1887

Chapter 57 : Temperate Bacteriophages

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Temperate Bacteriophages, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap57-1.gif /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap57-2.gif

Abstract:

is susceptible to a variety of bacteriophages, both virulent (lytic) and temperate (capable of forming lysogens). Mutations in the operator or in the repressor sequence alter binding in ways that agree with evidence that the repressor interacts with the canonical operator sequence with specific amino acid-nucleotide interactions. An unusual incompatibility phenomenon involving prophage SPO2 and the plasmid pC194, which is often used in , has been described in this chapter. The amino acid sequence of the SPO2 DNA polymerase has some similarity to those of the carboxyl ends of DNA polymerase I and coliphage T7 DNA polymerase in the region that is believed to encode the DNA-binding domain and to various other motifs in the Klenow fragment of DNA polymerase I and other polymerases. Genes for thymidylate synthetase have been cloned from ø3T (gene thyP3) and from p11 (gene thyP11). The cloned genes carry their own promoters and are expressed in and . The particular cytidylic acids affected differ from phage to phage and lie within the sequences corresponding to one or another restriction endonuclease target. Sequence comparisons of multispecific DNA methyltransferases are being studied to shed light on the evolution of these enzymes. The widespread distribution of group V defective prophages in strains of has led to speculation that the prophages may carry out some essential function in the lives of the bacteria.

Citation: Zahler S. 1993. Temperate Bacteriophages, p 831-842. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch57

Key Concept Ranking

DNA Polymerase I
0.5211039
DNA Polymerase III
0.48850107
0.5211039
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

.105 operator region. The six known sites to which the 105 repressor binds are indicated by dark bars. The Pand P promoters, the gene that encodes the repressor protein (c ), and the first gene of the late operon () are shown. The direction of each operator sequence is indicated by short arrows beneath the bars. See reference for further details.

Citation: Zahler S. 1993. Temperate Bacteriophages, p 831-842. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch57
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818388.chap57
1. Anderson, L. M.,, and K. F. Bott. 1985. DNA packaging by the Bacillus subtilis defective bacteriophage PBSX. J. Virol. 54: 773 780.
2. Anderson, L. M.,, H. E. Ruley,, and K. F. Bott. 1982. Isolation of an autonomously replicating DNA fragment from the region of defective bacteriophage PBSX of Bacillus subtilis. J. Bacteriol. 150: 1280 1286.
3. Armentrout, R. W.,, and L. Rutberg. 1970. Mapping of prophage and mature deoxyribonucleic acid from temperate Bacillus bacteriophage ø105 by marker rescue. J. Virol. 6: 760 767.
4. Armentrout, R. W.,, and L. Rutberg. 1971. Heat induction of ø105 in Bacillus subtilis: replication of the bacterial and bacteriophage genomes. J. Virol. 8: 455 468.
5. Arwert, F.,, and L. Rutberg. 1974. Restriction and modification in Bacillus subtilis. Induction of a modifying activity in Bacillus subtilis 168. Mol. Gen. Genet. 133: 175 177.
6. Balganesh, T. S.,, L. Reiners,, R. Lauster,, M. Noyer-Weidner,, K. Wilke,, and T. A. Trautner. 1987. Construction and use of chimeric SPR/ ø3T DNA methyltransferases in the definition of sequence recognizing enzyme regions. EMBO J. 6: 3543 3549.
7. Behrens, B.,, M. Noyer-Weidner,, B. Pawlek,, R. Lauster,, T. S. Balganesh,, and T. A. Trautner. 1987. Organization of multispecific DNA methyltransferases encoded by temperate Bacillus subtilis phages. EMBO J. 6: 1137 1142.
8. Birdsell, D. C.,, G. M. Hathaway,, and L. Rutberg. 1969. Characterization of temperate Bacillus bacteriophage ø105. J. Virol. 4: 264 270.
9. Boice, L.,, F. A. Eiserling,, and W. R. Romig. 1969. Structure of Bacillus subtilis phage SPO2 and its DNA: similarity of Bacillus subtilis phages SPO2, ø105 and SPP1. Biochem. Biophys. Res. Commun. 34: 398 403.
10. Boice, L. B. 1969. Evidence that Bacillus subtilis bacteriophage SPO2 is temperate and heteroimmune to bacteriophage ø105. J. Virol. 4: 47 49.
11. Bron, S.,, and K. Murray. 1975. Restriction and modification in B. subtilis. Nucleotide sequence recognized by restriction endonuclease R. BsuR from strain R. Mol. Gen. Genet. 143: 25 33.
12. Bron, S.,, K. Murray,, and T. A. Trautner. 1975. Restriction and modification in B. subtilis. Purification and general properties of a restriction endonuclease from strain R. Mol. Gen. Genet. 143: 13 23.
13. Bugaichuk, U. D.,, M. Deadman,, J. Errington,, and D. Sawa. 1984. Restriction enzyme analysis of Bacillus subtilis bacteriophage ø105 DNA. J. Gen. Microbiol. 130: 2165 2167.
14. Buxton, R. S. 1976. Prophage mutation causing heat inducibility of defective Bacillus subtilis bacteriophage PBSX J. Virol. 20: 22 28.
15. Buxton, R. S. 1980. Selection of Bacillus subtilis 168 mutants with deletions of the PBSX prophage. J. Gen. Virol. 46: 427 437.
16. Chow, L. T.,, L. Boice,, and N. Davidson. 1972. Map of the partial sequence homology between DNA molecules of Bacillus subtilis bacteriophages SPO2 and ø105. J. Mol. Biol. 68: 391 400.
17. Chow, L. T.,, and N. Davidson. 1973. Electron microscope study of the structures of the Bacillus subtilis prophages SPO2 and ø105. J. Mol. Biol. 75: 257 264.
18. Connaughton, J. F.,, W. D. Kaloss,, P. G. Vanek,, G. A. Nardone,, and J. G. Chirikjian. 1990. The complete sequence of the Bacillus amyloliquefaciens proviral H2, BamHI methylase gene. Nucleic Acids Res. 18: 4002.
19. Court, D.,, and A. B. Oppenheim,. 1983. Phage lambda's accessory genes, p. 251 277. In R. W. Hendrix,, J. W. Roberts,, F. W. Stahl,, and R. A. Weisberg (ed.), Lambda II. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
20. Cregg, J. M.,, and J. Ito. 1979. A physical map of the genome of temperate phage ø3T. Gene 6: 199 219.
21. Cregg, J. M.,, A. H. Nguyen,, and J. Ito. 1980. DNA modification induced during infection of Bacillus subtilis by phage ø3T. Gene 12: 17 24.
22. Cully, D. F.,, and A. J. Garro. 1980. Expression of superinfection immunity to bacteriophage ø105 by Bacillus subtilis cells carrying a plasmid chimera of pUBHO and £coRI fragment F of ø105 DNA. J. Virol. 34: 789 791.
23. Cully, D. F.,, and A. J. Garro. 1985. Nucleotide sequence of the immunity region of Bacillus subtilis bacteriophage ø105: identification of the repressor gene and its mRNA and protein products. Gene 38: 153 164.
24. Dean, D. H.,, M. Arnaud,, and H. O. Halvorson. 1976. Genetic evidence that Bacillus bacteriophage ø105 integrates by insertion. J. Virol. 20: 339 341.
25. Dean, D. H.,, C. L. Fort,, and J. A. Hoch. 1978. Characterization of temperate phages of Bacillus subtilis. Curr. Microbiol. 1: 213 217.
26. Dean, D. H.,, J. C. Orrego,, K. W. Hutchison,, and H. O. Halvorson. 1976. New temperate bacteriophage for Bacillus subtilis, ��11. J. Virol. 20: 509 519.
27. Delarue, M.,, O. Poch,, N. Tordo,, D. Moras,, and P. Argos. 1990. An attempt to unify the structure of polymerases. Protein Eng. 3: 461 467.
28. Dhaese, P.,, M.-R. Dobbelaere,, and M. Van Montagu. 1985. The temperate B. subtilis phage ø105 genome contains at least two distinct regions encoding superinfection immunity. Mol. Gen. Genet. 200: 490 492.
29. Dhaese, P.,, C. Hussey,, and M. Van Montagu. 1984. Thermoinducible gene expression in Bacillus subtilis using transcriptional regulatory elements from temperate phage ø105. Gene 32: 181 194.
30. Dhaese, P.,, J. Seurinch,, B. De Smet,, and M. Van Montagu. 1985. Nucleotide sequence and mutational analysis of an immunity repressor gene from Bacillus subtilis temperate phage ø105. Nucleic Acids Res. 13: 5441 5455.
31. Dhaese, P.,, L. Van Kaer,, R. De Clercq,, and M. Van Montagu. 1988. The Bacillus subtilis phage ø105 repressor-operator interaction: mutational analysis and in vitro binding studies. J. Cell. Biochem. Suppl. 12D: 132.
32. Duncan, C. H.,, G. A. Wilson,, and F. E. Young. 1977. Transformation of Bacillus subtilis and Escherichia coli by a hybrid plasmid pCDl. Gene 1: 153 167.
33. Duncan, C. H.,, G. A. Wilson,, and F. E. Young. 1978. Mechanism of integrating foreign DNA during transformation of Bacillus subtilis. Proc. Natl. Acad. Sci. USA 75: 3664 3668.
34. Ehrlich, S. D.,, I. Bursztyn-Pettegrew,, I. Stroynowski,, and J. Lederberg. 1976. Expression of the thymidylate synthetase gene of the Bacillus subtilis bacteriophage ø3T in Escherichia coli. Proc. Natl. Acad. Sci. USA 73: 4145 4149.
35. Eiserling, F. A. 1964. Ph.D. thesis. University of California, Los Angeles.
36. Ellis, D. M.,, and D. H. Dean. 1985. Nucleotide sequence of the cohesive single-stranded ends of Bacillus subtilis temperate bacteriophage ø105. J. Virol. 55: 513 515.
37. Errlngton, J.,, and N. Pughe. 1987. Upper limit for DNA packaging by Bacillus subtilis bacteriophage ø105: isolation of phage deletion mutants by induction of oversized prophages. Mol. Gen. Genet. 210: 347 351.
38. Estrela, A. I.,, H. de Lencastre,, and L. J. Archer. 1986. Resistance of a Bacillus subtilis mutant to a group of temperate bacteriophages. J. Gen. Microbiol. 132: 411 415.
38a.. Estrela, A.-I.,, H. M. Pooley,, H. de Lencastre,, and D. Karamata. 1991. Genetic and biochemical characterization of Bacillus subtilis 168 mutants specifically blocked in the synthesis of the teichoic acid poly(3-O- β-D-glucopyranosyl- N-acetylgalactosamine 1 -phosphate): gneA, a new locus, is associated with UDP- N-acetylglucosamine 4-epimerase activity. J. Gen. Microbiol. 137: 943 950.
39. Fernandes, R. M.,, H. de Lencastre,, and L. J. Archer. 1983. Two newly isolated temperate phages of Bacillus subtilis. Broteria-Genet. 4(79): 27 33.
40. Fernandes, R. M.,, H. de Lencastre,, and L. J. Archer. 1986. Three new temperate phages of Bacillus subtilis. J. Gen. Microbiol. 132: 661 668.
41. Fernandes, R. M.,, H. de Lencastre,, and L. J. Archer. 1989. Specialized transduction in Bacillus subtilis by the phages IG1, IG3 and IG4. Arch. Virol. 105: 137 140.
4la.. Fernandes, R. M.,, H. de Lencastre,, and L. J. Archer. 1990. Action of 6-(p-hydroxyphenyIazo)-uracil on bacteriophage IG1. Arch. Virol. 113: 177 182.
42. Fink, P. S.,, R. Z. Korman,, J. M. Odebralski,, and S. A Zahler. 1981. Bacillus subtilis bacteriophage SP βc1 is a deletion mutant of SP β. Mol. Gen. Genet. 182: 514 515.
43. Fink, P. S.,, and S. A. Zahler. 1982. Restriction fragment maps of the genome of Bacillus subtilis bacteriophage SP β. Gene 19: 235 238.
44. Fink, P. S.,, and S. A. Zahler. 1982. Specialized transduction of the ilvD- thyB- ilvA region mediated by Bacillus subtilis bacteriophage SP β. J. Bacteriol. 150: 1274 1279.
45. Fink, P. S.,, and S. A. Zahler. 1983. SP βc2pi7vA: plaque-forming bacteriophages that transduce the Bacillus subtilis ilvA gene, abstr. H32, p. 111. Abstr. Annu. Meet. Am. Soc. Microbiol. 1983.
46. Freeman, A. G.,, K. M. Schwelkart,, and L. L. Larcom. 1987. Effect of UV irradiation on the Bacillus subtilis phages SPO2, SPP1 and ø129 and their DNA. Mutat. Res. 184: 187 196.
47. Gardner, A.,, J. Odebralski,, S. Zahler,, R. Z. Korman,, and A. I. Aronson. 1982. Glutamine synthetase subunit mixing and regulation in Bacillus subtilis partial diploids. J. Bacteriol. 149: 378 380.
48. Graham, R. S.,, F. E. Young,, and G. A. Wilson. 1977. Effect of site-specific endonuclease digestion on the thyP3 gene of bacteriophage ø3T and the thyP11 gene of bacteriophage ��11 . Gene 1: 169 180.
49. Graham, S.,, S. Sutton,, Y. Yoneda,, and F. E. Young. 1982. Correlation of the genetic map and the endonuclease site map of Bacillus subtilis bacteriophage SPO2. J. Virol. 42: 131 134.
50. Graham, S.,, Y. Yoneda,, and F. E. Young. 1979. Isolation and characterization of viable deletion mutants of Bacillus subtilis bacteriophage SPO2 . Gene 7: 69 77.
51. Greer, H. 1975. The kil gene of bacteriophage lambda. Virology 66: 589 604.
52. Gflnthert, U.,, R. Lauster,, and L. Reiners. 1986. Multi-specific DNA methyltransferases from Bacillus subtilis phages: properties of wild-type and various mutant enzymes with altered DNA affinity. Eur. J. Biochem. 159: 485 492.
53. Gunthert, U.,, B. Pawlek,, J. Stutz,, and T. A. Trautner. 1976. Restriction and modification in Bacillus subtilis: inducibility of a DNA methylating activity in non-modifying cells. J. Virol. 20: 188 195.
54. Gunthert, U.,, L. Reiners,, and R. Lauster. 1986. Cloning and expression of Bacillus subtilis phage DNA methyltransferase genes in Escherichia coli and B. subtilis. Gene 41: 261 270.
55. Gussin, G. N.,, A. D. Johnson,, C. O. Pabo,, and R. T. Sauer,. 1983. Repressor and Cro protein: structure, function, and role in lysogenization, p. 93 121. In R. W. Hendrix,, J. W. Roberts,, F. W. Stahl,, and R. A. Weisberg (ed.), Lambda II. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
56. Haas, M.,, and H. Yoshikawa. 1969. Defective bacteriophage PBS H in Bacillus subtilis. I. Induction, purification, and physical properties of the bacteriophage and its deoxyribonucleic acid. J. Virol. 3: 248 260.
57. Haas, M.,, and H. Yoshikawa. 1969. Defective bacteriophage PBSH in Bacillus subtilis. II. Intracellular development of the induced prophage. J. Virol. 3: 248 260.
58. Hemphill, H. E.,, I. Gage,, S. A. Zahler,, and R. Z. Korman. 1980. Prophage-mediated production of a bacteriocin-like substance by SP β lysogens of Bacillus subtilis. Can. J. Microbiol. 26: 1328 1333.
59. Hemphill, H. E.,, and H. R. Whiteley. 1975. Bacteriophages of Bacillus subtilis. Bacteriol. Rev. 39: 257 315.
60. Imae, Y.,, and T. Fukasawa. 1970. Regional replication of the bacterial chromosome by derepression of prophage lambda. J. Mol. Biol. 54: 585 597.
61. Inselburg, J. W.,, T. Eremenko-Volpe,, L. Greenwald,, W. L. Meadow,, and J. Marmur. 1969. Physical and genetic mapping of the SPO2 prophage on the chromosome of Bacillus subtilis. J. Virol. 3: 627 628.
62. Ionesco, H.,, A. Ryter,, and P. Schaeffer. 1964. Sur un bacteriophage heberge par la souche Marburg de Bacillus subtilis. Ann. Inst. Pasteur 107: 764 776.
63. Iwabe, N.,, K. I. Kuma,, and T. Miyata. 1989. Sequence similarity of bacteriophage SPO2 DNA polymerase with Escherichia coli polymerase I. Nucleic Acids Res. 17: 8866.
64. Kawamura, F.,, H. Saito,, Y. Ikeda,, and J. Ito. 1979. Viable deletion mutants of Bacillus subtilis phage ��11 . J. Gen. Appl. Microbiol. 25: 223 226.
65. Kenny, E.,, T. Atkinson,, and B. S. Hartley. 1985. Nucleotide sequence of the thymidylate synthetase gene ( thyP3) from the Bacillus subtilis phage ø3T. Gene 34: 335 342.
66. Lange, C.,, A. Jugel,, J. Walter,, M. Noyer-Weldner,, and T. A. Trautner. 1991. 'Pseudo' domains in phage-encoded DNA methyltransferases. Nature (London) 352: 645 648.
67. Lange, C.,, M. Noyer-Weldner,, T. A. Trautner,, M. Welner,, and S. A. Zahler. 1991. M.H2I, a multispecific 5C-DNA methyltransferase encoded by Bacillus amyloliquefaciens phage H2. Gene 100: 213 218.
68. Lauster, R. 1989. Evolution of type II DNA methyltransferases: a gene duplication model. J. Mol. Biol. 206: 313 329.
69. Lauster, R.,, T. A. Trautner,, and M. Noyer-Weldner. 1989. Cytosine-specific type II DNA methyltransferases: a conserved enzyme core with variable target-recognizing domains. J. Mol. Biol. 206: 305 312.
70. Lipsky, R. H.,, R. Rosenthal,, and S. A. Zahler. 1981. Defective specialized SP β transducing bacteriophages of Bacillus subtilis that carry the sup-3 or sup-44 gene. J. Bacteriol. 148: 1012 1015.
71. Mackey, C. J.,, and S. A. Zahler. 1982. Insertion of bacteriophage SP β into the citF gene of Bacillus subtilis, and specialized transduction of the ilvBC- leu genes. J. Bacteriol. 151: 1222 1229.
72. Marrero, R.,, F. A. Chiafari,, and P. S. Lovett. 1981. High-frequency elimination of SPO2 prophage from Bacillus subtilis by plasmid transformation. J. Virol. 39: 318 320.
73. Marrero, R.,, and P. S. Lovett. 1982. Interference of plasmid pCM194 with lysogeny of bacteriophage SPO2 in Bacillus subtilis. J. Bacteriol. 152: 284 290.
74. Marrero, R.,, and R. E. Yasbin. 1988. Cloning of the Bacillus subtilis recE + gene and functional expression of recE + in B. subtilis. J. Bacteriol. 170: 335 344.
75. Mauel, C.,, and D. Karamata. 1984. Characterization of proteins induced by mitomycin C treatment of Bacillus subtilis. J. Virol. 49: 806 812.
76. McLaughlin, J. R.,, H. C. Wong,, Y. E. Ting,, J. N. Van Arsdell,, and S. Chang. 1986. Control of lysogeny and immunity of Bacillus subtilis temperate bacteriophage SP β by its D gene. J. Bacteriol. 167: 952 959.
77. Mele, J. 1972. Biological characterization and prophage mapping of a Iysogenizing bacteriophage for Bacillus subtilis. Ph.D. thesis. University of Massachusetts, Amherst.
78. Neuhard, J.,, A. R. Price,, L. Schack,, and E. Thomassen. 1978. Two thymidylate synthetases in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 75: 1194 1198.
79. Noyer-Weldner, M.,, S. Jentsch,, B. Pawlek,, U. Günthert,, and T. A. Trautner. 1983. Restriction and modification in Bacillus subtilis: DNA methylation potential of the related bacteriophages Z, SPR, SP β, ϕ3T, and ρ11. J. Virol. 46: 446 453.
80. Odebralskl, J. M.,, and S. A. Zahler. 1982. Specialized transduction of the kauA and citK genes of Bacillus subtilis by bacteriophage ø3T, abstr. H 101, p. 130. Abstr. Annu. Meet. Am. Soc. Microbiol. 1982.
81. Okamoto, K.,, J. A. Mudd,, J. Mangan,, W. M. Huang,, T. V. Subbaiah,, and J. Marmur. 1968. Properties of the defective phage of Bacillus subtilis. J. Mol. Biol. 34: 413 428.
82. Okamoto, K.,, J. A. Mudd,, and J. Marmur. 1968. Conversion of Bacillus subtilis DNA to phage DNA following mitomycin C induction. J. Mol. Biol. 34: 429 437.
83. Osburne, M. S.,, R. J. Craig,, and D. M. Rothstein. 1985. Thermoinducible transcription system for Bacillus subtilis that uses control elements from temperate phage ø105. J. Bacteriol. 163: 1101 1108.
84. Osburne, M. S.,, and A. L. Sonenshein. 1980. Inhibition by lipiarmycin of bacteriophage growth in Bacillus subtilis. J. Virol. 33: 945 953.
85. Parker, A. P.,, and D. H. Dean. 1986. Temperate Bacillus bacteriophage SP16 genome is circularly permuted and terminally redundant. J. Bacteriol. 167: 719 721.
86. Peterson, A. M.,, and L. Rutberg. 1969. Linked transformation of bacterial and prophage markers in Bacillus subtilis 168 lysogenic for bacteriophage ø105. J. Bacteriol. 98: 874 877.
87. Piggot, P. J.,, M. Amjad,, J.-J. Wu,, H. Sandoval,, and J. Castro,. 1990. Genetic and physical maps of Bacillus subtilis 168, p. 493 540. In C. R. Harwood, and S. M. Cutting (ed.), Molecular Biology Methods for Bacillus. John Wiley & Sons, Inc., Chichester, United Kingdom.
88. Ptashne, M. 1986. A genetic switch: gene control and phage A. Blackwell Scientific Publications, Palo Alto, Calif.
89. Raden, B.,, and L. Rutberg. 1984. Nucleotide sequence of the temperate Bacillus subtilis bacteriophage SPO2 DNA polymerase gene L. J. Virol. 52: 9 15.
90. Rettenmeier, C. W.,, B. Gingell,, and H. E. Hemphill. 1979. The role of temperate bacteriophage SP β in prophage-mediated interference in Bacillus subtilis. Can. J. Microbiol. 25: 1345 1351.
91. Romig, W. R. 1968. Infectivity of Bacillus subtilis bacteriophage deoxyribonucleic acids extracted from mature particles and from lysogenic hosts. Bacteriol. Rev. 32: 349 357.
92. Rosenthal, R.,, P. A. Toye,, R. Z. Korman,, and S. A. Zahler. 1979. The prophage of SP βc2dcitK 1 a defective specialized transducing phage of Bacillus subtilis. Genetics 92: 721 739.
93. Rowe, D., B., T. P. Iismaa,, and R. G. Wake. 1986. Nonrandom cosmid cloning and prophage SP β homology near the replication terminus of the Bacillus subtilis chromosome. J. Bacteriol. 167: 379 382.
94. Rudinski, M. S.,, and D. H. Dean. 1978. Evolutionary considerations of related B. subtilis temperate phages ø105, ��14, ��l0 and ��6 as revealed by heteroduplex analysis. Virology 99: 57 65.
95. Rutberg, L. 1969. Mapping of a temperate bacteriophage active on Bacillus subtilis. J. Virol. 3: 38 44.
96. Rutberg, L. 1973. Heat induction of prophage ø105 in Bacillus subtilis: bacteriophage-induced bidirectional replication of the bacterial chromosome. J. Virol. 12: 9 12.
97. Rutberg, L., 1982. Temperate bacteriophages of Bacillus subtilis, p. 247 268. In D. A. Dubnau (ed.), Molecular Biology of the Bacilli. Academic Press, Inc., New York.
98. Rutberg, L.,, R. W. Armentrout,, and J. Jonasson. 1972. Unrelatedness of temperate Bacillus subtilis bacteriophages SPO2 and ø105. J. Virol. 9: 732 737.
99. Rutberg, L.,, B. Raden,, and J.-I. Flock. 1981. Cloning and expression of bacteriophage SPO2 DNA polymerase gene L in Bacillus subtilis, using the Staphylococcus aureus plasmid pC194. J. Virol. 39: 407 412.
100. Salas, M., 1988. Phages with protein attached to the DNA ends, p. 169 191. In R. Calendar (ed.). The Bacteriophages, vol. 1. Plenum Press, New York.
101. Sargent, M. G.,, S. Davles,, and M. F. Bennett. 1985. Potentiation of a nucleolytic activity in Bacillus subtilis. J. Gen. Microbiol. 131: 2795 2804.
102. Seaman, E.,, E. Tarmy,, and J. Marmur. 1964. Inducible phages of Bacillus subtilis. Biochemistry 3: 607 613.
103. Shapiro, J. M.,, D. H. Dean,, and H. O. Halvorson. 1974. Low-frequency specialized transduction with Bacillus subtilis bacteriophage ø105. Virology 62: 393 403.
104. Siegel, E. C.,, and J. Marmur. 1969. Temperature-sensitive induction of bacteriophage in Bacillus subtilis 168. J. Virol. 4: 610 618.
105. Smith, I.,, and H. Smith. 1973. Location of the SPO2 attachment site and the bryamycin resistance marker on the Bacillus subtilis chromosome. J. Bacteriol. 114: 1138 1142.
106. Spancake, G. A.,, S. D. Dalgnault,, and H. E. Hemphill. 1987. Genome homology and divergence in the SP β-related bacteriophages of Bacillus subtilis. Can. J. Microbiol. 33: 249 255.
107. Spancake, G. A.,, and H. E. Hemphill. 1985. Deletion mutants of Bacillus subtilis bacteriophage SP β. J. Virol. 55: 39 44.
108. Spancake, G. A.,, H. E. Hemphill,, and P. S. Fink. 1984. Genome organization of SP β c2 bacteriophage carrying the thyP3 gene. J. Bacteriol. 157: 428 434.
109. Steensma, H. Y. 1981. Adsorption of defective phage PBSZ1 to Bacillus subtilis 168 Wt. J. Gen. Virol. 52: 93 101.
110. Steensma, H. Y. 1981. Effect of defective phages on the cell membrane of Bacillus subtilis and partial characterization of a phage protein involved in killing. J. Gen. Virol. 56: 275 286.
111. Steensma, H. Y.,, L. A. Robertson,, and J. D. van Elsas. 1978. The occurrence and taxonomic value of PBS X-like defective phages in the genus Bacillus. Antonie van Leeuwenhoek 44: 353 366.
112. Stewart, C., 1988. Bacteriophage SPOl, p. 477 515. In R. Calendar (ed.). The Bacteriophages, vol. 1. Plenum Press, New York.
113. Stickler, D. J.,, R. G. Tucker,, and D. Day. 1965. Bacteriophage-like particles released from Bacillus subtilis after induction with hydrogen peroxide. Virology 26: 142 145.
114. Stroynowskl, I. T. 1981. Distribution of bacteriophage ø3T homologous deoxyribonucleic acid sequences in Bacillus subtilis 168, related bacteriophages, and other Bacillus species. J. Bacteriol. 148: 91 100.
115. Stroynowskl, I. T. 1981. Integration of the bacteriophage 03T-coded thymidylate synthetase gene into the Bacillus subtilis chromosome. J. Bacteriol. 148: 101 108.
116. Terschueren, P. A.,, M. Noyer-Weidner,, and T. A. Trautner. 1987. Recombinant derivatives of Bacillus subtilis phage Z containing the DNA methyltransferase genes of related methylation-proficient phages. J. Gen. Microbiol. 133: 945 952.
117. Thome, C. B.,, and J. Mele. 1974. Prophage interference in Bacillus subtilis 168. Microb. Genet. Bull. 36: 27 29.
118. Thurm, P.,, and A. J. Garro. 1975. Bacteriophage-specific protein synthesis during induction of the defective Bacillus subtilis bacteriophage PBSX. J. Virol. 16: 179 183.
119. Thurm, P.,, and A. J. Garro. 1975. Isolation and characterization of prophage mutants of the defective Bacillus subtilis bacteriophage PBSX. J. Virol. 16: 184 191.
120. Tran-Betcke, A.,, B. Behrens,, M. Noyer-Weidner,, and T. A. Trautner. 1986. DNA methyltransferase genes of Bacillus subtilis phages: comparison of their nucleotide sequences. Gene 42: 89 96.
121. Trautner, T. A.,, T. S. Balganesh,, and B. Pawlek. 1988. Chimeric multispecific DNA methyltransferases with novel combinations of target recognition. Nucleic Acids Res. 16: 6649 6658.
122. Trautner, T. A.,, T. S. Balganesh,, K. Wilke,, M. Noyer-Weidner,, E. Rauhut,, R. Lauster,, B. Behrens,, and B. Pawlek. 1988. Organization of target-recognizing domains in the multispecific DNA (cytosine-5) methyltransferases of Bacillus subtilis phages SPR and ø3T. Gene 74: 267.
123. Trautner, T. A.,, B. Pawlek,, U. Gunthert,, U. Canosi,, S. Jentsch,, and M. Freund. 1980. Restriction and modification in Bacillus subtilis: identification of a gene in the temperate phage SP β coding for a BsuR specific modification methyltransferase. Mol. Gen. Genet. 180: 361 367.
124. Tucker, R. G. 1969. Acquisition of thymydylate synthetase activity by a thymine-requiring mutant of Bacillus subtilis following infection by the temperate phage ø3. J. Gen. Virol. 4: 489 504.
125. Van Kaer, L.,, Y. Gansemans,, M. Van Montagu,, and P. Dhaese. 1988. Interaction of the Bacillus subtilis phage ø105 repressor with operator DNA: a genetic analysis. EMBO J. 7: 859 866.
126. Van Kaer, L.,, M. Van Montagu,, and P. Dhaese. 1987. Transcriptional control in the EcoRI-F immunity region of Bacillus subtilis phage ø105: identification and unusual structure of the operator. J. Mol. Biol. 197: 55 67.
127. Van Kaer, L.,, M. Van Montagu,, and P. Dhaese. 1989. Purification and in vitro DNA-binding specificity of the Bacillus subtilis phage ø105 repressor. J. Biol. Chem. 264: 14784 14791.
128. Walter, J.,, M. Noyer-Weidner,, and T. A. Trautner. 1990. The amino acid sequence of the CCGG recognizing DNA methyltransferase M.BsuFI: implications for the analysis of sequence recognition by cytosine DNA methyltransferases. EMBO J. 9: 1007 1013.
129. Warner, F. D.,, G. A. Kitos,, M. P. Romano,, and H. E. Hemphill. 1977. Characterization of SP β: a temperate bacteriophage from Bacillus subtilis 168M. Can. J. Microbiol. 23: 45 51.
130. Weiner, M. P. 1986. Characterization of phage H2. Ph.D. thesis. Cornell University, Ithaca, N.Y.
131. Weiner, M. P.,, and S. A. Zahler. 1988. Genome homology and host range of some SP β-related bacteriophages of Bacillus subtilis and Bacillus amyloliquefaciens. J. Gen. Virol. 69: 1307 1316.
132. Weiss, A. S.,, M. T. Smith,, T. P. Iismaa,, and R. G. Wake. 1983. Cloning DNA from the replication terminus region of the Bacillus subtilis chromosome. Gene 24: 83 91.
133. Wilke, K.,, E. Rauhut,, M. Noyer-Weidner,, R. Lauster,, B. Pawlek,, B. Behrens,, and T. A. Trautner. 1988. Sequential order of target-recognizing domains in multispecific DNA-methyltransferases. EMBO J. 7: 2601 2610.
134. Williams, M. T.,, and F. E. Young. 1977. Temperate Bacillus subtilis bacteriophage 03T: chromosomal attachment site and comparison with temperate bacteriophages ø105 and SPO2. J. Virol. 21: 522 529.
135. Wilson, G. A.,, M. T. Williams,, H. W. Baney,, and F. E. Young. 1974. Characterization of temperate bacteriophages of Bacillus subtilis by the restriction endonuclease EcoRI: evidence for three different temperate bacteriophages. J. Virol. 14: 1013 1016.
136. Wood, H. E.,, M. T. Dawson,, K. M. Devine,, and D. J. McConnell. 1990. Characterization of PBSX, a defective prophage of Bacillus subtilis. J. Bacteriol. 172: 2667 2674.
137. Wood, H. E.,, K. M. Devine,, and D. J. McConnell. 1990. Characterization of a repressor gene ( xre) and a temperature-sensitive allele from the Bacillus subtilis prophage PBSX. Gene 96: 83 88.
138. Wulff, D. L.,, and M. Rosenberg,. 1983. Establishment of repressor synthesis, p. 53 73. In R. W. Hendrix,, J. W. Roberts,, F. W. Stahl,, and R. A. Weisberg (ed.), Lambda II. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
139. Yarmolinsky, M. B.,, and N. Sternberg,. 1988. Bacteriophage P1, p. 291 438. In R. Calendar (ed.). The Bacteriophages, vol. 1. Plenum Press, New York.
140. Yasbln, R. E.,, P. I. Fields,, and B. J. Andersen. 1980. Properties of Bacillus subtilis 168 derivatives freed of their natural prophage. Gene 12: 155 159.
141. Yasbin, R. E.,, V. C. Maino,, and F. E. Young. 1976. Bacteriophage resistance in Bacillus subtilis 168, W23 and interstrain transformants. J. Bacteriol. 125: 1120 1126.
142. Yasbin, R. E.,, G. A. Wilson,, and F. E. Young. 1973. Transformation and transfection in lysogenic strains of Bacillus subtilis 168. J. Bacteriol. 113: 540 548.
143. Yasbin, R. E.,, G. A. Wilson,, and F. E. Young. 1975. Transformation and transfection in lysogenic strains of Bacillus subtilis: evidence for selective induction of prophage in competent cells. J. Bacteriol. 121: 296 304.
144. Yasbin, R. E.,, G. A. Wilson,, and F. E. Young. 1975. Effect of lysogeny on transfection and transfection enhancement in Bacillus subtilis. J. Bacteriol. 121: 305 312.
145. Yasbin, R. E.,, and F. E. Young. 1972. The influence of temperate bacteriophage ø105 on transformation and transfection in Bacillus subtilis. Biochem. Biophys. Res. Commun. 47: 365 371.
146. Yasunaka, A.,, H. Tsukamato,, S. Okubo,, and T. Horiuchi. 1970. Isolation and properties of suppressor-sensitive mutants of Bacillus subtilis bacteriophage SPO2. J. Virol. 5: 819 821.
147. Yoneda, Y.,, S. Graham,, and F. E. Young. 1979. Restriction-fragment map of the temperate Bacillus subtilis bacteriophage SPO2. Gene 7: 51 68.
148. Zahler, S. A., 1982. Specialized transduction in Bacillus subtilis, p. 269 305. In D. A. Dubnau (ed.). Molecular Biology of the Bacilli, vol. 1. Academic Press, Inc., New York.
149. Zahler, S. A., 1988. Temperate bacteriophages of Bacillus subtilis, p. 559 592. In R. Calendar (ed.). The Bacteriophages, vol. 1. Plenum Press, Inc., New York.
150. Zahler, S. A.,, R. Z. Korman,, J. M. Odebralskl,, P. S. Fink,, C. J. Mackey,, C. G. Poutre,, R. H. Lipsky,, and P. J. Youngman,. 1982. Genetic manipulations with phage SP β, p. 41 50. In J. A. Hoch,, S. Chang,, and A. T. Ganesan (ed.). Molecular Cloning and Gene Regulation in Bacillus. Academic Press, Inc., New York.
151. Zahler, S. A.,, R. Z. Korman,, R. Rosenthal,, and H. E. Hemphill. 1977. Bacillus subtilis bacteriophage SP β: localization of the prophage attachment site, and specialized transduction. J. Bacteriol. 129: 556 558.
152. Zahler, S. A.,, R. Z. Korman,, C. Thomas,, P. S. Fink,, M. P. Weiner,, and J. M. Odebralskl. 1987. H2, a temperate bacteriophage isolated from Bacillus amyloliquefaciens strain H. J. Gen. Microbiol. 133: 2937 2944.
153. Zahler, S. A.,, R. Z. Korman,, C. Thomas,, P. S. Fink,, M. P. Weiner,, and J. M. Odebralskl. 1987. Temperate bacteriophages of Bacillus amyloliquefaciens. J. Gen. Microbiol. 133: 2933 2935.

Tables

Generic image for table
Table 1

Characteristics of phages

Citation: Zahler S. 1993. Temperate Bacteriophages, p 831-842. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch57
Generic image for table
Table 2

DNA methyltransferases of group III phages

Citation: Zahler S. 1993. Temperate Bacteriophages, p 831-842. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch57

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error