1887

Chapter 58 : Replication and Transcription of Bacteriophage ϕ29 DNA

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Replication and Transcription of Bacteriophage ϕ29 DNA, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap58-1.gif /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap58-2.gif

Abstract:

The genome of phage ø29 consists of a linear, double-stranded DNA 19,285 bp long with a 6-bp-long inverted terminal repeat (AAAGTA; 32, 114) and a terminal protein (TP) covalently linked at the 5' ends. Viral genes 1, 2, 3, 5, 6, and 17 are required for ø29 DNA replication. ø29 DNA polymerase is inhibited by drugs that are known inhibitors of eukaryotic DNA polymerase α such as aphidicolin, phosphonoacetic acid, and the nucleotide analogs butyl-anilino dATP (BuAdATP) and butyl-phenyl dGTP (BuPdGTP). The amino acid sequence RGD, which is found in cell adhesion proteins, is present at positions 256 to 258 in the ø29 and M2 TPs. Activation of the initiation of ø29 DNA replication by p6 requires not only formation of the complex but also its correct positioning relative to the ø29 DNA ends, suggesting that other proteins involved in the initiation of ø29 DNA replication (TP and/or DNA polymerase) recognize p6 at a precise position. Transcription of the ø29 genome takes place in two stages. At the beginning of the infection only the genes involved in DNA replication and transcription regulation are expressed. Genes coding for structural components of the phage particle and for proteins involved in morphogenesis and cell lysis are expressed later on in infection.

Citation: Salas M, Rojo F. 1993. Replication and Transcription of Bacteriophage ϕ29 DNA, p 843-857. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch58

Key Concept Ranking

DNA Polymerase I
0.5125
Transcription Start Site
0.46845672
Linear Double-Stranded DNA
0.4452721
0.5125
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Genetic and transcriptional maps of phage 29 genome. (A) Genetic map (adapted from reference ). Arrows indicate directions of transcription. The TP is shown attached to the 5' ends of the genome. (B) Transcription map. Arrowheads indicate directions of transcription from the different promoters (see text). The region containing the main early and late promoters is magnified to show the relative position of each promoter. Transcription terminators (TA1, TB1, TB2, and TD1) are represented by thick, filled arrowheads. The position and approximate length of each gene is indicated. SSB, single-stranded-DNA-binding protein.

Citation: Salas M, Rojo F. 1993. Replication and Transcription of Bacteriophage ϕ29 DNA, p 843-857. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch58
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Different stages and viral gene products involved in 29 DNA replication. Based on structural and functional studies (see text for details), a two-domain structure analogous to that of the Klenow fragment of polymerase I is extrapolated for 29 DNA polymerase. 29 primer TP is indicated by black, and parental TP is shaded. DBP, DNA-binding protein; SSB, single-stranded-DNA-binding protein.

Citation: Salas M, Rojo F. 1993. Replication and Transcription of Bacteriophage ϕ29 DNA, p 843-857. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch58
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Sliding-back model for transition from protein-primed initiation to DNA elongation. Darkly shaded areas correspond to polymerization domains of 29 DNA polymerase that define a cleft proposed to be used both as DNA- and TP-binding sites. 29 TP, serving as primer for the nascent strand, is indicated by black, whereas parental 29 TP, which is covalently bound to the displaced strand, is indicated by light shading. The sequence indicated corresponds to the 6-bp inverted terminal repeat present at each 29 DNA end. See text for details.

Citation: Salas M, Rojo F. 1993. Replication and Transcription of Bacteriophage ϕ29 DNA, p 843-857. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch58
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

p4-binding site. The DNA region represented spans the area from the early A2b promoter (bottom left) to the divergent late A3 promoter (right), with a p4-binding site between them. RNA polymerase (RNP) is bound to the late A3 promoter. Positions protected from the attack of hydroxyl radicals by p4 or by the RNA polymerase bound at the late A3 promoter are shown by open and filled dots, respectively. p4-binding sequences are represented by thickened lines in the DNA sequence. Guanine residues whose methylation interferes with p4 binding to DNA are also shown (©)· Arrows indicate positions that become hypersensitive to DNase I cleavage upon p4 binding, most likely as a consequence of the protein-induced DNA curvature. Positions -56 and -102 do not appear when both p4 and RNA polymerase are bound to the late A3 promoter and are shown in parentheses. Note that the p4-binding site partially overlaps the early A2b promoter, thus displacing the RNA polymerase from it and directing the polymerase to the late A3 promoter.

Citation: Salas M, Rojo F. 1993. Replication and Transcription of Bacteriophage ϕ29 DNA, p 843-857. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch58
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818388.chap58
1. A1onso, J. C,, F. Rojo,, and M. Salas. Unpublished data.
1a.. Barthelemy, I.,, J. M. Lázaro,, E. Mindez,, R. P. Mellado,, and M. Salas. 1987. Purification in an active form of the phage φ29 protein p4 that controls the viral late transcription. Nucleic Acids Res. 15: 7781 7793.
2. Barthelemy, I.,, R. P. Mellado,, and M. Salas. 1988. Symmetrical transcription in bacteriophage φ29 DNA. Biochimie 70: 605 609.
3. Barthelemy, I.,, R. P. Mellado,, and M. Salas. 1989. In vitro transcription of bacteriophage φ29 DNA: inhibition of early promoters by the viral replication protein p6. J. Virol. 63: 460 462.
4. Barthelemy, I.,, and M. Salas. 1989. Characterization of a new prokaryotic transcriptional activator and its DNA recognition site. J. Mol. Biol. 208: 225 232.
5. Barthelemy, I.,, M. Salas,, and R. P. Mellado. 1986. In vivo transcription of bacteriophage φ29 DNA: transcription initiation sites. J. Virol. 60: 874 879.
6. Barthelemy, I.,, M. Salas,, and R. P. Mellado. 1987. In vivo transcription of bacteriophage φ29: transcription termination. J. Virol. 61: 1751 1755.
7. Benes, V.,, L. Arnold,, J. Smrt,, and V. Paces. 1989. Nucleotide sequence of the right early region of Bacillus phage φ15 and comparison with related phages: reorganization of gene 17 during evolution. Gene 75: 341 347.
8.Bernad, A., L. Blanco, J. M. Lázaro, G. Martín, and M. Salas. 1989. A conserved 3′ → 5′ exonuclease active site in prokaryotic and eukaryotic DNA polymerases. Cell 59: 219228.
9.Bernad, A., J. M. Lázaro, M. Salas, and L. Blanco. 1990. The highly conserved amino acid sequence motif Tyr-Asp-Thr-Asp-Ser in α-like DNA polymerases is required by phage φ29 DNA polymerase for protein-primed initiation and polymerization. Proc. Natl. Acad. Sci. USA 87: 46104614.
10.Bernad, A., A. Zaballos, M. Salas, and L. Blanco. 1987. Structural and functional relationships between prokaryotic and eukaryotic DNA polymerases. EMBO J. 6: 42214225.
11. Blanco, L.,, A. Bernad,, M. A. Blasco,, and M. Salas. 1991. A general structure for DNA-dependent DNA polymerases. Gene 100: 27 38.
12. Blanco, L.,, A. Bernad,, J. A. Esteban,, and M. Salas. 1992. DNA-independent deoxynucleotidylation of the φ29 terminal protein by the φ29 DNA polymerase. J. Biol. Chem. 267: 1225 1230.
13. Blanco, L.,, A. Bernad,, J. M. Lázaro,, G. Martín,, C. Garmendia,, and M. Salas. 1989. Highly efficient DNA synthesis by the phage φ29 DNA polymerase. Symmetrical mode of DNA replication. J. Biol. Chem. 264: 8935 8940.
14. Blanco, L.,, A. Bernad,, and M. Salas. 1988. Transition from initiation to elongation in protein-primed φ29 DNA replication: salt-dependent stimulation by the viral protein p6. J. Virol. 62: 4167 4172.
15. Blanco, L.,, A. Bernad,, and M. Salas. 1992. Evidence favouring the hypothesis of a conserved 3′ → 5′ exonuclease active site in DNA-dependent DNA polymerases. Gene 112: 139 144.
16. Blanco, L.,, J. A. García,, M. A. Peñalva,, and M. Salas. 1983. Factors involved in the initiation of phage φ29 DNA replication in vitro: requirement of the gene 2 product for the formation of the protein p3-dAMP complex. Nucleic Acids Res. 11: 1309 1323.
17. Blanco, L.,, J. A. García,, and M. Salas. 1984. C1oning and expression of gene 2, required for the protein-primed initiation of the Bacillus subtilis phage φ29 DNA replication. Gene 29: 33 40.
18. Blanco, L.,, J. Gutiercez,, J. M. Lázaro,, A. Bernad,, and M. Salas. 1986. Replication of phage φ29 DNA in vitro: role of the viral protein p6 in initiation and elongation. Nucleic Acids Res. 14: 4923 4937.
19. Blanco, L.,, I. Prieto,, J. Gutiérrez,, A. Bernad,, J. M. Lázaro,, J. M. Hermoso,, and M. Salas. 1987. Effect of NH4+ ions on φ29 DNA-protein p3 replication: formation of a complex between the terminal protein and the DNA polymerase. J. Virol. 61: 3983 3991.
20. Blanco, L.,, and M. Salas. 1984. Characterization and purification of a phage φ29-encoded DNA polymerase required for the initiation of replication. Proc. Natl. Acad. Sci. USA 81: 5325 5329.
21. Blanco, L.,, and M. Salas. 1985. Characterization of a 3′ → 5′ exonuclease activity in the phage φ29-encoded DNA polymerase. Nucleic Acids Res. 13: 1239 1249.
22. Blanco, L.,, and M. Salas. 1985. Replication of phage φ29 DNA with purified terminal protein and DNA polymerase: synthesis of full-length φ29 DNA. Proc. Natl. Acad. Sci. USA 82: 6404 6408.
23. Blanco, L.,, and M. Salas. 1986. Effect of aphidicolin and nucleotide analogs on the phage φ29 DNA polymerase. Virology 153: 179 187.
24. Blasco, M. A.,, A. Bernad,, L. Blanco,, and M. Salas. 1991. Characterization and mapping of the pyrophosphorolytic activity of the phage φ29 DNA polymerase. J. Biol. Chem. 266: 7904 7909.
25. Blasco, M. A.,, L. Blanco,, E. Parés,, M. Salas,, and A. Bernad. 1990. Structural and functional analysis of temperature sensitive mutants of the phage φ29 DNA polymerase. Nucleic Acids Res. 18: 4763 4770.
25a.. Blasco, M. A.,, J. A. Esteban,, J. Méndez,, L. Blanco,, and M. Salas. 1993. Structural and functional studies on φ29 DNA polymerase. Chromosoma 102: 32 38.
25b.. Blasco, M. A.,, J. M. Lázaro,, A. Bernad,, L. Blanco,, and M. Salas. 1992. φ29 DNA polymerase active site: mutants in conserved residues Tyr254 and Tyr390 are affected in dNTP binding. J. Biol. Chem. 267: 19427 19434.
25c.. Blasco, M. A.,, J. M. Lázaro,, L. Blanco,, and M. Salas. Unpublished data.
26. Bracco, L.,, D. Kotlarz,, A. Kolb,, S. Diekmann,, and H. Buc. 1989. Synthetic curved DNA sequences can act as transcriptional activators in Escherichia coli. EMBO J. 8: 4289 4296.
26a.. Bravo, A. Unpublished data.
27. Brennan, R. G.,, and B. W. Mathews. 1989. The helix-turn-helix DNA binding motif. J. Biol. Chem. 264: 1903 1906.
28. Carrascosa, J. L.,, A. Camacho,, F. Moreno,, F. Jiménez,, R. P. Mellado,, E. Viñuela,, and M. Salas. 1976. Bacillus subtilis phage φ29: characterization of gene products and functions. Eur. J. Biochem. 66: 229 241.
29. Derbyshire, V.,, P. S. Freemont,, M. R. Sanderson,, L. Beese,, J. M. Friedman,, C. M. Joyce,, and t. A. Steitz. 1988. Genetic and crystallographic studies of the 3′ → 5′ exonucleolytic site of DNA polymerase I. Science 240: 199 201.
30. Dodd, I. B.,, and J. B. Egan. 1990. Improved detection of helix-turn-helix DNA binding motives in protein sequences. Nucleic Acids Res. 18: 5019 5026.
31. Escarmis, C,, D. Guirao,, and M. Salas. 1989. Replication of recombinant φ29 DNA molecules in Bacillus subtilis protoplasts. Virology 169: 150 160.
32. Escarmis, C,, and M. Salas. 1981. Nucleotide sequence at the termini of the DNA of Bacillus subtilis phage φ29. Proc. Natl. Acad. Sci. USA 78: 1446 1450.
33. Escarmis, C,, and M. Salas. 1982. Nucleotide sequence of the early genes 3 and 4 of bacteriophage φ29. Nucleic Acids Res. 10: 5785 5798.
34. Esteban, J. A.,, A. Bernad,, M. Salas,, and L. Blanco. 1992. Metal activation of synthetic and degradative activities of φ29 DNA polymerase, a model enzyme for protein-primed replication. Biochemistry 31: 350 359.
34a.. Esteban, J. A.,, M. Salas,, and L. Blanco. 1993. Fidelity of φ29 DNA polymerase: comparison between protein-primed initiation and DNA polymerization. J. Biol. Chem. 268, in press.
35. Freemont, P. S.,, J. M. Friedman,, L. S. Beese,, M. R. Sanderson,, and t. A. Steitz. 1988. Cocrystal structure of an editing complex of Klenow fragment with DNA. Proc. Natl. Acad. Sci. USA 85: 8924 8928.
35a.. Freire, R.,, M. Serrano,, M. Salas,, and J. M. Hermoso. Unpublished data.
36. García, J. A.,, M. A. Peñalva,, L. Blanco,, and M. Salas. 1984. Template requirements for the initiation of phage φ29 DNA replication in vitro. Proc. Natl. Acad. Sci. USA 81: 80 84.
37. Garmendia, C,, A. Bernad,, J. A. Esteban,, L. Blanco,, and M. Salas. 1992. The bacteriophage φ29 DNA polymerase, a proofreading enzyme. J. Biol. Chem. 267: 2594 2599.
38. Garmendia, C.,, J. M. Hermoso,, and M. Salas. 1990. Functional domain for priming activity in the phage φ29 terminal protein. Gene 88: 73 79.
39. Garmendia, C,, M. Salas,, and J. M. Hermoso. 1988. Site-directed mutagenesis in the DNA linking site of bacteriophage φ29 terminal protein: isolation and characterization of Ser232 → Thr mutant. Nucleic Acids Res. 16: 5727 5740.
40. Garvey, K. J.,, H. Yoshikawa,, and J. Ito. 1985. The complete sequence of the Bacillus phage φ29 right early region. Gene 40: 301 309.
41. Gibbs, J. S.,, H. C. Chiou,, J. D. Hall,, D. W. Mount,, M. J. Retondo,, S. K. Weller,, and D. M. Coen. 1985. Sequence and mapping analysis of the herpes simplex virus DNA polymerase gene predict a C-terminal substrate binding domain. Proc. Natl. Acad. Sci. USA 82: 7969 7973.
42. Guo, P.,, S. Erlckson,, and D. Anderson. 1987. A small viral RNA is required for in vitro packaging of bacteriophage φ29 DNA. Science 236: 690 694.
43. Gutiérrez, J.,, J. A. García,, L. Blanco,, and M. Salas. 1986. C1oning and template activity of the origins of replication of phage φ29 DNA. Gene 43: 1 11.
44. Gutiérrez, J.,, C. Garmendia,, and M. Salas. 1988. Characterization of the origins of replication of bacteriophage φ29 DNA. Nucleic Acids Res. 16: 5895 5914.
45. Gutiérrez, C,, G. Martín,, J. M. Sogo,, and M. Salas. 1991. Mechanism of stimulation of DNA replication by bacteriophage φ29 single-stranded DNA-binding protein p5. J. Biol. Chem. 266: 2104 2111.
46.Gutiérrez, C,, J. M. Sogo,, and M. Salas. 1991. Analysis of replication intermediates produced during bacteriophage φ29 DNA replication in vitro. J. Mol. Biol. 222: 983 994.
47. Hagen, E. W.,, B. E. Reilly,, M. E. Tosi,, and D. L. Anderson. 1976. Analysis of gene function of bacteriophage φ29 of Bacillus subtilis: identification of cistrons essential for viral assembly. J. Virol. 19: 501 517.
48. Hermoso, J. M.,, E. Méndez,, F. Soriano,, and M. Salas. 1985. Location of the serine residue involved in the linkage between the terminal protein and the DNA of φ29. Nucleic Acids Res. 13: 7715 7728.
49. Hermoso, J. M.,, and M. Salas. 1980. Protein p3 is linked to the DNA of phage φ29 DNA through a phosphoester bond between serine and 5′-dAMP. Proc. Natl. Acad. Sci. USA 77: 6425 6428.
50. Heumann, H.,, M. Ricchetti,, and W. Werel. 1988. DNA-dependent RNA polymerase of Escherichia coli induces bending or an increased flexibility of DNA by specific complex formation. EMBO J. 7: 4379 4381.
51. Hirokawa, H.,, K. Matsumoto,, and M. Ohashi,. 1982. Replication of Bacillus small phage DNA, p. 45 46. In D. Schlessinger (ed.), Microbiology—1982. American Society for Microbiology, Washington, D.C.
52. Hogan, M. E.,, M. W. Roberson,, and R. Austin. 1989. DNA flexibility may dominate DNase I cleavage. Proc. Natl. Acad. Sci. USA 86: 9273 9277.
53. Huberman, J. A. 1981. New views of the biochemistry of eukaryotic DNA replication revealed by aphidicolin, an unusual inhibitor of DNA polymerase. Cell 23: 647 648.
54. Inciarte, M. R.,, M. Salas,, and J. M. Sogo. 1980. Structure of replicating DNA molecules of Bacillus subtilis bacteriophage φ29. J. Virol. 34: 187 199.
55. Ito, J. 1978. Bacteriophage φ29 terminal protein: its association with the 5′ termini of the φ29 genome. J. Virol. 28: 895 904.
56. Khan, N. W.,, G. E. Wright,, L. W. Dudycz,, and N. C. Brown. 1984. Butylphenyl dGTP: a selective and potent inhibitor of mammalian DNA polymerase alpha. Nucleic Acids Res. 12: 3695 3706.
57. Knight, K. L.,, and R. T. Sauer. 1989. DNA binding specificity of the Arc and Mnt repressors is determined by a short region of N-terminal residues. Proc. Natl. Acad. Sci. USA 86: 797 801.
58. Kobayashi, H.,, K. Kitabayaski,, K. Matsumoto,, and H. Hirokawa. 1991. Primer protein of bacteriophage M2 exposes the RGD receptor site upon linking the first deoxynucleotide. Mol. Gen. Genet. 226: 65 69.
59. Kobayashi, H.,, K. Kitabayaski,, K. Matsumoto,, and H. Hirokawa. 1991. Receptor sequence of the terminal protein of bacteriophage M2 that interacts with an RGD (Arg-Gly-Asp) sequence of the primer protein. Virology 185: 901 903.
60. Kobayashi, H.,, K. Matsumoto,, S. Misawa,, K. Miura,, and H. Hirokawa. 1989. An inhibitory effect of RGD peptide on protein-priming reaction of bacteriophages φ29 and M2. Mol. Gen. Genet. 220: 8 11.
61. Lavigne, M.,, M. Herbert,, A. Kolb,, and H. Buc. 1992. Upstream curved sequences influence the initiation of transcription at the Escherichia coli galactose operon. J. Mol. Biol. 224: 293 306.
62. Leavitt, M. C,, and J. Ito. 1987. Nucleotide sequence of Bacillus phage Nf terminal protein gene. Nucleic Acids Res. 15: 5251 5259.
63. Martín, G.,, J. M. Lázaro,, E. Méndez,, and M. Salas. 1989. Characterization of phage φ29 protein p5 as a single-stranded DNA binding protein. Function in φ29 DNA-protein p3 replication. Nucleic Acids Res. 17: 3663 3672.
64. Martín, G.,, and M. Salas. 1988. Characterization and cloning of gene 5 of Bacillus subtilis phage φ29. Gene 67: 193 201.
65. Matsumoto, K.,, T. Saito,, and H. Kirokawa. 1983. In vitro initiation of bacteriophage φ29 and M2 DNA replication: genes required for formation of a complex between the terminal protein and 5′ dAMP. Mol. Gen. Genet. 191: 26 30.
66. McA1lister, C. F.,, and E. c. Achberger. 1989. Rotational orientation of upstream curved DNA affects promoter function in Bacillus subtilis. J. Biol. Chem. 264: 10451 10456.
67. Mellado, R. P.,, I. Barthelemy,, and M. Salas. 1986. In vivo transcription of bacteriophage φ29 DNA early and late promoter sequences. J. Mol. Biol. 191: 191 197.
68. Mellado, R. P.,, I. Barthelemy,, and M. Salas. 1986. In vitro transcription of bacteriophage φ29 DNA. Correlation between in vitro and in vivo promoters. Nucleic Acids Res. 14: 4731 4741.
69. Mellado, R. P.,, F. Moreno,, E. Viñuela,, M. Salas,, B. E. Reilly,, and D. L. Anderson. 1976. Genetic analysis of bacteriophage φ29 of Bacillus subtilis: integration and mapping of nonsense mutants of two collections. J. Virol. 19: 495 500.
70. Mellado, R. P.,, M. A. Peñalva,, M. R. Inciarte,, and M. Salas. 1980. The protein covalently linked to the 5′ termini of the DNA of Bacillus subtilis phage φ29 is involved in the initiation of DNA replication. Virology 104: 84 96.
70a.. Méndez, J.,, L. Blanco,, J. A. Esteban,, A. Bernad,, and M. Salas. 1992. Initiation of φ29 DNA replication occurs at the second 3′ nucleotide of the linear template: a sliding-back mechanism for protein-primed DNA replication. Proc. Natl. Acad. Sci. USA 89: 9579 9583.
71. Mizukami, Y.,, T. Seklya,, and H. Hirokawa. 1986. Nucleotide sequence of gene F of Bacillus phage Nf. Gene 42: 231 235.
72. Nuez, B.,, F. Rojo,, I. Barthelemy,, and M. Salas. 1991. Identification of the sequences recognized by phage φ29 transcriptional activator: possible interaction between the activator and the RNA polymerase. Nucleic Acids Res. 19: 2337 2342.
72a.. Nuez, B.,, F. Rojo,, and M. Salas. 1992. Phage φ29 regulatory protein p4 stabilizes the binding of the RNA polymerase to the late promoter in a process involving direct protein-protein contacts. Proc. Natl. Acad. Sci. USA 89: 11401 11405.
73. Ollis, D. L.,, R. Brick,, R. Hamlin,, N. G. Xuong,, and T. A. Steitz. 1985. Structure of the large fragment of Escherichia coli DNA polymerase I complexed with dTMP. Nature (London) 313: 762 766.
74. Ortin, J.,, E. Viñuela,, M. Salas,, and C. Vasquez. 1971. DNA-protein complex in circular DNA from phage φ29. Nature New Biol. 234: 275 277.
75. Otero, M. J.,, J. M. Lázaro,, and M. Salas. 1990. Deletions at the N terminus of bacteriophage φ29 protein p6: DNA binding and activity in φ29 DNA replication. Gene 95: 25 30.
76. Otero, M. J.,, and M. Salas. 1989. Regions at the carboxyl end of bacteriophage protein p6 required for DNA binding and activity in φ29 DNA replication. Nucleic Acids Res. 17: 4567 4577.
77. Pandey, V. N.,, K. R. Williams,, K. L. Stone,, and M. J. Modak. 1987. Photoafhnity labeling of the thymidine triphosphate binding domain in Escherichia coli DNA polymerase I: identification of histidine-881 as the site of cross-linking. Biochemistry 26: 7744 7748.
78. Pastrana, R.,, J. M. Lázaro,, L. Blanco,, J. A. García,, E. Méndez,, and M. Salas. 1985. Overproduction and purification of protein p6 of Bacillus subtilis phage φ29: role in the initiation of DNA replication. Nucleic Acids Res. 13: 3083 3100.
79. Peñalva, M. A.,, and M. Salas. 1982. Initiation of phage φ29 DNA replication in vitro: formation of a covalent complex between the terminal protein, p3, and 5′-dAMP. Proc. Natl. Acad. Sci. USA 79: 5522 5526.
80. Prieto, I.,, J. M. Lázaro,, J. A. García,, J. M. Hermoso,, and M. Salas. 1984. Purification in a functional form of the terminal protein of Bacillus subtilis phage φ29. Proc. Natl. Acad. Sci. USA 81: 1639 1643.
81. Prieto, I.,, E. Méndez,, and M. Salas. 1989. Characterization, overproduction and purification of the product of gene 1 of Bacillus subtilis phage φ29. Gene 77: 195 204.
82. Prieto, I.,, M. Serrano,, J. M. Lázaro,, M. Salas,, and J. M. Hermoso. 1988. Interaction of the bacteriophage φ29 protein p6 with double-stranded DNA. Proc. Natl. Acad. Sci. USA 85: 314 318.
83. Reha-Krantz, L. J. 1988. Amino acid changes coded by bacteriophage T4 DNA polymerase mutator mutants. Relating structure to function. J. Mol. Biol. 202: 711 724.
84. Rojo, F.,, and M. Salas. 1990. Short N-terminal deletions in the phage φ29 transcriptional activator protein p4 impair its DNA binding ability. Gene 96: 75 81.
85. Rojo, F.,, and M. Salas. 1991. A DNA curvature can substitute phage φ29 regulatory protein p4 when acting as a transcriptional repressor. EMBO J. 10: 3429 3438.
86. Rojo, F.,, A. Zaballos,, and M. Salas. 1990. Bend induced by phage φ29 transcriptional activator in the viral late promoter is required for activation. J. Mol. Biol. 211: 713 725.
87. Rush, J.,, and W. H. Konigsberg. 1990. Photoaffinity labeling of the Klenow fragment with 8-azido-dATP. J. Biol. Chem. 265: 4821 4827.
88. Salas, M., 1988>. Phages with protein attached to the DNA ends, p. 169 191. In R. Calendar (ed.), The Bacteriophages, vol. 1. Plenum Press, New York.
89. Salas, M. 1991. Protein-priming of DNA replication. Annu. Rev. Biochem. 60: 39 71.
90. Salas, M.,, R. P. Mellado,, E. Viñuela,, and J. M. Sogo. 1978. Characterization of a protein covalently linked to the 5′ termini of the DNA of Bacillus subtilis phage φ29. J. Mol. Biol. 119: 269 291.
91. Schleif, R. 1988. DNA binding by proteins. Science 241: 1182 1187.
92. Serrano, M.,, I. Barthelemy,, and M. Salas. 1991. Transcription activation at a distance by phage φ29 protein p4. Effect of bent and non-bent intervening DNA sequences. J. Mol. Biol. 219: 403 414.
93. Serrano, M.,, J. Gutiérrez,, I. Prieto,, J. M. Hermoso,, and M. Salas. 1989. Signals at the bacteriophage φ29 DNA replication origins required for protein p6 binding and activity. EMBO J. 8: 1879 1885.
93a.. Serrano, M.,, C. Gutiérrez,, M. Salas,, and J. M. Hermoso. The superhelical path of the DNA in the nucleoprotein complex that activates the initiation of phage φ29 DNA replication. J. Mol. Biol., in press.
93b.. Serrano, M.,, and M. Salas. Unpublished data.
94. Serrano, M.,, M. Salas,, and J. M. Hermoso. 1990. A novel nucleoprotein complex at a replication origin. Science 248: 1012 1016.
95. Shih, M. F.,, K. Watabe,, and J. Ito. 1982. In vitro complex formation between bacteriophage φ29 terminal protein and deoxynucleotide. Biochem. Biophys. Res. Commun. 105: 1031 1036.
96. Shih, M. F.,, K. Watabe,, H. Yoshikawa,, and J. Ito. 1984. Antibodies specific for the φ29 terminal protein inhibit the initiation of DNA replication in vitro. Virology 133: 56 64.
96a.. Soengas, M. S.,, J. A. Esteban,, J. M. Lázaro,, A. Bernad,, M. A. Blasco,, M. Salas,, and L. Blanco. 1992. Site-directed mutagenesis at the EcoIII motif of φ29 DNA polymerase: overlapping structural domains for the 3′-5′ exonuclease and strand-displacement activities. EMBO J. 11: 4227 4237.
97. Sogo, J. M.,, J. A. García,, M. A. Peñalva,, and M. Salas. 1982. Structure of protein-containing replicative intermediates of Bacillus subtilis phage φ29 DNA. Virology 116: 1 18.
98. Sogo, J. M.,, M. R. Inciarte,, J. Corral,, E. Viñuela,, and M. Salas. 1979. RNA polymerase binding sites and transcription of the DNA of Bacillus subtilis phage φ29. J. Mol. Biol. 127: 411 436.
99. Sogo, J. M.,, M. Lozano,, and M. Salas. 1984. In vitro transcription of the Bacillus subtilis phage φ29 DNA by Bacillus subtilis and Escherichia coli RNA polymerases. Nucleic Acids Res. 12: 1943 1960.
100. Suck, D.,, A. Lahm,, and C. Oefner. 1988. Structure refinement to 2 Å of a nicked DNA oligonucleotide complex with DNase I. Nature (London) 332: 464 468.
101. Talavera, A.,, F. Jiménez,, M. Salas,, and E. Viñuela. 1971. Temperature-sensitive mutants of bacteriophage φ29. Virology 46: 586 595.
102. Talavera, A.,, M. Salas,, and E. Viñuela. 1972. Temperature-sensitive mutants affected in DNA synthesis in phage φ29 of Bacillus subtilis. Eur. J. Biochem. 31: 367 371.
103. Tomalsky, M. D.,, J. Wu,, and L. K. Miller. 1988. The location, sequence, transcription and regulation of a baculovirus DNA polymerase gene. Virology 167: 591 600.
104. Vlcek, C,, and V. Paces. 1986. Nucleotide sequence of the late region of Bacillus phage φ29 completes the 19285-bp sequence of φ29 genome. Comparison with the homologous sequence of phage PZA. Gene 46: 215 225.
105. Watabe, K.,, M. Leusch,, and J. Ito. 1984. Replication of bacteriophage φ29 DNA in vitro: the roles of terminal protein and DNA polymerase. Proc. Natl. Acad. Sci. USA 81: 5374 5378.
106. Watabe, K.,, M. Leusch,, and J. Ito. 1984. A 3′ to 5′ exonuclease activity is associated with phage φ29 DNA polymerase. Biochem. Biophys. Res. Commun. 123: 1019 1026.
107. Watabe, K.,, M. F. Shih,, and J. Ito. 1983. Protein-primed initiation of phage φ29 DNA replication. Proc. Natl. Acad. Sci. USA 80: 4248 4252.
108. Watabe, K.,, M. F. Shih,, A. Sugino,, and J. Ito. 1982. In vitro replication of bacteriophage φ29 DNA. Proc. Natl. Acad. Sci. USA 79: 5245 5248.
109. Whlteley, H. R.,, W. D. Ramey,, G. B. Spiegelman,, and R. D. Holder. 1986. Modulation of in vivo and in vitro transcription of bacteriophage φ29 early genes. Virology 155: 392 401.
110. Wichitwechkarn, J.,, D. Johnson,, and D. Anderson. 1992. Mutant prohead RNAs in the in vitro packaging of φ29 DNA-gp3. J. Mol. Biol. 223: 991 998.
111. Wu, H.-W.,, and D. M. Crothers. 1984. The locus of sequence-directed and protein-induced DNA bending. Nature (London) 308: 509 513.
112. Yanofsky, S.,, F. Kawamura,, and J. Ito. 1976. Thermolabile transfecting DNA from temperature-sensitive mutant of phage φ29. Nature (London) 259: 60 63.
113. Yehle, C. O. 1978. Genome-linked protein associated with the 5′ termini of bacteriophage φ29 DNA. J. Virol. 27: 776 783.
114. Yoshlkawa, H.,, T. Friedmann,, and J. Ito. 1981. Nucleotide sequences at the termini of φ29 DNA. Proc. Natl. Acad. Sci. USA 78: 1336 1340.
115. Yoshlkawa, H.,, and J. Ito. 1982. Nucleotide sequence of the major early region of bacteriophage φ29. Gene 17: 323 335.
116. Zaballos, A.,, and M. Salas. 1989. Functional domains in the bacteriophage φ29 terminal protein for interaction with the φ29 DNA polymerase and with DNA. Nucleic Acids Res. 17: 10353 10366.
117. Zlnkel, S. S.,, and D. M. Crothers. 1991. Catabolite activator protein-induced DNA bending in transcription initiation. J. Mol. Biol. 219: 201 205.
118. Zwieb, C.,, J. Kim,, and S. Adhya. 1989. DNA bending by negative regulatory proteins: gal and lac repressors. Genes Dev. 3: 602 611.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error