading frames with their designations ((see Table 1 ). Data are from references and . Adapted from reference .

Citation: Ordal G, Màrquez-Magaña L, Chamberlin M. 1993. Motility and Chemotaxis, p 765-784. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch53
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Genetic map of showing locations of genes required for flagellar assembly, motility, and chemotaxis.

Citation: Ordal G, Màrquez-Magaña L, Chamberlin M. 1993. Motility and Chemotaxis, p 765-784. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch53
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Plausible model for the signal pathway for chemotaxis in Adapted from reference .

Citation: Ordal G, Màrquez-Magaña L, Chamberlin M. 1993. Motility and Chemotaxis, p 765-784. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch53
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818388.chap53
1. Adler, J.,, and Templeton. 1967. The effect of environmental conditions on the motility of E. coli. J. Gen. Microbiol. 46: 175 184.
2. Ahlgren, J. A.,, and G. W. Ordal. 1983. Methyl esterification of glutamic acid residues of methyl-accepting chemotaxis proteins in Bacillus subtilis. Biochem. J. 213: 759 763.
3. Akamatsu, T.,, and J. Seklguchi. 1987. Genetic mapping and properties of filamentous mutations in Bacillus subtilis. Agric. Biol. Chem. 51: 2901 2909.
4. Alam, M.,, M. Lebert,, D. Oesterhelt,, and G. L. Hazel-bauer. 1989. Methyl-accepting chemotaxis proteins in Halobacterium halobium. EMBO J. 8: 631 639.
5. Albertini, A. M.,, T. Caramori,, W. D. Crabb,, F. Scoffone,, and A. Galizzi. 1991. The flaA locus of Bacillus subtilis is part of a large operon coding for flagellar structures, motility functions, and an ATPase-like polypeptide. J. Bacteriol. 173: 3573 3579.
6. Arnosti, D. N.,, and M. J. Chamberlin. 1989. A secondary sigma factor controls transcription of flagellar and chemotaxis genes in E. coli. Proc. Natl. Acad. Sci. USA 86: 830 834.
7. Ayusawa, D.,, Y. Yoneda,, K. Yamane,, and B. Maruo. 1975. Pleitropic phenomenon in autolytic enzyme content, flagellation, and simultaneous hyperproduction of extracellular α-amylase and protease in a Bacillus subtilis mutant. J. Bacteriol. 124: 459 469.
8. Bartlett, D.,, B. Frantz,, and P. Matsumura. 1988. Flagellar transcriptional activators FlbB and Flal: gene sequences and 5' consensus sequences of operons under FlbB and Flal control. J. Bacteriol. 170: 1575 1581.
9. Bedale, W. A.,, D. O. Nettleton,, C. S. Sopata,, M. S. Thoelke,, and G. W. Ordal. 1988. Evidence for methyl-group transfer between the methyl-accepting chemotaxis proteins in Bacillus subtilis. J. Bacteriol. 170: 223 227.
10. Berg, H. C,, and D. A. Brown. 1972. Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature (London) 239: 500 504.
11. Berg, H. C,, and P. M. Tedesco. 1975. Transient response to chemotactic stimuli in Escherichia coli. Proc. Natl. Acad. Sci. USA 72: 3235 3239.
12. Bischoff, D. S.,, and G. W. Ordal. 1991. Sequence and characterization of B. subtilis CheB, a homolog of E. coli CheY, and its role in a different mechanism of chemotaxis. J. Biol. Chem. 266: 12301 12305.
13. Bischoff, D. S.,, and G. W. Ordal. 1992. Bacillus subtilis chemotaxis: a deviation from the Escherichia coli paradigm. Mol. Microbiol. 6: 23 28.
13a.. Bischoff, D. S.,, and G. W. Ordal. 1992. Identification and characterization of FliY, a novel component of the Bacillus subtilis flagellar switch complex. Mol. Microbiol. 6: 2715 2723.
14. Bischoff, D. S.,, M. R. Weinreich,, and G. W. Ordal. 1992. Nucleotide sequences of Bacillus subtilis flagellar biosynthetic genes fliP and fliQ, and identification of a novel flagellar gene, fliZ. J. Bacteriol. 174: 4017 4025.
15. Bollinger, J.,, C. Park,, S. Harayama,, and G. L. Hazel-bauer. 1984. Structure of the Trg protein: homologies with and differences from other sensory transducers of Escherichia coli. Proc. Natl. Acad. Sci. USA 81: 3287 3291.
16. Borkovich, K. A.,, and M. I. Simon. 1990. The dynamics of protein phosphorylation in bacterial chemotaxis. Cell 63: 1339 1348.
17. Bourret, R. B.,, K. A. Borkovich,, and M. I. Simon. 1991. Signal transduction pathways involving protein phosphorylation in prokaryotes. Annu. Rev. Biochem. 60: 401 444.
18. Bourret, R. B.,, J. F. Hess,, and M. I. Simon. 1990. Conserved aspartate residues and phosphorylation in signal transduction by the chemotaxis protein CheY. Proc. Natl. Acad. Sci. USA 87: 41 45.
19. Boyd, A.,, K. Kendall,, and M. I. Simon. 1983. Structure of the serine chemoreceptor in Escherichia coli. Nature (London) 301: 623 626.
20. Brown, D. A.,, and H. C. Berg. 1974. Temporal stimulation of chemotaxis in Escherichia coli. Proc. Natl. Acad. Sci. USA 71: 1388 1392.
21. Brummet, T. B.,, and G. W. Ordal. 1977. Inhibition of amino acid transport in Bacillus subtilis by uncouplers of oxidative phosphorylation. Arch. Biochem. Biophys. 178: 368 372.
22. Burgess, B. K. 1990. The iron-molybdenum cofactor of nitrogenase. Chem. Rev. 90: 1377 1406.
23. Burgess-Cassler, A.,, and G. W. Ordal. 1982. Functional homology of Bacillus subtilis methyltransferase II and Escherichia coli cheR protein. J. Biol. Chem. 257: 12835 12838.
24. Burgess-Cassler, A.,, A. H. J. Ullah,, and G. W. Ordal. 1982. Purification and characterization of Bacillus subtilis methyl-accepting chemotaxis protein methyltransferase II . J. Biol. Chem. 257: 8412 8417.
24a.. Carpenter, P. B.,, D. W. Hanlon,, and G. W. Ordal. 1992. flhF, a Bacillus subtilis flagellar gene that encodes a putative GTP-binding protein. Mol. Microbiol. 6: 2705 2713.
24b.. Carpenter, P. B.,, and G. W. Ordal. Bacillus subtilis FlhA: a flagellar protein related to a new family of signal-transducing receptors. Mol. Microbiol., in press.
25. Chen, Y. F.,, and J. D. Helmann. 1992. Restoration of motility to an Escherichia coli fliA flagellar mutant by a Bacillus subtilis sigma factor. Proc. Natl. Acad. Sci. USA 89: 5123 5127.
26. Clarke, S.,, and D. E. Koshland Jr., 1979. Membrane receptors for aspartate and serine in bacterial chemotaxis. J. Biol. Chem. 254: 9695 9702.
27. Dahl, M. K.,, T. Msadek,, F. Kunst,, and G. Rapoport. 1991. Mutational analysis of the Bacillus subtilis DegU regulator and its phosphorylation by the DegS protein kinase. J. Bacteriol. 173: 2539 2547.
27a.. Dahlquist, F. Personal communication.
28. Dean, G. E.,, R. M. Macnab,, J. Stader,, P. Matsumura,, and C. Burks. 1984. Gene sequence and predicted amino acid sequence of the motA protein, a membrane-associated protein required for flagellar rotation in Escherichia coli. J. Bacteriol. 159: 991 999.
29. Eisenbach, M.,, C. Constantinous,, H. Aloni,, and M. Shinitsky. 1990. Repellents for Escherichia coli operate neither by changing membrane fluidity nor by being sensed by periplasmic receptors during chemotaxis. J. Bacteriol. 172: 5218 5224.
30. Engstrom, P.,, and G. L. Hazelbauer. 1982. Methyl-accepting chemotaxis proteins are distributed in the membrane independently from basal ends of bacterial flagella. Biochim. Biophys. Ada 686: 19 26.
31. Fein, J. E. 1979. Possible involvement of bacterial autolytic enzymes in flagellar morphogenesis. J. Bacteriol. 137: 933 946.
32. Fein, J. E.,, and H. J. Rogers. 1976. Autolytic enzyme-deficient mutants of Bacillus subtilis 168. J. Bacteriol. 127: 1427 1442.
33. Fuhrer, D. K.,, and G. W. Ordal. 1991. Bacillus subtilis CheN, a homolog of CheA, the central regulator of chemotaxis in Escherichia coli. J. Bacteriol. 173: 7443 7448.
34. Gaur, N. K.,, K. Cabane,, and I. Smith. 1988. Structure and expression of the Bacillus subtilis sin operon. J. Bacteriol. 170: 1046 1053.
35. Gaur, N. K.,, E. Dubnau,, and I. Smith. 1986. Characterization of a cloned Bacillus subtilis gene that inhibits sporulation in multiple copies. J. Bacteriol. 168: 860 869.
36. Gaur, N. K.,, J. Oppenheim,, and I. Smith. 1991. The Bacillus subtilis sin gene, a regulator of alternate developmental processes, codes for a DNA-binding protein. J. Bacteriol. 173: 678 686.
37. Gillen, K. L.,, and K. T. Hughes. 1991. Molecular characterization of flgM, a gene encoding a negative regulator of flagellin synthesis in Salmonella typhimurium. J. Bacteriol 173: 6453 6459.
38. Gilman, M. Z.,, and M. J. Chamberlin. 1983. Developmental and genetic regulation of Bacillus subtilis genes transcribed by sigma-28 containing RNA polymerase. Cell 35: 285 293.
39. Gilman, M. Z.,, J. S. Glenn,, V. L. Singer,, and M. J. Chamberlin. 1984. Isolation of sigma-28 specific promoters from Bacillus subtilis DNA. Gene 32: 11 20.
40. Gilman, M. Z.,, J. L. Wiggs,, and M. J. Chamberlin. 1981. Nucleotide sequences of two Bacillus subtilis promoters used by B. subtilis sigma-28 RNA polymerase. Nucleic Acids Res. 9: 5991 6000.
41. Goldman, D. J.,, D. O. Nettleton,, and G. W. Ordal. 1984. Purification and characterization of chemotactic methylesterase from Bacillus subtilis. Biochemistry 23: 675 680.
42. Goldman, D. J.,, and G. W. Ordal. 1981. Sensory adaptation and deadaptation in Bacillus subtilis. J. Bacteriol. 147: 267 270.
43. Goldman, D. J.,, and G. W. Ordal. 1984. In vitro methylation and demethylation of methyl-accepting chemotaxis proteins in Bacillus subtilis. Biochemistry 23: 2600 2606.
44. Goldman, D. J.,, S. W. Worobec,, R. B. Siegel,, R. V. Hecker,, and G. W. Ordal. 1982. Chemotaxis in Bacillus subtilis: effects of attractants on the level of MCP methylation and the role of demethylation in the adaptation process. Biochemistry 21: 915 920.
45. Goy, M. F.,, M. S. Springer,, and J. Adler. 1977. Sensory transduction in Escherichia coli: role of a protein methylation reaction in sensory adaptation. Proc. Natl. Acad. Sci. USA 74: 4964 4968.
46. Grant, G. F.,, and M. I. Simon. 1969. Synthesis of bacterial flagella. II. PBS1 Transduction of flagella-specific markers in Bacillus subtilis. J. Bacteriol. 99: 116 124.
47. Guillen, N.,, Y. Weinrauch,, and D. A. Dubnau. 1989. Cloning and characterization of the regulatory Bacillus subtilis competence genes comA and comB. J. Bacteriol. 171: 5354 5361.
48. Hanlon, D. W.,, P. B. Carpenter,, and G. W. Ordal. 1992. Influence of attractants and repellents on methyl group turnover on methyl-accepting chemotaxis proteins of Bacillus subtilis and the role of CheW. J. Bacteriol. 174: 4218 4222.
49. Hanlon, D. W.,, L. M. Marquez-Magana,, P. B. Carpenter,, M. J. Chamberlin,, and G. W. Ordal. 1992. Sequence and characterization of Bacillus subtilis CheW. J. Biol. Chem. 267: 12055 12060.
49a.. Hanlon, D. W.,, and G. Ordal. Unpublished data.
50. Harayama, S.,, P. Engstrom,, H. Wolf-Watz,, T. lino,, and G. L. Hazelbauer. 1982. Cloning of trg, a gene for a sensory transducer in Escherichia coli. J. Bacteriol. 152: 372 383.
51. Hauser, P. M.,, W. D. Crabb,, M. G. Flora,, F. Scoffone,, and A. Galizzi. 1991. Genetic analysis of the flaA locus of Bacillus subtilis. J. Bacteriol. 173: 3580 3583.
52. Hazelbauer, G. L.,, and J. Adler. 1971. Role of the galactose binding protein in chemotaxis of Escherichia coli toward galactose. Nature (London) New Biol. 230: 101 104.
53. Hazelbauer, G. L.,, and S. Harayama. 1979. Mutants in transmission of chemotactic signals from two independent receptors of E . coli. Cell 16: 617 625.
54. Hedblom, M. L.,, and J. Adler. 1980. Genetic and biochemical properties of Escherichia coli mutants with defects in serine chemotaxis. J. Bacteriol. 144: 1048 1060.
55. Helmann, J.,, and M. Chamberlin. 1987. DNA sequence analysis suggests that expression of flagellar and chemotaxis genes in Escherichia coli and Salmonella typhimurium is controlled by an alternative σ factor. Proc. Natl. Acad. Sci. USA 84: 6422 6424.
56. Helmann, J.,, L. Marquez,, and M. J. Chamberlin. 1988. Cloning, sequencing, and disruption of the Bacillus subtilis a 28 gene. J. Bacteriol. 170: 1568 1574.
57. Henner, D.,, M. Yang,, and E. Ferrari. 1988. Localization of Bacillus subtilis sacU(Hy) mutations to two linked genes with similarities to the conserved procaryotic family of two-component signalling systems. J. Bacteriol. 170: 5102 5109.
58. Henner, D. J.,, P. Gollnick,, and A. Moir,. 1990. An analysis of an 18 kilobase pair region of Bacillus subtilis chromosome containing Mtr and GerC operons and the Aro-Trp-Aro supraoperon, p. 657 666. In H. Heslot (ed.), Proceedings of the 6th International Symposium on Genetics of Industrial Microorganisms. Societe Française de Microbiologie, Strasbourg, France.
59. Hess, J. F.,, K. Oosawa,, N. Kaplan,, and M. I. Simon. 1988. Phosphorylation of three proteins in the signaling pathway of bacterial chemotaxis. Cell 53: 79 87.
60. lino, T.,, Y. Komeda,, K. Kutsukake,, R. Macnab,, P. Matsumura,, J. S. Parkinson,, M. I. Simon,, and S. Yamaguchi. 1988. New unified nomenclature for the flagellar genes of Escherichia coli and Salmonella typhimurium. Microbiol. Rev. 52: 533 535.
61. Ishihara, A.,, J. E. Segall,, S. M. Block,, and H. C. Berg. 1983. Coordination of flagella on filamentous cells of Escherichia coli. J. Bacteriol. 155: 228 237.
62. Jones, C. L.,, and R. M. Macnab. 1990. Flagellar assembly in Salmonella typhimurium: analysis with temperature-sensitive mutants. J. Bacteriol. 172: 1327 1339.
63. Kehry, M. R.,, M. W. Bond,, M. W. Hunkpiller,, and F. W. Dahlquist. 1983. Enzymatic deamidation of methyl-accepting chemotaxis proteins in Escherichia coli catalyzed by the cheB gene product. Proc. Natl. Acad. Sci. USA 80: 3599 3603.
64. Kehry, M. R.,, and F. W. Dahlquist. 1982. The methyl-accepting chemotaxis proteins of Escherichia coli. Identification of the multiple methylation sites on methyl-accepting chemotaxis protein I. J. Biol. Chem. 257: 10378 10386.
65. Kehry, M. R.,, T. G. Doak,, and F. W. Dahlquist. 1984. Stimulus-induced changes in methylesterase activity during chemotaxis in Escherichia coli. J. Biol. Chem. 259: 11828 11835.
66. Kehry, M. R.,, T. G. Doak,, and F. W. Dahlquist. 1985. Sensory adaptation in bacterial chemotaxis: regulation of demethylation. J. Bacteriol. 163: 983 990.
67. Kihara, M.,, M. Homma,, K. Kutsukake,, and R. M. Macnab. 1989. Flagellar switch of Salmonella typhimurium: gene sequences and deduced protein sequences. J. Bacteriol. 171: 3247 3257.
67a.. Klrsch, M.,, and G. W. Ordal. Unpublished data.
68. Kleene, S. J.,, M. L. Toews,, and J. Adler. 1977. Isolation of glutamic acid methyl ester from an Escherichia coli membrane protein involved in chemotaxis. J. Biol. Chem. 252: 3214 3218.
69. Komeda, Y. 1986. Transcriptional control of flagellar genes in Escherichia coli K-12. J. Bacteriol. 168: 1315 1318.
70. Komeda, Y.,, and T. lino. 1979. Regulation of expression of flagellin (hag) in E. coli K12: analysis of hag-lacZ fusions. J. Bacteriol. 168: 1315 1318.
71. Komeda, Y.,, H. Suzuki,, J. Ishidsu,, and T. lino. 1975. The role of cAMP in flagellation of S. typhimurium. Mol. Gen. Genet. 142: 289 298.
72. Krikos, A.,, N. Mutoh,, A. Boyd,, and M. I. Simon. 1983. Sensory transducers of E. coli are composed of discrete structural and functional domains. Cell 33: 615 622.
73. Kunst, F.,, M. Debarbouille,, T. Msadlk,, M. Young,, C. Mauel,, D. Karamata,, A. Klier,, G. Rapoport,, and R. Dedonder. 1988. Deduced polypeptides encoded by the Bacillus subtilis sacll locus share homology with two-component sensor-regulator systems. J. Bacteriol. 170: 5093 5101.
74. Kutsukake, K.,, Y. Ohya,, and T. lino. 1990. Transcriptional analysis of the flagellar regulon of Salmonella typhimurium. J. Bacteriol. 172: 741 747.
75. Larsen, S. H.,, R. W. Reader,, E. N. Kort,, W.-W. Tso,, and J. Adler. 1974. Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli. Nature (London) 249: 74 77.
76. LaVallie, E. R.,, and M. L. Stahl. 1989. Cloning of the flagellin gene from Bacillus subtilis and complementation studies of an in vitro-derived deletion mutation. J. Bacteriol. 171: 3085 3094.
77. Lazarevic, V.,, P. Margot,, and D. Karamata. 1991. Bacillus subtilis N-acetylmuramoyl-L-alanine amidase and its modifier are encoded by a three ORF operon called lytABC, abstr. W4. Sixth Int. Conf. Bacilli, July 28-31, Stanford University.
78. Lepesant,, J. A. F. Kunst,, J. Lepesant-Kejzalarova,, and R. Dedonder. 1972. Chromosomal location of mutations affecting sucrose metabolism in Bacillus subtilis Marburg. Mol. Gen. Genet. 188: 135 160.
79. Liu, J. D.,, and J. S. Parkinson. 1989. Role of CheW protein in coupling membrane receptors to the intra-cellular signalling system of bacterial chemotaxis. Proc. Natl. Acad. Set. USA 86: 8703 8707.
80. Lupas, A.,, and J. Stock. 1989. Phosphorylation of an N-terminal regulatory domain activates the CheB methylesterase in bacterial chemotaxis. J. Biol. Chem. 264: 17337 17342.
81. Macnab, R. M., 1987. Flagella, p. 70 83. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C.
82. Macnab, R. M., 1987. Motility and chemotaxis, p. 732 759. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C;
83. Macnab, R. M., 1990. Genetics, structure, and assembly of the bacterial flagellum, p. 77 106. In J. F. Armitage, and J. M. Lackie (ed.). Biology of the Chemotactic Response. Cambridge University Press, Cambridge.
84. Macnab, R. M. 1992. Genetics and biogenesis of bacterial flagella. Annu. Rev. Genet. 26: 131 158.
84a.. Macnab, R. M. Personal communication.
85. Macnab, R. M.,, and D. P. Han. 1983. Asynchronous switching of flagellar motors on a single bacterial cell. Cell 32: 109 117.
86. Macnab, R. M.,, and D. E. Koshland Jr., 1972. The gradient-sensing mechanism in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA 69: 2509 2512.
86a.. Margot, P.,, and D. Karamata. Personal communication.
87. Margot, P.,, C. Mauel,, and D. Karamata. 1991. The Bacillus subtilis N-acetylglucosaminidase is encoded by a monocistronic operon controlled by a a° dependent promoter, abstr. W6. Sixth Int. Conf. Bacilli, July 28-31, Stanford University.
88. Marquez, L. 1991. Function and regulation of expression of the Bacillus subtilis sigma-D factor. Ph.D. thesis. University of California, Berkeley.1992
89. Marquez, L. M.,, J. D. Helmann,, E. F. Ferrari,, H. M. Parker,, G. W. Ordal,, and M. J. Chamberlin. 1990. Studies of σ D -dependent functions in Bacillus subtilis. J. Bacteriol. 172: 3435 3443.
90. Marquez-Magana, L.,, D. B. Mirel,, and M. J. Chamberlin. Role of Spo0, abrB, and sin gene products in regulation of cP expression and activity. Submitted for publication.
91. Matsushita, T.,, H. Hirata,, and I. Kusaka. 1988. Calcium channel blockers inhibit bacterial chemotaxis. FEBS Lett. 236: 437 440.
92. Mesibov, R.,, and J. Adler. 1972. Chemotaxis toward amino acids in Escherichia coli. J. Bacteriol. 112: 315 326.
93. Mesibov, R.,, G. W. Ordal,, and J. Adler. 1973. The range of attractant concentrations for bacterial chemotaxis and the threshold and size of response over this range. Weber law and related phenomena. J. Gen. Physiol. 62: 203 223.
94. Mirel, D. B. 1992. The Bacillus subtilis sigma-D regulon. Ph.D. thesis. University of California, Berkeley. 1992
94a.. Mirel, D. B. Unpublished data. 260: 11711 11718.
95. Mirel, D. B.,, and M. J. Chamberlin. 1989. The Bacillus subtilis flagellin gene (hag) is transcribed by the σ 28 form of RNA polymerase. J. Bacteriol. 171: 3095 3101.
96. Mirel, D. B.,, V. M. Lustre,, and M. J. Chamberlin. 1992. An operon of Bacillus subtilis motility genes transcribed by the cP form of RNA polymerase. J. Bacteriol. 174: 4197 4204.
97. Mowbray, S. L.,, D. L. Foster,, and D. E. Koshland, Jr. 1985. Proteolytic fragments identified with domains of the aspartate chemoreceptor. J. Biol. Chem. 260: 11711 11718.
98. Msadek, T.,, F. Kunst,, D. Henner,. A. Klier,, G. Rapoport,, and R. Dedonder. 1990. Signal transduction pathway controlling synthesis of a class of degradative enzymes in Bacillus subtilis: expression of the regulatory genes and analysis of mutations in degS and degU. J. Bacteriol. 172: 824 834.
99. Nettleton, D. O. 1986. Chemotactic methylation in Bacillus subtilis. Ph.D. thesis. University of Illinois, Urbana. 1992
100. Nettleton, D. O.,, and G. W. Ordal. 1989. Functional homology of chemotactic methylesterases from Bacillus subtilis and Escherichia coli. J. Bacteriol. 171: 120 123.
101. Nicholas, R. A.,, and G. W. Ordal. 1978. Inhibition of bacterial transport by uncouplers of oxidative phosphorylation: effect of pentachlorophenol and analogs in Bacillus subtilis. Biochem. J. 176: 639 647.
102. Nishihara, T.,, and E. Freese. 1975. Motility of Bacillus subtilis during growth and sporulation. J. Bacteriol. 123: 366 371.
103. Ohnishi, K.,, K. Kutsukake,, H. Suzuki,, and T. lino. 1990. Gene fliA encodes an alternative sigma factor specific for flagellar operons in Salmonella typhimurium. Mol. Gen. Genet. 221: 139 147.
103a.. Ordal, G. W. Unpublished data. 1992
104. Ordal, G. W. 1976. Recognition sites for repellents of Bacillus subtilis. J. Bacteriol. 126: 72 79.
105. Ordal, G. W. 1976. Control of tumbling in bacterial chemotaxis by divalent cation. J. Bacteriol. 126: 706 711.
106. Ordal, G. W. 1977. Calcium ion regulates chemotactic behavior in bacteria. Nature (London) 270: 66 67.
107. Ordal, G. W.,, and K. J. Gibson. 1977. Chemotaxis toward amino acids by Bacillus subtilis. J. Bacteriol. 129: 151 155.
108. Ordal, G. W.,, and D. J. Goldman. 1975. Chemotaxis away from uncouplers of oxidative phosphorylation in Bacillus subtilis. Science 189: 802 805.
109. Ordal, G. W.,, and D. J. Goldman. 1976. Chemotactic repellents of Bacillus subtilis. J. Mol. Biol. 100: 103 108.
110. Ordal, G. W.,, D. O. Nettleton,, and J. A. Hoch. 1983. Genetics of Bacillus subtilis chemotaxis: isolation and mapping of mutations and cloning of chemotaxis genes. J. Bacteriol. 154: 1088 1097.
111. Ordal, G. W.,, H. M. Parker,, and J. R. Kirby. 1985. Complementation and characterization of chemotaxis mutants of Bacillus subtilis. J. Bacteriol. 164: 802 810.
112. Ordal, G. W.,, and D. P. Villani. 1980. Action of uncouplers of oxidative phosphorylation as repellents of Bacillus subtilis. J. Gen. Microbiol. 115: 471 478.
113. Ordal, G. W.,, D. P. Villani,, and K. J. Gibson. 1977. Amino acid chemoreceptors of Bacillus subtilis. J. Bacteriol. 129: 156 165.
114. Ordal, G. W.,, D. P. Villani,, R. A. Nicholas,, and F. G. Hamel. 1978. Independence of proline chemotaxis and transport in Bacillus subtilis. J. Biol. Chem. 253: 4916 4919.
115. Ordal, G. W.,, D. P. Villani,, and M. S. Rosendahl. 1979. Chemotaxis toward sugars by Bacillus subtilis. J. Gen. Microbiol. 118: 471 478.
116. Parkinson, J. S.,, and S. R. Parker. 1979. Interaction of the cheC and cheZ gene products is required for chemotactic behavior in Escherichia coli. Proc. Natl. Acad. Sci. USA 76: 2390 2394.
117. Pooley, H. M.,, and D. Karamata. 1984. Genetic analysis of autolysin-deficient and flagellaless mutants of Bacillus subtilis. J. Bacteriol. 160: 1123 1129.
117a.. Rosario, M.,, D. Bochar,, and G. Ordal. Unpublished data.
118. Russo, A. F.,, and D. E. Koshland Jr., 1983. Separation of signal transduction and adaptation functions of the aspartate receptor in bacterial sensing. Science 220: 1016 1020.
119. Sekiguchi, J.,, H. Ohsu,, A. Kuroda,, H. Moriyama,, and T. Akamatsu. 1990. Nucleotide sequences of the Bacillus subtilis flaD locus and a B. licheniformis homologue affecting the autolysis level and flagellation. J. Gen. Microbiol. 136: 1223 1230.
120. Shi, W.,, Y. Zhou,, J. Wild,, J. Adler,, and C. A. Gross. 1992. DnaK, DnaJ, and GrpE are required for flagellum synthesis in Escherichia coli. J. Bacteriol. 174: 6256 6263.
121. Silverman, M.,, and M. Simon. 1974. Characterization of Escherichia coli flagellar mutants that are insensitive to catabolite repression. J. Bacteriol. 120: 1196 1203.
122. Singer, V. 1987. Characterization of promoters and genes controlled by Bacillus subtilis sigma-28 RNA polymerase. Ph.D. thesis. University of California, Berkeley.
123. Springer, M. S.,, M. F. Goy,, and J. Adler. 1977. Sensory transduction in Escherichia coli: two complementary pathways of information processing that involve methylated proteins. Proc. Natl. Acad. Sci. USA 74: 3312 3316.
124. Springer, W. R.,, and D. E. Koshland Jr. 1977. Identification of a protein methyltransferase as the cheR gene product in the bacterial sensing system. Proc. Natl. Acad. Sci. USA 74: 533 537.
125. Spudich, J. A.,, and D. E. Koshland Jr., 1975. Quantitation of the sensory response in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA 72: 710 713.
126. Stader, J.,, P. Matsumura,, D. Vacante,, G. E. Dean,, and R. M. Macnab. 1986. Nucleotide sequence of the Escherichia coli motB gene and site-limited incorporation of its product into the cytoplasmic membrane. J. Bacteriol. 166: 244 252.
127. Stewart, R., C, A. Roth,, and F. W. Dahlquist. 1990. Mutations that affect control of the methylesterase activity of CheB, a component of the chemotaxis adaptation system in Escherichia coli. J. Bacteriol. 172: 3388 3399.
128. Stock, J. B.,, and D. E. Koshland Jr., 1978. A protein methylesterase involved in bacterial sensing. Proc. Natl. Acad. Sci. USA 75: 3659 3663.
129. Stock, J. B.,, and D. E. Koshland Jr., 1981. Changing reactivity of receptor carboxyl groups during bacterial sensing. J. Biol. Chem. 256: 10826 10833.
130. Strange, P. G.,, and D. E. Koshland, Jr. 1976. Receptor interactions in a signalling system: competition between ribose receptor and galactose receptor in the chemotaxis response. Proc. Natl. Acad. Sci. USA 73: 762 766.
131. Suzuki, T.,, and T. lino. 1973. In vitro synthesis of phase-specific flagellin of Salmonella. J. Mol. Biol. 81: 57 70.
132. Suzuki, T.,, and Y. Komeda. 1981. Incomplete flagellar structure in Escherichia coli mutants. J. Bacteriol. 145: 1036 1041.
133. Terwilliger, T. C,, E. Bogonez,, E. A. Wang,, and D. E. Koshland, Jr. 1983. Sites of methyl esterification in the aspartate receptor involved in bacterial chemotaxis. J. Biol. Chem. 258: 9608 9611.
134. Terwilliger, T. C,, and D. E. Koshland, Jr. 1984. Sites of methyl esterification and deamination on the aspartate receptor involved in chemotaxis. J. Biol. Chem. 259: 7719 7725.
135. Thoelke, M. S.,, J. M. Casper,, and G. W. Ordal. 1990. Methyl transfer in chemotaxis toward sugars in Bacillus subtilis. J. Bacteriol 172: 1148 1150.
136. Thoelke, M. S.,, J. M. Casper,, and G. W. Ordal. 1990. Methyl group turnover on methyl-accepting chemotaxis proteins during chemotaxis by Bacillus subtilis. J. Biol. Chem. 265: 1928 1932.
137. Thoelke, M. S.,, J. R. Kirby,, and G. W. Ordal. 1989. Novel methyl transfer during chemotaxis in Bacillus subtilis. Biochemistry 27: 8453 8457.
138. Thoelke, M. S.,, H. M. Parker,, E. A. Ordal,, and G. W. Ordal. 1988. Rapid attractant-induced changes in methylation of methyl-accepting chemotaxis proteins in Bacillus subtilis. Biochemistry 27: 8453 8457.
139. Toews, M. L.,, and J. Adler. 1979. Methanol formation in vivo from methylated chemotaxis proteins in Escherichia coli. J. Biol. Chem. 254: 1761 1764.
140. Toews, M. L.,, M. F. Goy,, M. S. Springer,, and J. Adler. 1979. Attractants and repellents control demethylation of methylated chemotaxis proteins in Escherichia coli. Proc. Natl. Acad. Sci. USA 76: 5544 5548.
141. Tozzi, M. G.,, U. D'Arcangelo,, A. Del Corso,, and G. W. Ordal. 1991. Identification and purification of a calcium-binding protein from Bacillus subtilis. Biochim. Biophys. Acta 1080: 160 164.
14la.. Tozzi, M. G.,, and G. W. Ordal. Unpublished data.
142. Tsang, N.,, R. M. Macnab,, and D. E. Koshland Jr., 1973. Common mechanism for repellents and attractants in bacterial chemotaxis. Science 181: 60 63.
143. Tso, W.-W.,, and J. Adler. 1974. Negative chemotaxis in Escherichia coli. J. Bacteriol. 118: 560 576.
144. Ullah, A. H. J.,, and G. W. Ordal. 1981. In vivo and in vitro chemotactic methylation in Bacillus subtilis. J. Bacteriol. 145: 958 965.
145. Van der Werf, P.,, and D. E. Koshland, Jr. 1977. Identification of α-glutamyl methyl ester in bacterial membrane protein involved in chemotaxis. J. Biol. Chem. 252: 2793 2795.
146. Ying, C,, and G. W. Ordal,. 1988. Cloning and expression of a chemotaxis gene in Bacillus subtilis, p. 75 78. In A. T. Ganesan, and J. A. Hoch (ed.), Genetics and Biotechnology of Bacilli, vol. 2. Academic Press, Inc., New York.
147. Ying, C,, F. Scoffone,, A. M. Albertini,, A. Galizzi,, and G. W. Ordal. 1991. Properties of the Bacillus subtilis chemotaxis protein CheF, a homolog of the Salmonella typhimurium flagellar protein FliJ. J. Bacteriol. 173: 3584 3586.
148. Yoneda, Y.,, and B. Maruo. 1975. Mutation of Bacillus subtilis causing hyperproduction of α-amylase and protease, and its synergistic effect. J. Bacteriol. 124: 48 54.
149. Young, M.,, C. Mauel,, P. Margot,, and D. Karamata. 1989. Pseudo-allelic relationship between non-homologous genes concerned with biosynthesis of polyglycerol phosphate and polyribitol phosphate teichoic acids in Bacillus subtilis strains 168 and W23. Mol. Microbiol. 3: 1805 1812.
150. Zuberi, A. R.,, D. S. Bischoff,, and G. W. Ordal. 1991. Nucleotide sequence and characterization of a Bacillus subtilis gene encoding a flagellar switch protein. J. Bacteriol. 173: 710 719.
151. Zuberi, A. R.,, C. Ying,, D. S. Bischoff,, and G. W. Ordal. 1991. Gene-protein relationships in the flagellar hook-basal body complex of Bacillus subtilis: sequences of the flgB, flgC, flgG, fliE, and fliF genes. Gene 101: 23 31.
152. Zuberi, A. R.,, C. Ying,, H. M. Parker,, and G. W. Ordal. 1990. Transposon Tn917lacZ mutagenesis of Bacillus subtilis: identification of two new loci required for motility and chemotaxis. J. Bacteriol. 172: 6841 6848.
153. Zuberi, A. R.,, C. Ying,, M. R. Weinreich,, and G. W. Ordal. 1990. Transcription organization of a cloned chemotaxis locus of Bacillus subtilis. J. Bacteriol. 172: 1870 1876.

Tables

Generic image for table
Table 1

genes and gene products involved in motility and chemotaxis or its regulation

Citation: Ordal G, Màrquez-Magaña L, Chamberlin M. 1993. Motility and Chemotaxis, p 765-784. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch53
Generic image for table
Table 2

Capillary and microscope assays of thresholds for amino acid taxis by

Citation: Ordal G, Màrquez-Magaña L, Chamberlin M. 1993. Motility and Chemotaxis, p 765-784. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch53
Generic image for table
Table 3

Apparent for amino acids as attractants of

Citation: Ordal G, Màrquez-Magaña L, Chamberlin M. 1993. Motility and Chemotaxis, p 765-784. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch53
Generic image for table
Table 4

for proline analogs as inhibitors of proline chemotaxis and transport

Citation: Ordal G, Màrquez-Magaña L, Chamberlin M. 1993. Motility and Chemotaxis, p 765-784. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch53
Generic image for table
Table 5

Capillary assays of sugar taxis by

Citation: Ordal G, Màrquez-Magaña L, Chamberlin M. 1993. Motility and Chemotaxis, p 765-784. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch53
Generic image for table
Table 6

Repellents of

Citation: Ordal G, Màrquez-Magaña L, Chamberlin M. 1993. Motility and Chemotaxis, p 765-784. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch53
Generic image for table
Table 7

Effect of preincubation with one repellent on postadaptive thresholds of others in

Citation: Ordal G, Màrquez-Magaña L, Chamberlin M. 1993. Motility and Chemotaxis, p 765-784. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch53
Generic image for table
Table 8

Summary of effect of uncouplers on amino acid transport in

Citation: Ordal G, Màrquez-Magaña L, Chamberlin M. 1993. Motility and Chemotaxis, p 765-784. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch53
Generic image for table
Table 9

Values of chlorophenols as inhibitors of proline and glycine transport in

Citation: Ordal G, Màrquez-Magaña L, Chamberlin M. 1993. Motility and Chemotaxis, p 765-784. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch53

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error