1887

Chapter 53 : Motility and Chemotaxis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Motility and Chemotaxis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap53-1.gif /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap53-2.gif

Abstract:

This chapter reviews the genetics and mapping of genes, then the mechanisms of motility and chemotaxis, and finally, what is known about regulation of gene expression in the system. It also concentrates on some important classes of mutations. Several mutations have been isolated on the basis of their abilities to reduce the level of autolytic enzyme expression. These strains were obtained by minimal mutagenesis and found to contain a single mutation that gave rise to a Lyt Fla phenotype. Chemotaxis in enteric bacteria is mediated through sets of cellular receptors that bind specific attractants. Such binding initiates a signal that is transduced through a series of protein intermediates by specific methylation-demethylation and phosphorylation-dephosphorylation. The most detailed information about the mechanisms involved in sensory transduction comes from studies of enteric bacteria, in which the majority of the genes involved in structural and regulatory roles are probably known and have been sequenced. As in , the methylated chemotaxis proteins (MCPs) of are integral membrane proteins that are methyl esterified on glutamate side chains as the result of methyl transfer from -adenosylmethionine. Expression of the genes of the sensory pathway is regulated in both and enteric bacteria by the composition of the growth medium, by the stage of cell growth, and by the expression of other genes needed for a functional sensory system.

Citation: Ordal G, Màrquez-Magaña L, Chamberlin M. 1993. Motility and Chemotaxis, p 765-784. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch53

Key Concept Ranking

Gene Expression and Regulation
0.58760405
Bacterial Proteins
0.44983172
Sodium Dodecyl Sulfate
0.44494817
Integral Membrane Proteins
0.43182516
0.58760405
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Map of region 140, originally designated the operon. The heavy dark line at the top represents the restriction map of this region, showing the five RI sites that span the region. The major promoter is shown as an arrow. Dashed lines lead to magnified maps of each region that show the individual open reading frames with their designations ((see Table 1 ). Data are from references and . Adapted from reference .

Citation: Ordal G, Màrquez-Magaña L, Chamberlin M. 1993. Motility and Chemotaxis, p 765-784. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch53
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Genetic map of showing locations of genes required for flagellar assembly, motility, and chemotaxis.

Citation: Ordal G, Màrquez-Magaña L, Chamberlin M. 1993. Motility and Chemotaxis, p 765-784. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch53
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Plausible model for the signal pathway for chemotaxis in Adapted from reference .

Citation: Ordal G, Màrquez-Magaña L, Chamberlin M. 1993. Motility and Chemotaxis, p 765-784. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch53
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818388.chap53
1. Adler, J.,, and Templeton. 1967. The effect of environmental conditions on the motility of E. coli. J. Gen. Microbiol. 46:175184.
2. Ahlgren, J. A.,, and G. W. Ordal. 1983. Methyl esterification of glutamic acid residues of methyl-accepting chemotaxis proteins in Bacillus subtilis. Biochem. J. 213:759763.
3. Akamatsu, T.,, and J. Seklguchi. 1987. Genetic mapping and properties of filamentous mutations in Bacillus subtilis. Agric. Biol. Chem. 51:29012909.
4. Alam, M.,, M. Lebert,, D. Oesterhelt,, and G. L. Hazel-bauer. 1989. Methyl-accepting chemotaxis proteins in Halobacterium halobium. EMBO J. 8:631639.
5. Albertini, A. M.,, T. Caramori,, W. D. Crabb,, F. Scoffone,, and A. Galizzi. 1991. The flaA locus of Bacillus subtilis is part of a large operon coding for flagellar structures, motility functions, and an ATPase-like polypeptide. J. Bacteriol. 173:35733579.
6. Arnosti, D. N.,, and M. J. Chamberlin. 1989. A secondary sigma factor controls transcription of flagellar and chemotaxis genes in E. coli. Proc. Natl. Acad. Sci. USA 86:830834.
7. Ayusawa, D.,, Y. Yoneda,, K. Yamane,, and B. Maruo. 1975. Pleitropic phenomenon in autolytic enzyme content, flagellation, and simultaneous hyperproduction of extracellular α-amylase and protease in a Bacillus subtilis mutant. J. Bacteriol. 124:459469.
8. Bartlett, D.,, B. Frantz,, and P. Matsumura. 1988. Flagellar transcriptional activators FlbB and Flal: gene sequences and 5' consensus sequences of operons under FlbB and Flal control. J. Bacteriol. 170:15751581.
9. Bedale, W. A.,, D. O. Nettleton,, C. S. Sopata,, M. S. Thoelke,, and G. W. Ordal. 1988. Evidence for methyl-group transfer between the methyl-accepting chemotaxis proteins in Bacillus subtilis. J. Bacteriol. 170:223227.
10. Berg, H. C,, and D. A. Brown. 1972. Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature (London) 239:500504.
11. Berg, H. C,, and P. M. Tedesco. 1975. Transient response to chemotactic stimuli in Escherichia coli. Proc. Natl. Acad. Sci. USA 72:32353239.
12. Bischoff, D. S.,, and G. W. Ordal. 1991. Sequence and characterization of B. subtilis CheB, a homolog of E. coli CheY, and its role in a different mechanism of chemotaxis. J. Biol. Chem. 266:1230112305.
13. Bischoff, D. S.,, and G. W. Ordal. 1992. Bacillus subtilis chemotaxis: a deviation from the Escherichia coli paradigm. Mol. Microbiol. 6:2328.
13a.. Bischoff, D. S.,, and G. W. Ordal. 1992. Identification and characterization of FliY, a novel component of the Bacillus subtilis flagellar switch complex. Mol. Microbiol. 6:27152723.
14. Bischoff, D. S.,, M. R. Weinreich,, and G. W. Ordal. 1992. Nucleotide sequences of Bacillus subtilis flagellar biosynthetic genes fliP and fliQ, and identification of a novel flagellar gene, fliZ. J. Bacteriol. 174:40174025.
15. Bollinger, J.,, C. Park,, S. Harayama,, and G. L. Hazel-bauer. 1984. Structure of the Trg protein: homologies with and differences from other sensory transducers of Escherichia coli. Proc. Natl. Acad. Sci. USA 81:32873291.
16. Borkovich, K. A.,, and M. I. Simon. 1990. The dynamics of protein phosphorylation in bacterial chemotaxis. Cell 63:13391348.
17. Bourret, R. B.,, K. A. Borkovich,, and M. I. Simon. 1991. Signal transduction pathways involving protein phosphorylation in prokaryotes. Annu. Rev. Biochem. 60: 401444.
18. Bourret, R. B.,, J. F. Hess,, and M. I. Simon. 1990. Conserved aspartate residues and phosphorylation in signal transduction by the chemotaxis protein CheY. Proc. Natl. Acad. Sci. USA 87:4145.
19. Boyd, A.,, K. Kendall,, and M. I. Simon. 1983. Structure of the serine chemoreceptor in Escherichia coli. Nature (London) 301:623626.
20. Brown, D. A.,, and H. C. Berg. 1974. Temporal stimulation of chemotaxis in Escherichia coli. Proc. Natl. Acad. Sci. USA 71:13881392.
21. Brummet, T. B.,, and G. W. Ordal. 1977. Inhibition of amino acid transport in Bacillus subtilis by uncouplers of oxidative phosphorylation. Arch. Biochem. Biophys. 178:368372.
22. Burgess, B. K. 1990. The iron-molybdenum cofactor of nitrogenase. Chem. Rev. 90:13771406.
23. Burgess-Cassler, A.,, and G. W. Ordal. 1982. Functional homology of Bacillus subtilis methyltransferase II and Escherichia coli cheR protein. J. Biol. Chem. 257:1283512838.
24. Burgess-Cassler, A.,, A. H. J. Ullah,, and G. W. Ordal. 1982. Purification and characterization of Bacillus subtilis methyl-accepting chemotaxis protein methyltransferase II. J. Biol. Chem. 257:84128417.
24a.. Carpenter, P. B.,, D. W. Hanlon,, and G. W. Ordal. 1992. flhF, a Bacillus subtilis flagellar gene that encodes a putative GTP-binding protein. Mol. Microbiol. 6:27052713.
24b.. Carpenter, P. B.,, and G. W. Ordal. Bacillus subtilis FlhA: a flagellar protein related to a new family of signal-transducing receptors. Mol. Microbiol., in press.
25. Chen, Y. F.,, and J. D. Helmann. 1992. Restoration of motility to an Escherichia coli fliA flagellar mutant by a Bacillus subtilis sigma factor. Proc. Natl. Acad. Sci. USA 89:51235127.
26. Clarke, S.,, and D. E. Koshland Jr., 1979. Membrane receptors for aspartate and serine in bacterial chemotaxis. J. Biol. Chem. 254:96959702.
27. Dahl, M. K.,, T. Msadek,, F. Kunst,, and G. Rapoport. 1991. Mutational analysis of the Bacillus subtilis DegU regulator and its phosphorylation by the DegS protein kinase. J. Bacteriol. 173:25392547.
27a.. Dahlquist, F. Personal communication.
28. Dean, G. E.,, R. M. Macnab,, J. Stader,, P. Matsumura,, and C. Burks. 1984. Gene sequence and predicted amino acid sequence of the motA protein, a membrane-associated protein required for flagellar rotation in Escherichia coli. J. Bacteriol. 159:991999.
29. Eisenbach, M.,, C. Constantinous,, H. Aloni,, and M. Shinitsky. 1990. Repellents for Escherichia coli operate neither by changing membrane fluidity nor by being sensed by periplasmic receptors during chemotaxis. J. Bacteriol. 172:52185224.
30. Engstrom, P.,, and G. L. Hazelbauer. 1982. Methyl-accepting chemotaxis proteins are distributed in the membrane independently from basal ends of bacterial flagella. Biochim. Biophys. Ada 686:1926.
31. Fein, J. E. 1979. Possible involvement of bacterial autolytic enzymes in flagellar morphogenesis. J. Bacteriol. 137:933946.
32. Fein, J. E.,, and H. J. Rogers. 1976. Autolytic enzyme-deficient mutants of Bacillus subtilis 168. J. Bacteriol. 127:14271442.
33. Fuhrer, D. K.,, and G. W. Ordal. 1991. Bacillus subtilis CheN, a homolog of CheA, the central regulator of chemotaxis in Escherichia coli. J. Bacteriol. 173:74437448.
34. Gaur, N. K.,, K. Cabane,, and I. Smith. 1988. Structure and expression of the Bacillus subtilis sin operon. J. Bacteriol. 170:10461053.
35. Gaur, N. K.,, E. Dubnau,, and I. Smith. 1986. Characterization of a cloned Bacillus subtilis gene that inhibits sporulation in multiple copies. J. Bacteriol. 168:860869.
36. Gaur, N. K.,, J. Oppenheim,, and I. Smith. 1991. The Bacillus subtilis sin gene, a regulator of alternate developmental processes, codes for a DNA-binding protein. J. Bacteriol. 173:678686.
37. Gillen, K. L.,, and K. T. Hughes. 1991. Molecular characterization of flgM, a gene encoding a negative regulator of flagellin synthesis in Salmonella typhimurium. J. Bacteriol 173:64536459.
38. Gilman, M. Z.,, and M. J. Chamberlin. 1983. Developmental and genetic regulation of Bacillus subtilis genes transcribed by sigma-28 containing RNA polymerase. Cell 35:285293.
39. Gilman, M. Z.,, J. S. Glenn,, V. L. Singer,, and M. J. Chamberlin. 1984. Isolation of sigma-28 specific promoters from Bacillus subtilis DNA. Gene 32:1120.
40. Gilman, M. Z.,, J. L. Wiggs,, and M. J. Chamberlin. 1981. Nucleotide sequences of two Bacillus subtilis promoters used by B. subtilis sigma-28 RNA polymerase. Nucleic Acids Res. 9:59916000.
41. Goldman, D. J.,, D. O. Nettleton,, and G. W. Ordal. 1984. Purification and characterization of chemotactic methylesterase from Bacillus subtilis. Biochemistry 23:675680.
42. Goldman, D. J.,, and G. W. Ordal. 1981. Sensory adaptation and deadaptation in Bacillus subtilis. J. Bacteriol. 147:267270.
43. Goldman, D. J.,, and G. W. Ordal. 1984. In vitro methylation and demethylation of methyl-accepting chemotaxis proteins in Bacillus subtilis. Biochemistry 23: 26002606.
44. Goldman, D. J.,, S. W. Worobec,, R. B. Siegel,, R. V. Hecker,, and G. W. Ordal. 1982. Chemotaxis in Bacillus subtilis: effects of attractants on the level of MCP methylation and the role of demethylation in the adaptation process. Biochemistry 21:915920.
45. Goy, M. F.,, M. S. Springer,, and J. Adler. 1977. Sensory transduction in Escherichia coli: role of a protein methylation reaction in sensory adaptation. Proc. Natl. Acad. Sci. USA 74:49644968.
46. Grant, G. F.,, and M. I. Simon. 1969. Synthesis of bacterial flagella. II. PBS1 Transduction of flagella-specific markers in Bacillus subtilis. J. Bacteriol. 99:116124.
47. Guillen, N.,, Y. Weinrauch,, and D. A. Dubnau. 1989. Cloning and characterization of the regulatory Bacillus subtilis competence genes comA and comB. J. Bacteriol. 171:53545361.
48. Hanlon, D. W.,, P. B. Carpenter,, and G. W. Ordal. 1992. Influence of attractants and repellents on methyl group turnover on methyl-accepting chemotaxis proteins of Bacillus subtilis and the role of CheW. J. Bacteriol. 174:42184222.
49. Hanlon, D. W.,, L. M. Marquez-Magana,, P. B. Carpenter,, M. J. Chamberlin,, and G. W. Ordal. 1992. Sequence and characterization of Bacillus subtilis CheW. J. Biol. Chem. 267:1205512060.
49a.. Hanlon, D. W.,, and G. Ordal. Unpublished data.
50. Harayama, S.,, P. Engstrom,, H. Wolf-Watz,, T. lino,, and G. L. Hazelbauer. 1982. Cloning of trg, a gene for a sensory transducer in Escherichia coli. J. Bacteriol. 152:372383.
51. Hauser, P. M.,, W. D. Crabb,, M. G. Flora,, F. Scoffone,, and A. Galizzi. 1991. Genetic analysis of the flaA locus of Bacillus subtilis. J. Bacteriol. 173:35803583.
52. Hazelbauer, G. L.,, and J. Adler. 1971. Role of the galactose binding protein in chemotaxis of Escherichia coli toward galactose. Nature (London) New Biol. 230: 101104.
53. Hazelbauer, G. L.,, and S. Harayama. 1979. Mutants in transmission of chemotactic signals from two independent receptors of E. coli. Cell 16:617625.
54. Hedblom, M. L.,, and J. Adler. 1980. Genetic and biochemical properties of Escherichia coli mutants with defects in serine chemotaxis. J. Bacteriol. 144:10481060.
55. Helmann, J.,, and M. Chamberlin. 1987. DNA sequence analysis suggests that expression of flagellar and chemotaxis genes in Escherichia coli and Salmonella typhimurium is controlled by an alternative σ factor. Proc. Natl. Acad. Sci. USA 84:64226424.
56. Helmann, J.,, L. Marquez,, and M. J. Chamberlin. 1988. Cloning, sequencing, and disruption of the Bacillus subtilis a28 gene. J. Bacteriol. 170:15681574.
57. Henner, D.,, M. Yang,, and E. Ferrari. 1988. Localization of Bacillus subtilis sacU(Hy) mutations to two linked genes with similarities to the conserved procaryotic family of two-component signalling systems. J. Bacteriol. 170:51025109.
58. Henner, D. J.,, P. Gollnick,, and A. Moir,. 1990. An analysis of an 18 kilobase pair region of Bacillus subtilis chromosome containing Mtr and GerC operons and the Aro-Trp-Aro supraoperon, p. 657666. In H. Heslot (ed.), Proceedings of the 6th International Symposium on Genetics of Industrial Microorganisms. Societe Française de Microbiologie, Strasbourg, France.
59. Hess, J. F.,, K. Oosawa,, N. Kaplan,, and M. I. Simon. 1988. Phosphorylation of three proteins in the signaling pathway of bacterial chemotaxis. Cell 53:7987.
60. lino, T.,, Y. Komeda,, K. Kutsukake,, R. Macnab,, P. Matsumura,, J. S. Parkinson,, M. I. Simon,, and S. Yamaguchi. 1988. New unified nomenclature for the flagellar genes of Escherichia coli and Salmonella typhimurium. Microbiol. Rev. 52:533535.
61. Ishihara, A.,, J. E. Segall,, S. M. Block,, and H. C. Berg. 1983. Coordination of flagella on filamentous cells of Escherichia coli. J. Bacteriol. 155:228237.
62. Jones, C. L.,, and R. M. Macnab. 1990. Flagellar assembly in Salmonella typhimurium: analysis with temperature-sensitive mutants. J. Bacteriol. 172:13271339.
63. Kehry, M. R.,, M. W. Bond,, M. W. Hunkpiller,, and F. W. Dahlquist. 1983. Enzymatic deamidation of methyl-accepting chemotaxis proteins in Escherichia coli catalyzed by the cheB gene product. Proc. Natl. Acad. Sci. USA 80:35993603.
64. Kehry, M. R.,, and F. W. Dahlquist. 1982. The methyl-accepting chemotaxis proteins of Escherichia coli. Identification of the multiple methylation sites on methyl-accepting chemotaxis protein I. J. Biol. Chem. 257: 1037810386.
65. Kehry, M. R.,, T. G. Doak,, and F. W. Dahlquist. 1984. Stimulus-induced changes in methylesterase activity during chemotaxis in Escherichia coli. J. Biol. Chem. 259:1182811835.
66. Kehry, M. R.,, T. G. Doak,, and F. W. Dahlquist. 1985. Sensory adaptation in bacterial chemotaxis: regulation of demethylation. J. Bacteriol. 163:983990.
67. Kihara, M.,, M. Homma,, K. Kutsukake,, and R. M. Macnab. 1989. Flagellar switch of Salmonella typhimurium: gene sequences and deduced protein sequences. J. Bacteriol. 171:32473257.
67a.. Klrsch, M.,, and G. W. Ordal. Unpublished data.
68. Kleene, S. J.,, M. L. Toews,, and J. Adler. 1977. Isolation of glutamic acid methyl ester from an Escherichia coli membrane protein involved in chemotaxis. J. Biol. Chem. 252:32143218.
69. Komeda, Y. 1986. Transcriptional control of flagellar genes in Escherichia coli K-12. J. Bacteriol. 168:13151318.
70. Komeda, Y.,, and T. lino. 1979. Regulation of expression of flagellin (hag) in E. coli K12: analysis of hag-lacZ fusions.J. Bacteriol. 168:13151318.
71. Komeda, Y.,, H. Suzuki,, J. Ishidsu,, and T. lino. 1975. The role of cAMP in flagellation of S. typhimurium. Mol. Gen. Genet. 142:289298.
72. Krikos, A.,, N. Mutoh,, A. Boyd,, and M. I. Simon. 1983. Sensory transducers of E. coli are composed of discrete structural and functional domains. Cell 33:615622.
73. Kunst, F.,, M. Debarbouille,, T. Msadlk,, M. Young,, C. Mauel,, D. Karamata,, A. Klier,, G. Rapoport,, and R. Dedonder. 1988. Deduced polypeptides encoded by the Bacillus subtilis sacll locus share homology with two-component sensor-regulator systems. J. Bacteriol. 170: 50935101.
74. Kutsukake, K.,, Y. Ohya,, and T. lino. 1990. Transcriptional analysis of the flagellar regulon of Salmonella typhimurium. J. Bacteriol. 172:741747.
75. Larsen, S. H.,, R. W. Reader,, E. N. Kort,, W.-W. Tso,, and J. Adler. 1974. Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli. Nature (London) 249:7477.
76. LaVallie, E. R.,, and M. L. Stahl. 1989. Cloning of the flagellin gene from Bacillus subtilis and complementation studies of an in vitro-derived deletion mutation. J. Bacteriol. 171:30853094.
77. Lazarevic, V.,, P. Margot,, and D. Karamata. 1991. Bacillus subtilis N-acetylmuramoyl-L-alanine amidase and its modifier are encoded by a three ORF operon called lytABC, abstr. W4. Sixth Int. Conf. Bacilli, July 28-31, Stanford University.
78. Lepesant,, J. A. F. Kunst,, J. Lepesant-Kejzalarova,, and R. Dedonder. 1972. Chromosomal location of mutations affecting sucrose metabolism in Bacillus subtilis Marburg. Mol. Gen. Genet. 188:135160.
79. Liu, J. D.,, and J. S. Parkinson. 1989. Role of CheW protein in coupling membrane receptors to the intra-cellular signalling system of bacterial chemotaxis. Proc. Natl. Acad. Set. USA 86:87038707.
80. Lupas, A.,, and J. Stock. 1989. Phosphorylation of an N-terminal regulatory domain activates the CheB methylesterase in bacterial chemotaxis. J. Biol. Chem. 264:1733717342.
81. Macnab, R. M., 1987. Flagella, p. 7083. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C.
82. Macnab, R. M., 1987. Motility and chemotaxis, p. 732759. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C;
83. Macnab, R. M., 1990. Genetics, structure, and assembly of the bacterial flagellum, p. 77106. In J. F. Armitage, and J. M. Lackie (ed.). Biology of the Chemotactic Response. Cambridge University Press, Cambridge.
84. Macnab, R. M. 1992. Genetics and biogenesis of bacterial flagella. Annu. Rev. Genet. 26:131158.
84a.. Macnab, R. M. Personal communication.
85. Macnab, R. M.,, and D. P. Han. 1983. Asynchronous switching of flagellar motors on a single bacterial cell. Cell 32:109117.
86. Macnab, R. M.,, and D. E. KoshlandJr., 1972. The gradient-sensing mechanism in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA 69:25092512.
86a.. Margot, P.,, and D. Karamata. Personal communication.
87. Margot, P.,, C. Mauel,, and D. Karamata. 1991. The Bacillus subtilis N-acetylglucosaminidase is encoded by a monocistronic operon controlled by a a° dependent promoter, abstr. W6. Sixth Int. Conf. Bacilli, July 28-31, Stanford University.
88. Marquez, L. 1991. Function and regulation of expression of the Bacillus subtilis sigma-D factor. Ph.D. thesis. University of California, Berkeley.1992
89. Marquez, L. M.,, J. D. Helmann,, E. F. Ferrari,, H. M. Parker,, G. W. Ordal,, and M. J. Chamberlin. 1990. Studies of σD -dependent functions in Bacillus subtilis. J. Bacteriol. 172:34353443.
90. Marquez-Magana, L.,, D. B. Mirel,, and M. J. Chamberlin. Role of Spo0, abrB, and sin gene products in regulation of cP expression and activity. Submitted for publication.
91. Matsushita, T.,, H. Hirata,, and I. Kusaka. 1988. Calcium channel blockers inhibit bacterial chemotaxis. FEBS Lett. 236:437440.
92. Mesibov, R.,, and J. Adler. 1972. Chemotaxis toward amino acids in Escherichia coli. J. Bacteriol. 112:315326.
93. Mesibov, R.,, G. W. Ordal,, and J. Adler. 1973. The range of attractant concentrations for bacterial chemotaxis and the threshold and size of response over this range. Weber law and related phenomena. J. Gen. Physiol. 62:203223.
94. Mirel, D. B. 1992. The Bacillus subtilis sigma-D regulon. Ph.D. thesis. University of California, Berkeley.1992
94a.. Mirel, D. B. Unpublished data.260:1171111718.
95. Mirel, D. B.,, and M. J. Chamberlin. 1989. The Bacillus subtilis flagellin gene (hag) is transcribed by the σ28 form of RNA polymerase. J. Bacteriol. 171:30953101.
96. Mirel, D. B.,, V. M. Lustre,, and M. J. Chamberlin. 1992. An operon of Bacillus subtilis motility genes transcribed by the cP form of RNA polymerase. J. Bacteriol. 174: 41974204.
97. Mowbray, S. L.,, D. L. Foster,, and D. E. Koshland, Jr. 1985. Proteolytic fragments identified with domains of the aspartate chemoreceptor. J. Biol. Chem. 260:1171111718.
98. Msadek, T.,, F. Kunst,, D. Henner,. A. Klier,, G. Rapoport,, and R. Dedonder. 1990. Signal transduction pathway controlling synthesis of a class of degradative enzymes in Bacillus subtilis: expression of the regulatory genes and analysis of mutations in degS and degU. J. Bacteriol. 172:824834.
99. Nettleton, D. O. 1986. Chemotactic methylation in Bacillus subtilis. Ph.D. thesis. University of Illinois, Urbana. 1992
100. Nettleton, D. O.,, and G. W. Ordal. 1989. Functional homology of chemotactic methylesterases from Bacillus subtilis and Escherichia coli. J. Bacteriol. 171:120123.
101. Nicholas, R. A.,, and G. W. Ordal. 1978. Inhibition of bacterial transport by uncouplers of oxidative phosphorylation: effect of pentachlorophenol and analogs in Bacillus subtilis. Biochem. J. 176:639647.
102. Nishihara, T.,, and E. Freese. 1975. Motility of Bacillus subtilis during growth and sporulation. J. Bacteriol. 123:366371.
103. Ohnishi, K.,, K. Kutsukake,, H. Suzuki,, and T. lino. 1990. Gene fliA encodes an alternative sigma factor specific for flagellar operons in Salmonella typhimurium. Mol. Gen. Genet. 221:139147.
103a.. Ordal, G. W. Unpublished data.1992
104. Ordal, G. W. 1976. Recognition sites for repellents of Bacillus subtilis. J. Bacteriol. 126:7279.
105. Ordal, G. W. 1976. Control of tumbling in bacterial chemotaxis by divalent cation. J. Bacteriol. 126:706711.
106. Ordal, G. W. 1977. Calcium ion regulates chemotactic behavior in bacteria. Nature (London) 270:6667.
107. Ordal, G. W.,, and K. J. Gibson. 1977. Chemotaxis toward amino acids by Bacillus subtilis. J. Bacteriol. 129:151155.
108. Ordal, G. W.,, and D. J. Goldman. 1975. Chemotaxis away from uncouplers of oxidative phosphorylation in Bacillus subtilis. Science 189:802805.
109. Ordal, G. W.,, and D. J. Goldman. 1976. Chemotactic repellents of Bacillus subtilis. J. Mol. Biol. 100:103108.
110. Ordal, G. W.,, D. O. Nettleton,, and J. A. Hoch. 1983. Genetics of Bacillus subtilis chemotaxis: isolation and mapping of mutations and cloning of chemotaxis genes. J. Bacteriol. 154:10881097.
111. Ordal, G. W.,, H. M. Parker,, and J. R. Kirby. 1985. Complementation and characterization of chemotaxis mutants of Bacillus subtilis. J. Bacteriol. 164:802810.
112. Ordal, G. W.,, and D. P. Villani. 1980. Action of uncouplers of oxidative phosphorylation as repellents of Bacillus subtilis. J. Gen. Microbiol. 115:471478.
113. Ordal, G. W.,, D. P. Villani,, and K. J. Gibson. 1977. Amino acid chemoreceptors of Bacillus subtilis. J. Bacteriol. 129:156165.
114. Ordal, G. W.,, D. P. Villani,, R. A. Nicholas,, and F. G. Hamel. 1978. Independence of proline chemotaxis and transport in Bacillus subtilis. J. Biol. Chem. 253:49164919.
115. Ordal, G. W.,, D. P. Villani,, and M. S. Rosendahl. 1979. Chemotaxis toward sugars by Bacillus subtilis. J. Gen. Microbiol. 118:471478.
116. Parkinson, J. S.,, and S. R. Parker. 1979. Interaction of the cheC and cheZ gene products is required for chemotactic behavior in Escherichia coli. Proc. Natl. Acad. Sci. USA 76:23902394.
117. Pooley, H. M.,, and D. Karamata. 1984. Genetic analysis of autolysin-deficient and flagellaless mutants of Bacillus subtilis. J. Bacteriol. 160:11231129.
117a.. Rosario, M.,, D. Bochar,, and G. Ordal. Unpublished data.
118. Russo, A. F.,, and D. E. KoshlandJr., 1983. Separation of signal transduction and adaptation functions of the aspartate receptor in bacterial sensing. Science 220: 10161020.
119. Sekiguchi, J.,, H. Ohsu,, A. Kuroda,, H. Moriyama,, and T. Akamatsu. 1990. Nucleotide sequences of the Bacillus subtilis flaD locus and a B. licheniformis homologue affecting the autolysis level and flagellation. J. Gen. Microbiol. 136:12231230.
120. Shi, W.,, Y. Zhou,, J. Wild,, J. Adler,, and C. A. Gross. 1992. DnaK, DnaJ, and GrpE are required for flagellum synthesis in Escherichia coli. J. Bacteriol. 174:62566263.
121. Silverman, M.,, and M. Simon. 1974. Characterization of Escherichia coli flagellar mutants that are insensitive to catabolite repression. J. Bacteriol. 120:11961203.
122. Singer, V. 1987. Characterization of promoters and genes controlled by Bacillus subtilis sigma-28 RNA polymerase. Ph.D. thesis. University of California, Berkeley.
123. Springer, M. S.,, M. F. Goy,, and J. Adler. 1977. Sensory transduction in Escherichia coli: two complementary pathways of information processing that involve methylated proteins. Proc. Natl. Acad. Sci. USA 74:33123316.
124. Springer, W. R.,, and D. E. KoshlandJr. 1977. Identification of a protein methyltransferase as the cheR gene product in the bacterial sensing system. Proc. Natl. Acad. Sci. USA 74:533537.
125. Spudich, J. A.,, and D. E. KoshlandJr., 1975. Quantitation of the sensory response in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA 72:710713.
126. Stader, J.,, P. Matsumura,, D. Vacante,, G. E. Dean,, and R. M. Macnab. 1986. Nucleotide sequence of the Escherichia coli motB gene and site-limited incorporation of its product into the cytoplasmic membrane. J. Bacteriol. 166:244252.
127. Stewart, R., C, A. Roth,, and F. W. Dahlquist. 1990. Mutations that affect control of the methylesterase activity of CheB, a component of the chemotaxis adaptation system in Escherichia coli. J. Bacteriol. 172:33883399.
128. Stock, J. B.,, and D. E. KoshlandJr., 1978. A protein methylesterase involved in bacterial sensing. Proc. Natl. Acad. Sci. USA 75:36593663.
129. Stock, J. B.,, and D. E. KoshlandJr., 1981. Changing reactivity of receptor carboxyl groups during bacterial sensing.J. Biol. Chem. 256:1082610833.
130. Strange, P. G.,, and D. E. Koshland, Jr. 1976. Receptor interactions in a signalling system: competition between ribose receptor and galactose receptor in the chemotaxis response. Proc. Natl. Acad. Sci. USA 73:762766.
131. Suzuki, T.,, and T. lino. 1973. In vitro synthesis of phase-specific flagellin of Salmonella. J. Mol. Biol. 81: 5770.
132. Suzuki, T.,, and Y. Komeda. 1981. Incomplete flagellar structure in Escherichia coli mutants. J. Bacteriol. 145: 10361041.
133. Terwilliger, T. C,, E. Bogonez,, E. A. Wang,, and D. E. Koshland, Jr. 1983. Sites of methyl esterification in the aspartate receptor involved in bacterial chemotaxis. J. Biol. Chem. 258:96089611.
134. Terwilliger, T. C,, and D. E. Koshland, Jr. 1984. Sites of methyl esterification and deamination on the aspartate receptor involved in chemotaxis. J. Biol. Chem. 259: 77197725.
135. Thoelke, M. S.,, J. M. Casper,, and G. W. Ordal. 1990. Methyl transfer in chemotaxis toward sugars in Bacillus subtilis. J. Bacteriol 172:11481150.
136. Thoelke, M. S.,, J. M. Casper,, and G. W. Ordal. 1990. Methyl group turnover on methyl-accepting chemotaxis proteins during chemotaxis by Bacillus subtilis. J. Biol. Chem. 265:19281932.
137. Thoelke, M. S.,, J. R. Kirby,, and G. W. Ordal. 1989. Novel methyl transfer during chemotaxis in Bacillus subtilis. Biochemistry 27:84538457.
138. Thoelke, M. S.,, H. M. Parker,, E. A. Ordal,, and G. W. Ordal. 1988. Rapid attractant-induced changes in methylation of methyl-accepting chemotaxis proteins in Bacillus subtilis. Biochemistry 27:84538457.
139. Toews, M. L.,, and J. Adler. 1979. Methanol formation in vivo from methylated chemotaxis proteins in Escherichia coli. J. Biol. Chem. 254:17611764.
140. Toews, M. L.,, M. F. Goy,, M. S. Springer,, and J. Adler. 1979. Attractants and repellents control demethylation of methylated chemotaxis proteins in Escherichia coli. Proc. Natl. Acad. Sci. USA 76:55445548.
141. Tozzi, M. G.,, U. D'Arcangelo,, A. Del Corso,, and G. W. Ordal. 1991. Identification and purification of a calcium-binding protein from Bacillus subtilis. Biochim. Biophys. Acta 1080:160164.
14la.. Tozzi, M. G.,, and G. W. Ordal. Unpublished data.
142. Tsang, N.,, R. M. Macnab,, and D. E. Koshland Jr., 1973. Common mechanism for repellents and attractants in bacterial chemotaxis. Science 181:6063.
143. Tso, W.-W.,, and J. Adler. 1974. Negative chemotaxis in Escherichia coli. J. Bacteriol. 118:560576.
144. Ullah, A. H. J.,, and G. W. Ordal. 1981. In vivo and in vitro chemotactic methylation in Bacillus subtilis. J. Bacteriol. 145:958965.
145. Van der Werf, P.,, and D. E. Koshland, Jr. 1977. Identification of α-glutamyl methyl ester in bacterial membrane protein involved in chemotaxis. J. Biol. Chem. 252:27932795.
146. Ying, C,, and G. W. Ordal,. 1988. Cloning and expression of a chemotaxis gene in Bacillus subtilis, p. 7578. In A. T. Ganesan, and J. A. Hoch (ed.), Genetics and Biotechnology of Bacilli, vol. 2. Academic Press, Inc., New York.
147. Ying, C,, F. Scoffone,, A. M. Albertini,, A. Galizzi,, and G. W. Ordal. 1991. Properties of the Bacillus subtilis chemotaxis protein CheF, a homolog of the Salmonella typhimurium flagellar protein FliJ. J. Bacteriol. 173: 35843586.
148. Yoneda, Y.,, and B. Maruo. 1975. Mutation of Bacillus subtilis causing hyperproduction of α-amylase and protease, and its synergistic effect. J. Bacteriol. 124:4854.
149. Young, M.,, C. Mauel,, P. Margot,, and D. Karamata. 1989. Pseudo-allelic relationship between non-homologous genes concerned with biosynthesis of polyglycerol phosphate and polyribitol phosphate teichoic acids in Bacillus subtilis strains 168 and W23. Mol. Microbiol. 3:18051812.
150. Zuberi, A. R.,, D. S. Bischoff,, and G. W. Ordal. 1991. Nucleotide sequence and characterization of a Bacillus subtilis gene encoding a flagellar switch protein. J. Bacteriol. 173:710719.
151. Zuberi, A. R.,, C. Ying,, D. S. Bischoff,, and G. W. Ordal. 1991. Gene-protein relationships in the flagellar hook-basal body complex of Bacillus subtilis: sequences of the flgB, flgC, flgG, fliE, and fliF genes. Gene 101:2331.
152. Zuberi, A. R.,, C. Ying,, H. M. Parker,, and G. W. Ordal. 1990. Transposon Tn917lacZ mutagenesis of Bacillus subtilis: identification of two new loci required for motility and chemotaxis. J. Bacteriol. 172:68416848.
153. Zuberi, A. R.,, C. Ying,, M. R. Weinreich,, and G. W. Ordal. 1990. Transcription organization of a cloned chemotaxis locus of Bacillus subtilis. J. Bacteriol. 172:18701876.

Tables

Generic image for table
Table 1

genes and gene products involved in motility and chemotaxis or its regulation

Citation: Ordal G, Màrquez-Magaña L, Chamberlin M. 1993. Motility and Chemotaxis, p 765-784. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch53
Generic image for table
Table 2

Capillary and microscope assays of thresholds for amino acid taxis by

Citation: Ordal G, Màrquez-Magaña L, Chamberlin M. 1993. Motility and Chemotaxis, p 765-784. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch53
Generic image for table
Table 3

Apparent for amino acids as attractants of

Citation: Ordal G, Màrquez-Magaña L, Chamberlin M. 1993. Motility and Chemotaxis, p 765-784. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch53
Generic image for table
Table 4

for proline analogs as inhibitors of proline chemotaxis and transport

Citation: Ordal G, Màrquez-Magaña L, Chamberlin M. 1993. Motility and Chemotaxis, p 765-784. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch53
Generic image for table
Table 5

Capillary assays of sugar taxis by

Citation: Ordal G, Màrquez-Magaña L, Chamberlin M. 1993. Motility and Chemotaxis, p 765-784. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch53
Generic image for table
Table 6

Repellents of

Citation: Ordal G, Màrquez-Magaña L, Chamberlin M. 1993. Motility and Chemotaxis, p 765-784. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch53
Generic image for table
Table 7

Effect of preincubation with one repellent on postadaptive thresholds of others in

Citation: Ordal G, Màrquez-Magaña L, Chamberlin M. 1993. Motility and Chemotaxis, p 765-784. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch53
Generic image for table
Table 8

Summary of effect of uncouplers on amino acid transport in

Citation: Ordal G, Màrquez-Magaña L, Chamberlin M. 1993. Motility and Chemotaxis, p 765-784. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch53
Generic image for table
Table 9

Values of chlorophenols as inhibitors of proline and glycine transport in

Citation: Ordal G, Màrquez-Magaña L, Chamberlin M. 1993. Motility and Chemotaxis, p 765-784. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch53

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error