1887

Chapter 54 : Regulatory Proteins That Control Late-Growth Development

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Regulatory Proteins That Control Late-Growth Development, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap54-1.gif /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap54-2.gif

Abstract:

Upon encountering nutrient deprivation, and other soil organisms initiate a series of responses that allow survival in the hostile environment. Among these responses are synthesis and secretion of degradative enzymes, production of antibiotics, development of motility and competence, and finally, appearance of spores. These dormant, resistant life forms will germinate and start a new round of vegetative growth when exposed to adequate food supplies. One of the most actively studied areas in physiology and molecular biology is the decision-making process whereby the cell faced with nutrient stress chooses one of the alternative late-growth pathways. Several proteins that affect these pathways have been described. This chapter discusses the specific functions of these proteins, the regulation of their synthesis, and their roles in the circuitry controlling late-growth development in and closely related bacteria, where these processes are understood. In recent years, several genes that affect late-growth development have been cloned and characterized, and it has been demonstrated, usually by creating mutations in the chromosomal gene or by disrupting the gene on a multicopy plasmid, that the protein products of these genes are the functional agents for their effects. Among these proteins are AbrB, ComA, DegQ, DegR, DegU, DegT, Hpr, Pai (ORF1 and ORF2), SinR (and SinI), Sen, Spo0A, TenA, and TenI. The best characterized proteins in terms of their functions and control of their synthesis are AbrB, ComA, DegU, Spo0A, Hpr, and SinR.

Citation: Smith I. 1993. Regulatory Proteins That Control Late-Growth Development, p 785-800. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch54
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Relationships between regulatory proteins that affect late-growth processes, showing interactions between Spo0A, AbrB, Hpr, Sin, and SinI and the stationary-phase-activated processes they control. References and experimental details for this figure are in the text. For clarity, several elements of late-growth control, e.g., activation of Spo0A by the phosphorelay system and down regulation of sin by Hpr, etc., are not shown. The specific steps in the processes that are affected by the regulatory proteins are also not shown; they are described in the text. Positive interactions are indicated by an arrow, and negative ones are indicated by a bar. The figure does not differentiate between transcriptional and translational interactions.

Citation: Smith I. 1993. Regulatory Proteins That Control Late-Growth Development, p 785-800. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch54
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818388.chap54
1. Akamatsu, T.,, and J. Sekiguchi. 1987. Genetic mapping and properties of filamentous mutations in Bacillus subtilis. Agric. Biol. Chem. 51: 2901 2909.
2. Amory, A. F.,, E. Kunst,, A. Aubert,, and G. Rapoport. 1987. Characterization of the sacQ genes from Bacillus licheniformis and Bacillus subtilis. J. Bacteriol. 169: 324 333.
3. Baeuerle, P. A.,, and D. Baltimore. 1988. I-κβ: a specific inhibitor of the NF-K/3 transcriptional factor. Science 242: 540 546.
3a.. Bai, U.,, I. Mandic-Mulec,, and I. Smith. 1993. SinI modulates the activity of SinR, a developmental switch protein of Bacillus subtilis, by protein-protein interaction. Genes Dev. 7: 139 148.
4. Benson, A. K.,, and W. G. Haldenwang. 1992. Characterization of a regulatory network that controls σ β expression in Bacillus subtilis. J. Bacteriol. 174: 749 757.
5. Chamberlin, M. Personal communication.
6. Chibazakura, T.,, F. Kawamura,, and H. Takahashi. 1991. Differential regulation of Spo0A transcription in Bacillus subtilis: glucose represses promoter switching at the initiation of sporulation. J. Bacteriol. 173: 2625 2632.
7. Dahl, M. K.,, T. Msadek,, F. Kunst,, and G. Rapoport. 1991. Mutational analysis of the Bacillus subtilis DegU regulator and its phosphorylation by the DegS protein kinase. J. Bacteriol. 173: 2539 2547.
8. Debarbouille, M.,, I. Martin-Verstraete,, A. Klier,, and G. Rapoport. 1991. The transcriptional regulator LevR of Bacillus subtilis has domains homologous to both σ 54-and phosphotransferase system-dependent regulators. Proc. Natl. Acad. Sci. USA 88: 2212 2216.
9. Dowds, B. C. A.,, and J. A. Hoch. 1991. Regulation of the oxidative stress response by the hpr gene in Bacillus subtilis. J. Gen. Microbiol. 137: 1121 1125.
10. Dubnau, D. Personal communication.
11. Dubnau, D.,, J. Hahn,, L. Kong,, M. Roggiani,, and Y. Weinrauch. 1991. Genetic competence as a post-exponential global response. Semin. Dev. Biol. 2: 3 11.
11a.. Dubnau, E.,, S. H. Park,, and I. Smith. Unpublished data.
12. Dubnau, E.,, J. Weir,, G. Nair,, L. Carter III,, C. Moran, Jr.,, and I. Smith. 1988. Bacillus sporulation gene Spo0H codes for σ 30 H). J. Bacteriol. 170: 1054 1062.
13. Ferrari, E.,, D. J. Henner,, M. Perego,, and J. A. Hoch. 1988. Transcription of Bacillus subtilis subtilisin and expression of subtilisin in sporulation mutants. J. Bacteriol. 170: 289 295.
14. Flashner, Y.,, and J. D. Gralla. 1988. Dual mechanism of repression at a distance in the lac operon. Proc. Natl. Acad. Sci. USA 85: 8968 8972.
15. Freese, E.,, W. Klofat,, and E. Galliers. 1970. Commitment to sporulation and induction of glucose-phosphoenolpyruvate-transferase. Biochim. Biophys. Ada 222: 265 289.
16. Furbass, R.,, M. Gocht,, P. Zuber,, and M. A. Marahiel. 1991. Interaction of AbrB, a transcription regulator of Bacillus subtilis, with the promoters of the transition state activated genes tycA and spoVG. Mol. Gen. Genet. 225: 347 354.
17. Gaur, N. K.,, K. Cabane,, and I. Smith. 1988. Structure and expression of the Bacillus subtilis sin operon. J. Bacteriol. 170: 1046 1053.
18. Gaur, N. K.,, E. Dubnau,, and I. Smith. 1986. Characterization of a cloned Bacillus subtilis gene that inhibits sporulation in multiple copies. J. Bacteriol. 168: 860 869.
18a.. Gaur, N. K.,, I. Mandic-Mulec,, and I. Smith. Unpublished data.
19. Gaur, N. K.,, J. Oppenheim,, and I. Smith. 1991. The Bacillus subtilis sin gene, a regulator of alternate developmental processes, codes for a DNA-binding protein. J. Bacteriol. 173: 678 686.
19a.. Gaur, N. K.,, and I. Smith. Unpublished data.
19b.. Gaur, N. K.,, I. Smith,, and D. Karamata. Unpublished data.
20. Gilman, M.,, and M. Chamberlin. 1983. Developmental and genetic regulation of Bacillus subtilis genes transcribed by σ 28-RNA polymerase. Cell 35: 285 293.
21. Guzman, P.,, J. Westpheling,, and P. Youngman. 1988. Characterization of the promoter region of the Bacillus subtilis spoIIE operon. J. Bacteriol. 170: 1598 1609.
22. Hahn, J.,, and D. Dubnau. Personal communication.
23. Healy, J.,, J. Weir,, I. Smith,, and R. Losick. 1991. Post-transcriptional control of a sporulation regulatory gene encoding transcription factor σ H in Bacillus subtilis. Mol. Microbiol. 5: 477 487.
24. Helmann, J. D.,, L. M. Marquez,, and M. J. Chamberlin. 1988. Cloning, sequencing, and disruption of the Bacillus subtilis σ 28 gene. J. Bacteriol. 170: 1568 1574.
25. Henner, D. J.,, E. Ferrari,, M. Perego,, and J. A. Hoch. 1988. Location of the targets of the hpr-97, sacU32(Hy), and sacQ36(Hy) mutations in upstream regions of the subtilisin promoter. J. Bacteriol. 170: 296 300.
26. Hoch, J. A.,, K. Trach,, F. Kawamura,, and H. Saito. 1985. Identification of the transcriptional suppressor sof-1 as an alteration in the Spo0A protein. J. Bacteriol. 161: 552 555.
27. Honjo, M.,, A. Nakayama,, K. Fukazawa,, K. Kawamura,, K. Ando,, M. Hori,, and Y. Furutani. 1990. A novel Bacillus subtilis gene involved in negative control of sporulation and degradative-enzyme production. J. Bacteriol. 172: 1783 1790.
28. Horinouchi, S.,, K. Furuya,, M. Nishiyama,, H. Suzuki,, and T. Beppu. 1987. Nucleotide sequence of the strepto-thricin acetyltransferase gene from Streptomyces laven-dulae and its expression in heterologous hosts. J. Bacteriol. 169: 1929 1937.
29. Kallio, P. T.,, J. E. Fagelson,, J. A. Hoch,, and M. A. Strauch. 1991. The transition state regulator Hpr of Bacillus subtilis is a DNA-binding protein. J. Biol. Chem. 266: 13411 13417.
30. Kalman, S.,, M. L. Duncan,, S. M. Thomas,, and C. W. Price. 1990. Similar organization of the sigB and spoil A operons encoding alternate sigma factors of Bacillus subtilis RNA polymerase. J. Bacteriol. 172: 5575 5585.
31. Kenney, T. J.,, K. York,, P. Youngman,, and C. P. Moran, Jr.. 1989. Genetic evidence that RNA polymerase associated with σ A factor uses a sporulation-specific promoter in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 86: 9109 9113.
32. Klier, A.,, A. Fouet,, M. Debarbouille,, F. Kunst,, and G. Rapoport. 1987. Distinct control sites located upstream from the levansucrase gene of Bacillus subtilis. Mol. Microbiol. 1: 233 241.
33. Kunst, F.,, M. Pascal,, J. Lepesant-Kejzlarova,, J. Lepe-sant,, A. Billault,, and R. Dedonder. 1974. Pleiotropic mutations affecting sporulation conditions and the synthesis of extracellular enzymes in Bacillus subtilis 168. Biochimie 56: 1481 1489.
34. Kuroda, A.,, and J. Sekiguchi. 1991. Molecular cloning and sequencing of a major Bacillus subtilis autolysin gene. J. Bacteriol. 173: 7304 7312.
35. Leighton, T. Personal communication.
36. Lepesant, J. A.,, F. Kunst,, J. Lepesant Kejzlarova,, and R. Dedonder. 1972. Chromosomal location of mutations affecting sucrose metabolism in Bacillus subtilis Marburg. Mol. Gen. Genet. 118: 135 160.
37. Lue, N.,, D. Chasman,, A. Buchman,, and R. Kornberg. 1987. Interaction of GALA and GAL80 gene regulatory proteins in vitro. Mol. Cell. Biol. 7: 3446 3451.
38. Mandal, N.,, W. Su,, R. Haber,, S. Adhya,, and H. Echols. 1990. DNA looping in cellular repression of transcription of the galactose operon. Genes Dev. 4: 410 418.
39. Mandic-Mulec, I.,, N. Gaur,, U. Bai,, and I. Smith. 1992. Sin, a stage-specific repressor of cellular differentiation. J. Bacteriol. 174: 3561 3569.
39a.. Mandic-Mulec, I.,, and I. Smith. Unpublished data.
40. Marquez, L. M.,, J. D. Helmann,, E. Ferrari,, H. M. Parker,, G. W. Ordal,, and M. J. Chamberlin. 1990. Studies of σ D -dependent functions in Bacillus subtilis. J. Bacteriol. 172: 3435 3443.
41. Martin, I.,, M. Debarbouille,, A. Klier,, and G. Rapoport. 1987. Identification of a new locus, sacV, involved in the regulation of levansucrase synthesis in Bacillus subtilis. FEMS Microbiol. Lett. 44: 39 43.
42. Michel, J. F.,, B. Cami,, and P. Schaeffer. 1968. Selection de mutants de Bacillus subtilis bloques au debut de la sporulation. II. Selection par adaptation a une nouvelle source de carbone et par viellissement de cultures sporu-lees. Ann. Inst. Pasteur (Paris) 114: 21 27.
43. Michel, J. F.,, B. Cami,, and P. Schaeffer. 1968. Selection de mutants de Bacillus subtilis bloques au debut de la sporulation. I. Mutants asporogenes pleiotropes selec-tionnees par croissance en milieu au nitrate. Ann. Inst. Pasteur (Paris) 114: 11 20.
44. Mirel, D. B.,, and M. J. Chamberlin. 1989. The Bacillus subtilis flagellin gene (hag) is transcribed by the σ 28 form of RNA polymerase. J. Bacteriol. 171: 3095 3101.
45. Msadek, T. Personal communication.
46. Msadek, T.,, F. Kunst,, D. Henner,, A. Klier,, G. Rapoport,, and R. Dedonder. 1990. Signal transduction pathway controlling synthesis of a class of degradative enzymes in Bacillus subtilis: expression of the regulatory genes and analysis of mutations in degS and degU. J. Bacteriol. 172: 824 834.
47. Msadek, T.,, F. Kunst,, A. Klier,, and G. Rapoport. 1991. DegS-DegU and ComP-ComA modulator-effector pairs control expression of the Bacillus subtilis pleiotropic regulatory gene degQ. J. Bacteriol. 173: 2366 2377.
48. Mueller, J. L.,, and A. L. Sonenshein. Personal communication.
49. Nagami, Y.,, and T. Tanaka. 1986. Molecular cloning and nucleotide sequence of a DNA fragment from Bacillus natto that enhances production of extracellular proteases and levansucrase in Bacillus subtilis. J. Bacteriol. 166: 20 28.
49a.. Nair, G.,, and I. Smith. Unpublished data.
50. Nakano, M. M.,, R. Magnuson,, A. Myers,, J. Curry,, A. D. Grossman,, and P. Zuber. 1991. srfA is an operon required for surfactin production, competence development, and efficient sporulation in Bacillus subtilis. J. Bacteriol. 173: 1770 1778.
51. Nakano, M. M.,, L. Xia,, and P. Zuber. 1991. Transcription initiation region of the srfA operon, which is controlled by the comP-comA signal transduction system in Bacillus subtilis. J. Bacteriol. 173: 5487 5493.
52. Olmedo, G.,, E. G. Ninfa,, J. Stock,, and P. Youngman. 1990. Novel mutations that alter the regulation of sporulation in Bacillus subtilis. Evidence that phosphorylation of regulatory protein Spo0A controls the initiation of sporulation. J. Mol. Biol. 215: 359 372.
53. Pang, A. S.,, S. Nathoo,, and S. Wong. 1991. Cloning and characterization of a pair of novel genes that regulate production of extracellular enzymes in Bacillus subtilis. J. Bacteriol. 173: 46 54.
54. Park, S.,, S. Wong,, L. Wang,, and R. H. Doi. 1989. Bacillus subtilis subtilisin gene (aprE) is expressed from a σ A43) promoter in vitro and in vivo. J. Bacteriol. 171: 2657 2665.
54a.. Park, S. H.,, and I. Smith. Unpublished data.
55. Pearson, W. R.,, and D. J. Lipman. 1988. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 85: 2444 2448.
56. Perego, M.,, and J. A. Hoch. 1987. Isolation and sequence of the Spo0E gene: its role in initiation of sporulation in Bacillus subtilis. Mol. Microbiol. 1: 125 132.
57. Perego, M.,, and J. A. Hoch. 1988. Sequence analysis and regulation of the hpr locus, a regulatory gene for protease production and sporulation in Bacillus subtilis. J. Bacte-riol. 170: 2560 2567.
58. Perego, M.,, J. Wong,, G. B. Spiegelman,, and J. A. Hoch. 1991. Mutational dissociation of the positive and negative regulatory properties of the Spo0A sporulation transcription factor of Bacillus subtilis. Gene 100: 207 212.
59. Predich, M.,, G. Nair,, and I. Smith. 1992. Bacillus subtilis early sporulation genes kinA, Spo0F, and Spo0A are transcribed by the RNA polymerase containing σ H. J. Bacteriol. 174: 2771 2778.
59a.. Predich, M.,, and I. Smith. Unpublished data.
60. Robertson, J. B.,, M. Gocht,, M. A. Marahiel,, and P. Zuber. 1989. AbrB, a regulator of gene expression in Bacillus, interacts with the transcription initiation regions of a sporulation gene and an antibiotic biosynthesis gene. Proc. Natl. Acad. Sci. USA 86: 8457 8461.
61. Roggiani, M.,, J. Hahn,, and D. Dubnau. 1990. Suppression of early competence mutations in Bacillus subtilis by mec mutations. J. Bacteriol. 172: 4056 4063.
62. Satola, S.,, P. A. Kirchman,, and C. P. Moran, Jr. 1991. Spo0A binds to a promoter used by σ A RNA polymerase during sporulation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 88: 4533 4537.
63. Schmidt, R.,, P. Margolis,, L. Duncan,, R. Coppolecchia,, C. P. Moran, Jr.,, and R. Losick. 1990. Control of developmental transcription factor σ F by sporulation regulatory proteins SpoIIAA and SpoIIAB in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 87: 9221 9225.
64. Sekiguchi, J.,, B. Ezaki,, K. Kodama,, and T. Akamatsu. 1988. Molecular cloning of a gene affecting the autolysin level and flagellation in Bacillus subtilis. J. Gen. Microbiol. 134: 1611 1621.
65. Sekiguchi, J.,, H. Ohsu,, A. Kuroda,, H. Moriyama,, and T. Akamatsu. 1990. Nucleotide sequences of the Bacillus subtilis flaD locus and a B. licheniformis homologue affecting the autolysin level and flagellation. J. Gen. Microbiol. 136: 1223 1230.
66. Shimotsu, H.,, and D. J. Henner. 1986. Modulation of Bacillus subtilis levansucrase gene expression by sucrose and regulation of the steady-state mRNA level by sacU and sacQ genes. J. Bacteriol. 168: 380 388.
67. Shimotsu, H.,, M. I. Kuroda,, C. Yanofsky,, and D. J. Henner. 1986. Novel form of transcription attenuation regulates expression of the Bacillus subtilis tryptophan operon. J. Bacteriol. 166: 461 471.
68. Shoji, K.,, S. Hiratsuka,, F. Kawamura,, and Y. Kobayashi. 1988. New suppressor mutation surOB of Spo0B and Spo0F mutations in Bacillus subtilis. J. Gen. Microbiol. 134: 3249 3257.
69. Sloma, A.,, D. Pawlyk,, and J. Pero,. 1988. Development of an expression and secretion system in Bacillus subtilis utilizing sacQ, p. 23 26. In A. T. Ganesan, and J. A. Hoch (ed.), Genetics and Biotechnology of Bacilli, vol. 2. Academic Press, Inc., San Diego, Calif.
69a.. Smith, I.. Unpublished data.
70. Smith, I.,, E. Dubnau,, M. Predich,, U. Bai,, and R. Rudner. 1992. Early spo gene expression in Bacillus subtilis: the role of interrelated signal transduction systems. Biochimie 74: 669 678.
71. Smith, I.,, I. Mandic-Mulec,, and N. Gaur. 1991. The role of negative control in sporulation. Res. Microbiol. 142: 831 839.
72. Steinmetz, M.,, and S. Aymerich,. 1990. The Bacillus subtilis sac-deg constellation: how and why?, p. 303 311. In M. M. Zukowski,, A. T. Ganesan,, and J. A. Hoch (ed.), Genetics and Biotechnology of Bacilli, vol. 3. Academic Press, Inc., San Diego, Calif.
73. Strauch, M.,, V. Webb,, G. Spiegelman,, and J. A. Hoch. 1990. The Spo0A protein of Bacillus subtilis is a repressor of the abrB gene. Proc. Natl. Acad. Sci. USA 87: 1801 1805.
74. Strauch, M. A.,, M. Perego,, D. Burbulys,, and J. A. Hoch. 1989. The transition state transcription regulator AbrB of Bacillus subtilis is autoregulated during vegetative growth. Mol. Microbiol. 3: 1203 1209.
75. Strauch, M. A.,, G. B. Spiegelman,, M. Perego,, W. C. Johnson,, D. Burbulys,, and J. A. Hoch. 1989. The transition state transcription regulator abrB of Bacillus subtilis is a DNA binding protein. EMBO J. 8: 1615 1621.
76. Stutzman-Engwall, K. J.,, S. L. Otten,, and C. R. Hutchinson. 1992. Regulation of secondary metabolism in Strep-tomyces spp. and overproduction of daunorubicin in Streptomyces peucetius. J. Bacteriol. 174: 144 154.
77. Takagi, M.,, H. Takada,, and T. Imanaka. 1990. Nucleotide sequence and cloning in Bacillus subtilis of the Bacillus stearothermophilus pleiotropic regulatory gene degT. J. Bacteriol. 172: 411 418.
78. Tanaka, T.,, and M. Kawata. 1988. Cloning and characterization of Bacillus subtilis iep, which has positive and negative effects on production of extracellular proteases. J. Bacteriol. 170: 3593 3600.
79. Tanaka, T.,, M. Kawata,, and K. Mukai. 1991. Altered phosphorylation of Bacillus subtilis DegU caused by single amino acid changes in DegS. J. Bacteriol. 173: 5507 5515.
80. Tanaka, T.,, M. Kawata,, M. Saitoh,, and Y. Nagami,. 1988. Enhancement of mRNA level by prtR, p. 33 37. In A. T. Ganesan, and J. A. Hoch (ed.), Genetics and Biotechnology of Bacilli, vol. 2. Academic Press, Inc., San Diego, Calif.
81. Toma, S.,, M. D. Bue,, A. Pirola,, and G. Grandi. 1986. nprRl and nprR2 regulatory regions for neutral protease expression in Bacillus subtilis. J. Bacteriol. 167: 740 743.
82. Trach, K.,, D. Burbulys,, M. Strauch,, J. Wu,, N. Dhillon,, R. Jonas,, C. Hanstein,, P. Kallio,, M. Perego,, T. Bird,, G. Spiegelman,, C. Fogher,, and J. A. Hoch. 1991. Control of the initiation of sporulation in Bacillus subtilis by a phosphorelay. Res. Microbiol. 142: 815 823.
83. Valle, F.,, and E. Ferrari,. 1989. Subtilisin: a redundantly temporally regulated gene?, p. 131 146. In I. Smith,, R. A. Slepecky,, and P. Setlow (ed.), Regulation ofProcaryotic Development. American Society for Microbiology, Washington, D.C.
84. Van Kaer, L.,, Y. Gansemans,, M. Van Montagu,, and P. Dhaese. 1988. Interaction of the Bacillus subtilis phage ρ105 repressor with operator DNA: a genetic analysis. EMBO J. 7: 859 866.
85. Wang, L.,, and R. H. Doi. 1990. Complex character of senS, a novel gene regulating expression of extracellular-protein genes of Bacillus subtilis. J. Bacteriol. 172: 1939 1947.
86. Wang, L.,, and R. H. Doi,. 1990. senS, a novel regulatory gene with complex structure and partial homology to sigma factors of Bacillus subtilis, p. 385 391. In M. M. Zukowski,, A. T. Ganesan,, and J. A. Hoch (ed.), Genetics and Biotechnology of Bacilli, vol. 3. Academic Press, Inc., San Diego, Calif.
87. Weinrauch, Y.,, R. Penchev,, E. Dubnau,, I. Smith,, and D. Dubnau. 1990. A Bacillus subtilis regulatory gene product for genetic competence and sporulation resembles sensor protein members of the bacterial two-component signal-transduction systems. Genes Dev. 4: 860 872.
88. Weir, J.,, M. Predich,, E. Dubnau,, G. Nair,, and I. Smith. 1991. Regulation of Spo0H, a gene coding for the Bacillus subtilis σ H factor. J. Bacteriol. 173: 521 529.
89. Wong, S. L.,, L. F. Wang,, and R. H. Doi. 1988. Cloning and nucleotide sequence of senN, a novel Bacillus natto (B. subtilis) gene that regulates expression of extracellular protein genes. J. Gen. Microbiol. 134: 3264 3276.
89a.. Worman, D.,, M. Marahiel,, M. Predich,, and I. Smith. Unpublished data.
90. Yang, M. ( E. Ferrari, E. Chen, and D. J. Henner. 1986. Identification of the pleiotropic sacQ gene of Bacillus subtilis. J. Bacteriol. 166: 113 119.
91. Yang, M.,, H. Shimotsu,, E. Ferrari,, and D. J. Henner. 1987. Characterization and mapping of the Bacillus subtilis prtR gene. J. Bacteriol. 169: 434 437.
92. York, K.,, T. J. Kenney,, S. Satola,, C. P. Moran, Jr.,, H. Poth,, and P. Youngman. 1992. Spo0A controls the «/-dependent activation of Bacillus subtilis sporulation-specific transcription unit spoIIE. J. Bacteriol. 174: 2648 2658.
93. Yoshikawa, A.,, S. Isono,, A. Sheback,, and K. Isono. 1987. Cloning and nucleotide sequencing of the genes ritnl and rimJ which encode enzymes acetylating ribosomal proteins S18 and S5 of Escherichia coli K12. Mol. Gen. Genet. 209: 481 488.
94. Zuber, P.,, and R. Losick. 1987. Role of abrB in Spo0A-and Spo0B-dependent utilization of a sporulation promoter in Bacillus subtilis. J. Bacteriol. 169: 2223 2230.
95. Zuber, P.,, M. Marahiel,, and J. Robertson,. 1988. Influence of abrB on the transcription of the sporulation-associ-ated genes spoVG and Spo0H in Bacillus subtilis, p. 123 127. In A. T. Ganesan, and J. A. Hoch (ed.), Genetics and Biotechnology of Bacilli, vol. 2. Academic Press, Inc., New York.1992

Tables

Generic image for table
Table 1

Properties of proteins affecting late-growth development and regulation of their genes

Citation: Smith I. 1993. Regulatory Proteins That Control Late-Growth Development, p 785-800. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch54

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error