1887

Chapter 61 : Peptide Antibiotics

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Peptide Antibiotics, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap61-1.gif /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap61-2.gif

Abstract:

This chapter focuses on the peptide antibiotics, as these are the predominant class of special metabolite that has been characterized biochemically and by the methods of molecular biology and genetics. Although the peptide antibiotics are composed of amino acids, they often show little similarity to gene-encoded polypeptides in terms of structure and mechanism of their biosynthesis. The amino acids can be linked to each other by peptide bonds or through the formation of lactones and esters. In some cases, they contain amino and hydroxy acids linked by alternating peptide and ester bonds, an arrangement found in a class of peptide antibiotics called depsipeptides. A compilation of peptide antibiotics produced by spp. and other gram-positive bacteria is provided in the chapter. Peptide antibiotics are synthesized by one of two mechanisms, ribosomal and nonribosomal. The chapter discusses biochemistry and molecular biology of peptide antibiotic synthesis in Spp. The production of special metabolites is one of several complex responses to growth limitation, as is the case in spp. Like spp., actinomycetes such as spp. undergo cellular differentiation upon nutritional deprivation. A structural model of peptide synthetases began to emerge with the isolation and primary-structure determination of a tripeptide-synthesizing enzyme found in β-lactam producers. Biosynthesis of β-lactams begins with synthesis of the tripeptide d-(L-a-aminoadipoyl)-L-cysteinyl-D-valine (ACV) followed by the cyclization of ACV to form isopenicillin N. The continued study of special metabolites is of fundamental importance to one's understanding of the microbial world.

Citation: Zuber P, Nakano M, Marahiel M. 1993. Peptide Antibiotics, p 897-916. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch61

Key Concept Ranking

Aromatic Amino Acids
0.59018236
Cyclic Amino Acids
0.5362389
Amino Acids
0.52444905
Integral Membrane Proteins
0.4014163
0.59018236
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Primary structure of lantibiotics nisin (type A) and cinnamycin (type B). (A) Amino acid sequences of the prepropeptides of cinnamycin and nisin are based on nucleotide sequences of the open reading frames of the nisin and cinnamycin genes. Boxes contain amino acid sequences of mature products. The arrow indicates the conserved proline of the type A lantibiotics. (B) Amino acid sequences of cinnamycin and nisin. s identifies the thioether cross-links in each sequence.

Citation: Zuber P, Nakano M, Marahiel M. 1993. Peptide Antibiotics, p 897-916. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch61
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Dehydration of serine and threonine in lantibiotics which yields dehydroalanine (DHA) and dehydrobutyrine (DHB).

Citation: Zuber P, Nakano M, Marahiel M. 1993. Peptide Antibiotics, p 897-916. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch61
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Schematic diagram of the multienzyme thiotemplate mechanism of peptide synthesis. Enzyme domains (AA1, AA2, AA3, AA4, and AA5) that activate and covalently bind to the constituent amino acids (aa1, aa2, aa3, aa4, and aa5) by a thiolester linkage (S) are shown. They are arranged in the order that corresponds to the amino acid sequence of the peptide. Transpeptidation proceeds with the aid of a pantetheine cofactor (pan) attached to an enzyme subunit. The arrow shows the direction in which the cofactor moves in order to transfer the growing peptide chain from one amino acid position to the next.

Citation: Zuber P, Nakano M, Marahiel M. 1993. Peptide Antibiotics, p 897-916. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch61
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Primary structures of gramicidin S, tyrocidine, and bacitracin. Amino acid sequences and enzymes that catalyze the synthesis of each are shown. The amino acids activated by each enzyme are indicated.

Citation: Zuber P, Nakano M, Marahiel M. 1993. Peptide Antibiotics, p 897-916. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch61
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Primary structures of the lipopeptides iturin A and surfactin. The variable region of the iturin 0-amino fatty acid can also be CHCH(CH)CH-, CHCHCH(CH)-, CHCH(CH) (CH)-, or CH(CH)-.

Citation: Zuber P, Nakano M, Marahiel M. 1993. Peptide Antibiotics, p 897-916. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch61
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Dipeptide antibiotics produced by

Citation: Zuber P, Nakano M, Marahiel M. 1993. Peptide Antibiotics, p 897-916. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch61
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Actinomycin.

Citation: Zuber P, Nakano M, Marahiel M. 1993. Peptide Antibiotics, p 897-916. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch61
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

Organization of the homologous amino acid-activating domains of ACV synthetase and gramicidin S synthetase. Shown are locations of the conserved motifs within domain 1 of GrsB that are also found in other peptide synthetase domains. Also shown are the approximate locations of the thioesterase motifs in AcvA and GrsT.

Citation: Zuber P, Nakano M, Marahiel M. 1993. Peptide Antibiotics, p 897-916. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch61
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818388.chap61
1. Akashi, K.,, K. Kubota,, and K. Kurahashi. 1977. Biosynthesis of enzyme-bound formylvaline and formylvalylglycine: a possible initiation complex for gramicidin A biosynthesis. J. Biochem. 81: 269 272.
2. Albright, L. M.,, E. Huala,, and R. M. Ausubel. 1989. Prokaryotic signal transduction mediated by sensor and regulator protein pairs. Annu. Rev. Genet. 23: 311 336.
3. Alloing, G.,, M.-C. Trombe,, and J.-P. Claverys. 1990. The ami locus of Gram-positive bacterium Streptococcus pneumoniae is similar to binding-protein-dependent transport operons of Gram-negative bacteria. Mol. Microbiol. 4: 633 644.
4. Anzai, H.,, T. Murakami,, S. Imai,, A. Satoh,, K. Nagaoka,, and C. J. Thompson. 1987. Transcriptional regulation of bialaphos biosynthesis in Streptomyces hygroscopicus. J. Bacteriol. 169: 3482 3488.
5. Babasaki, K.,, T. Takao,, Y. Shimonlshi,, and K. Kurahashi. 1985. Subtilosin A, a new antibiotic peptide produced by Bacillus subtilis 168: isolation, structural analysis, and biogenesis. J. Biochem. 98: 585 603.
6. Baldwin, J. E.,, J. W. Bird,, R. A. Field,, N. M. O'Cal-laghan,, and C. J. Schofield. 1990. Isolation and partial characterization of ACV synthetase from Cephalospo-rium acremonium and Streptomyces clavuligerus. J. An-tibiot. 43: 1055 1057.
7. Banerjee, S.,, and J. N. Hansen. 1988. Structure and expression of a gene encoding the precursor of subtilin, a small protein antibiotic. J. Biol. Chem. 263: 9508 9514.
8. Barry, C. C., III,, P. G. Nayar,, and T. P. Begley. 1989. Phenoxazinone synthase: mechanism for the formation of the phenoxazinone chromophore of actinomycin. Biochemistry 28: 6323 6333.
9. Bauer, K.,, R. Roskoski, Jr.,, H. Kleinkauf,, and R. Lipmann. 1972. Synthesis of a linear gramicidin by a combination of biosynthetic and organic methods. Biochemistry 11: 3266 3271.
10. Bennett, J. W.,, and R. Bentley. 1989. What's in a name—microbial secondary metabolites. Adv. Appl. Microbiol. 34: 1 28.
11. Birch, A.,, A. Hausler,, M. Vogtli,, W. Krek,, and R. Hutter. 1989. Extremely large chromosomal deletions are intimately involved in genetic instability and genomic rearrangements in Streptomyces glaucescens. Mol. Gen. Genet. 217: 447 458.
12. Buchman, G. W.,, S. Banerjee,, and J. N. Hansen. 1988. Structure, expression, and evolution of a gene encoding the precursor of nisin, a small protein antibiotic. J. Biol. Chem. 263: 16260 16266.
13. Bu'lock, J. D. 1961. Intermediary metabolism and antibiotic synthesis. Adv. Appl. Microbiol. 3: 293 342.
14. Chater, K. F.,, and D. A. Hopwood,. 1990. Antibiotic biosynthesis in Streptomyces, p. 129 150. In D. A. Hop-wood, and C. F. Chater (ed.), Genetics of Bacterial Diversity. Academic Press, Inc., New York.
15. Connerton, I. F.,, J. R. S. Flncham,, R. A. Sandeman,, and M. J. Hynes. 1990. Comparison and cross-species expression of the acetyl-CoA synthetase genes of the asco-mycete fungi, Aspergillus nidulans and Neurospora crassa. Mol. Microbiol. 4: 451 460.
16. Coque, J. J. R.,, J. F. Martin,, J. G. Calzada,, and P. Liras. 1991. The cephamycin biosynthetic genes pcbAB, encoding a large multidomain peptide synthetase, and pcbC of Nocardia lactamdurans are clustered together in an organization different from the same genes in Acremonium chrysogenum and Penicillium chrysogenum. Mol. Microbiol. 5: 1125 1133.
17. Daumus, P.,, F. Heitz,, L. Ranjalahy-Rasoloarijao,, and R. Lazaro. 1989. Gramicidin A analogs: influence of the substitution of the tryptophans by naphthylalanines. Biochimie 71: 77 81.
18. Davies, J. 1990. What are antibiotics? Archaic functions for modern activities. Mol. Microbiol. 4: 1227 1232.
19. De Wet, J. R.,, K. V. Wood,, M. De Luca,, D. R. Helsinki,, and S. Subrami. 1987. Firefly luciferase gene: structure and expression in mammalian cells. Mol. Cell. Biol. 7: 725 737.
20. Diez, B.,, S. Gutierrez,, J. L. Barredo,, P. Solingen,, L. H. M. van der Voort,, and J. F. Martin. 1990. The cluster of penicillin biosynthetic genes. Identification and characterization of the pcbAB gene encoding the α-aminoadipyl-cysteine-valine synthetase and linkage to the pcbC and penDE genes. J. Biol. Chem. 265: 16358 16365.
21. Dodd, H. M.,, N. Horn,, and M. J. Gasson. 1990. Analysis of the genetic determinant for production of the peptide antibiotic nisin. J. Gen. Microbiol. 136: 555 566.
22. Dubnau, D. 1991. Genetic competence in Bacillus subtilis. Microbiol. Rev. 55: 395 424.
23. Fredenhagen, A.,, G. Fendrich,, F. Markl,, W. Marki,, J. Gruner,, F. Raschdorf,, and H. H. Peter. 1990. Duramycins B and C, two new lanthionine containing antibiotics as inhibitors of phospholipase A 2: structural revision of duramycin and cinnamycin. J. Antibiot. 43: 1403 1412.
24. Freyshov, Ø. 1977. The production of bacitracin synthetase by Bacillus licheniformis ATCC 10706. FEBS Lett. 81: 315 318.
25. FurbaB, R.,, M. Gocht,, P. Zuber,, and M. A. Marahiel. 1991. Interaction of AbrB, a transcriptional regulator from Bacillus subtilis, with the promoters of the transition state-activated genes tycA and spoVG. Mol. Gen. Genet. 225: 347 354.
26. Garrido, M. D. C.,, M. Herrero,, R. Kolter,, and F. Moreno. 1988. The export of the DNA replication inhibitor microcin B17 provides immunity for the host cell. EMBOJ. 7: 1853 1862.
27. Gasson, M. J. 1984. Transfer of sucrose fermenting ability, nisin resistance and nisin production into Streptococcus lactis 712. FEMS Microbiol. Lett. 21: 7 10.
28. Gevers, W.,, H. Klelnkauf,, and F. Lipmann. 1968. The activation of amino acids for biosynthesis of gramicidin S. Proc. Natl. Acad. Set. USA 60: 269 276.
29. Gevers, W.,, H. Klelnkauf,, and F. Lipmann. 1969. Peptidyl transfers in gramicidin S biosynthesis from enzyme-bound thioester intermediates. Proc. Natl. Acad. Sci. USA 63: 1335 1342.
30. Ghosh, S. K.,, S. Majumder,, N. K. Mukhopadyay,, and S. K. Bose. 1986. Role of ATP and enzyme-bound nascent peptides in the control of elongation for mycobacillin synthesis. Biochem. J. 240: 265.
31. Ghosh, S. K.,, N. K. Mukhopadyay,, S. Majumder,, and S. K. Bose. 1983. Fractionation of the mycobacillin synthesizing enzyme system. Biochem. J. 215: 539.
32. Ghosh, S. K.,, N. K. Mukhopadyay,, S. Majumder,, and S. K. Bose. 1985. Functional characterization of constituent enzyme fractions of mycobacillin synthetase. Biochem. J. 230: 785.
33. Ghosh, S. K.,, N. K. Mukhopadyay,, S. Majumder,, and S. K. Bose. 1986. Purification of the constituent enzyme fractions of mycobacillin synthetase. Biochem. J. 235: 81.
34. Gilhuus-Moe, C. C.,, T. Kristensen,, J. E. Bredesen,, R. L. Zimmer,, and S. G. Laland. 1970. The presence and possible role of phosphopantetheinic acid in gramicidin S synthetase. FEBS Lett. 7: 287 290.
35. Gilson, L.,, H. K. Mahanty,, and R. Kolter. 1990. Genetic analysis of an MDR-like export system: the secretion of colicin V. EMBO J. 9: 3875 3884.
36. Gutierrez, S.,, B. Diez,, E. Montenegro,, and J. F. Martin. 1991. Characterization of the Cephalosporium acremonium pcbAB gene encoding α-aminoadipyl-cysteinylvaline synthetase, a large multidomain peptide synthetase: linkage to the pcbC gene as a cluster of early cephalosporin biosynthetic genes and evidence of multiple functional domains. J. Bacterial. 173: 2345 2365.
37. Haavik, H. I.,, and S. Thomassen. 1973. A bacitracin-negative mutant which is able to sporulate. J. Gen. Microbiol. 76: 451 454.
38. Haese, A.,, and U. Keller. 1988. Genetics of actinomycin C production in Streptomyces chrysomallus. J. Bacteriol. 170: 1360 1368.
39. Hahn, J.,, and D. Dubnau. 1991. Growth stage signal transduction and the requirements for srfA induction in development of competence. J. Bacteriol. 173: 7275 7282.
40. Hara, O.,, T. Murakami,, S. Imai,, H. Anzai,, R. Itoh,, Y. Kumada,, E. Takano,, E. Satoh,, A. Satoh,, K. Nagaoka,, and C. Thompson. 1991. The bialaphos biosynthetic genes of Streptomyces viridochromogenes: cloning, heterospecific expression, and comparison with the genes of Streptomyces hygroscopicus. J. Gen. Microbiol. 137: 351 359.
41. Hilton, M. D.,, N. G. Alaeddingoglu,, and A. L. Demain. 1988. Synthesis of bacilysin by Bacillus subtilis branches from prephenate of the aromatic amino acid pathway. J. Bacteriol. 170: 482 484.
42. Hilton, M. D.,, N. G. Alaeddinoglulu,, and A. L. Demain. 1988. Bacillus subtilis mutant deficient in the ability to produce the dipeptide antibiotic bacilysin: isolation and mapping of the mutation. J. Bacteriol. 170: 1018 1020.
43. Hopwood, D. 1989. Antibiotics: opportunities for genetic manipulation. Phil. Trans. R. Soc. Land. Sect. B 194: 549 562.
44. Hori, K.,, M. Kanda,, T. Kurotsu,, S. Miura,, Y. Yamada,, and Y. Saito. 1981. Absence of pantotheinic acid in gramicidin S synthetase 2 obtained from some mutants of Bacillus brevis. J. Biochem. 90: 439 447.
45. Hori, K.,, Y. Yamamoto,, K. Tokita,, F. Saito,, T. Kurotsu,, M. Kanda,, K. Okamura,, J. Furuyama,, and Y. Saito. 1991. The nucleotide sequence for a proline-activating domain of gramicidin S synthetase 2 gene from Bacillus brevis. J. Biochem. 110: 111 119.
46. Horinouchi, S.,, and T. Beppu. 1990. Autoregulatory factors of secondary metabolism and morphogenesis in actinomyces. Crit. Rev. Biotechnol. 10: 191 204.
47. Horn, N.,, S. Swindell,, H. Dodd,, and M. Gasson. 1991. Nisin biosynthesis genes are encoded by a novel conjugative transposon. Mol. Gen. Genet. 228: 129 135.
48. Hyde, S. C.,, P. Emsley,, M. J. Hartshorn,, M. M. Mimmack,, U. Gileadi,, S. R. Pearce,, M. P. Gallagher,, D. R. Gill,, R. E. Hubbard,, and C. F. Higgins. 1990. Structural model of ATP-binding proteins associated with cystic fibrosis, multi-drug resistance and bacterial transport. Nature (London) 346: 362 365.
49. Imai, S.,, H. Seto,, T. Sasaki,, T. Tsuruoka,, H. Ogawa,, A. Satoh,, S. Inouye,, T. Niida,, and N. Otake. 1985. Studies on the biosynthesis of bialaphos (SF-1293). 4. Production of phosphonic acid derivatives 2-hydroxyeth-ylphosphonic acid, hydroxymethylphosphonic acid and phosphonoformic acid by blocked mutants of Streptomyces hygroscopicus SF-1293 and their roles in the biosynthesis of bialaphos. J. Antibiot. 37: 1505 1508.
50. Imai, S.,, H. Seto,, T. Sasaki,, T. Tsuruoka,, H. Ogawa,, A. Satoh,, S. Inouye,, T. Niida,, and N. Otake. 1985. Studies on the biosynthesis of bialaphos (SF-1293). 6. Production of N-acetyldemethylphosphinothricin and N-acetylbialaphos by blocked mutants of Streptomyces hygroscopicus SF-1293 and their roles in the biosynthesis of bialaphos. J. Antibiot. 38: 687 690.
51. Ishlhara, H.,, N. Hara,, and T. Iwabuchi. 1989. Molecular cloning and expression in Escherichia coli of the Bacillus licheniformis bacitracin synthetase 2 gene. J. Bacteriol. 171: 1705 1711.
52. Ishlhara, H.,, and K. Shimura. 1988. Further evidence for the presence of a thiazoline ring in the isoleucylcysteine dipeptide intermediate in bacitracin biosynthesis. FEB Lett. 226: 319 323.
53. Jaacks, K. J.,, J. Healy,, R. Losick,, and A. D. Grossman. 1989. Identification and characterization of genes controlled by the sporulation regulatory gene spo0H in Bacillus subtilis. J. Bacteriol. 171: 4121 4129.
54. Jones, G. H. 1985. Regulation of phenoxazinone synthase expression in Streptomyces antibioticus. J. Bacteriol. 163: 1215 1221.
55. Jones, G. H.,, and D. A. Hopwood. 1984. Activation of phenoxazinone synthase expression in Streptomyces lividans by cloned DNA sequences from Streptomyces antibioticus. J. Biol. Chem. 259: 14158 14164:
56. Jones, G. H.,, and D. A. Hopwood. 1984. Molecular cloning and expression of the phenoxazinone synthase gene from Streptomyces antibioticus. J. Biol. Chem. 259: 14151 14157.
57. Jung, G. 1991. Lantibiotica-ribosomal synthetisierte Polypeptidwirkstoffe mit Sulfidbrucken und α, β-dide-hydroamino Sauren. Angew. Chem. 103: 1067 1084.
58. Kalletta, C.,, and K.-D. Entian. 1989. Nisin, a peptide antibiotic: cloning and sequencing of the nisA gene and posttranslational processing of its peptide product. J. Bacteriol. 171: 1597 1601.
59. Kalletta, C.,, K.-D. Entian,, and G. Jung. 1991. Prepep-tide sequence of cinnamycin (Ro 09-0198); the first structural gene of a duramycin-type lantibiotic. Eur. J. Biochem. 199: 411 415.
60. Kaletta, C.,, K.-D. Entian,, F. Kellner,, G. Jung,, M. Reis,, and H. G. Sahl. 1989. Pep5, a new lantibiotic: structural gene isolation and prepeptide sequence. Arch. Microbiol. 152: 16 19.
61. Kanda, M.,, K. Hori,, T. Kurotsu,, S. Miura,, Y. Yamada,, and Y. Saito. 1981. Sulfhydryl groups related to the catalytic activity of gramicidin S synthetase 1 of Bacillus brevis. J. Biochem. 90: 765 771.
62. Katz, E., 1967. Actinomycin, p. 276 341. In D. Gottlieb, and P. D. Shaw (ed.), Antibiotics II. Springer-Verlag, New York.
63. Katz, E.,, and A. L. Demain. 1977. The peptide antibiotics of Bacillus: chemistry, biogenesis and possible functions. Bacteriol. Rev. 41: 449 474.
64. Keller, U. 1987. Actinomycin synthetases: multifunctional enzymes responsible for the synthesis of the peptide chains of actinomycin. J. Biol. Chem. 262: 5852 5856.
65. Kellner, R.,, G. Jung,, T. Horner,, H. Zahner,, N. Schnell,, K.-D. Entlan,, and F. Gotz. 1988. Gallidermin: a new lanthionine-containing polypeptide antibiotic. Eur. J. Biochem. 177: 53 59.
66. Kellner, R.,, G. Jung,, M. Josten,, C. Kaletta,, K.-D. Entlan,, and H.-G. Sahl. 1989. Pep5: structure elucidation of a large lantibiotic. Angew. Chem. Int. Ed. Engl. 28: 616 619.
67. Kelly, K. S.,, K. Ochi,, and G. H. Jones. 1991. Pleiotropic effects of a relC mutation in Streptomyces antibioticus. J. Bacterial. 175: 2297 2300.
68. Kenig, M.,, and E. P. Abraham. 1976. Antimicrobial activities and antagonists of bacilysin and anticapsin. J. Gen. Microbiol. 94: 37 45.
69. Klelnkauf, H.,, W. Gevers,, and F. Lipmann. 1969. Interrelation between activation and polymerization in gramicidin S biosynthesis. Proc. Natl. Acad. Sci. USA 62: 226 233.
70. Klelnkauf, H.,, and H. von Dohren,. 1984. Peptide antibiotics, p. 283 307. In H. Pape, and H.-J. Rehm (ed.), Biotechnology, vol. 4. Microbial Products II. VCH Ver-lagsgesellschaft mbH, Weinheim, Germany.
71. Klelnkauf, H.,, and H. von Dohren. 1988. Peptide antibiotics, β-lactams, and related compounds. Crit. Rev. Biotechnol. 8: 1 32.
72. Klelnkauf, H.,, and H. von Dohren. 1990. Nonribosomal biosynthesis of peptide antibiotics. Eur. J. Biochem. 192: 1 15.
73. Komura, S.,, and K. Kurahashi. 1980. Biosynthesis of polymyxin E by a cell-free system. J. Biochem. 88: 285 288.
74. Komura, S.,, and K. Kurahashi. 1980. Biosynthesis of polymyxin E. III. Total synthesis by a cell-free enzyme system. Biochem. Biophys. Res. Commun. 95: 1145 1151.
75. Komura, S.,, and K. Kurahashi. 1985. Biosynthesis of polymyxin E. IV. Acylation of enzyme-bound l-2,4, deamino butyric acid. J. Biochem. 97: 1409 1417.
76. Kratzschmar, J.,, M. Krause,, and M. A. Marahiel. 1989. Gramicidin S biosynthesis operon containing the structural genes grsA and grsB has an open reading frame encoding a protein homologous to fatty acid thio-esterases. J. Bacterial. 171: 5422 5429.
77. Krause, M.,, M. A. Marahiel,, H. von Dohren,, and H. Klelnkauf. 1985. Molecular cloning of an ornithineactivating fragment of the gramicidin S synthetase 2 gene from Bacillus brevis and expression in Escherichia coli. J. Bacteriol. 162: 1120 1125.
78. Kubota, K. 1982. Generation of formic acid and etha-nolamine from serine in biosynthesis of linear gramicidin by cell-free preparation of Bacillus brevis (ATCC 8185). Biochem. Biophys. Res. Commun. 105: 688 697.
79. Kugler, M.,, W. Loefller,, C. Rapp,, A. Kern,, and G. Jung. 1990. Rhizocticin A, an antifungal phosphono-oligopep-tide of Bacillus subtilis ATCC6633: biological properties. Arch. Microbiol. 153: 276 281.
80. Kurahashi, K,. 1981. Biosynthesis of peptide antibiotics, p. 325 352. In J. W. Corcoran (ed.), Antibiotics, vol. IV. Biosynthesis. Springer, Berlin.
81. Kurotsu, R.,, K. Hori,, M. Kanda,, and Y. Saito. 1991. Characterization and location of the l-proline activating fragment from the multifunctional gramicidin S synthetase 2. Biochem. J. 109: 763 769.
82. Lipmann, F. 1980. Bacterial production of antibiotic polypeptides by thiol-linked synthesis on protein templates. Adv. Microb. Physiol. 21: 227 260.
83. Liu, W.,, and J. N. Hansen. 1990. Some chemical and physical properties of nisin, a small-protein antibiotic produced by Lactococcus lactis. Appl. Environ. Microbiol. 56: 2551 2558.
84. Loyoza, E.,, H. Hoffmann,, C. Douglas,, W. Schulz,, D. Scheel,, and K. Hahlbrock. 1988. Primary structure and catalytic properties of isoenzymes encoded by the two 4-courmarate:CoA ligase genes in parsley. Eur. J. Biochem. 176: 661 667.
85. MacCabe, A. P.,, H. van Liempt,, H. Palissa,, S. E. Unkles,, M. B. R. Riach,, E. Pfeifer,, H. Von Dohren,, and J. R. Kinghorn. 1991. δ-(l-α-Aminoadipyl)-l-cysteinyl-d-valine synthetase from Aspergillus nidulans—molecular characterization of the acvA gene encoding the first enzyme of the penicillin biosynthetic pathway. J. Biol. Chem. 266: 12646 12654.
86. Madu, A. C.,, and G. H. Jones. 1989. Molecular cloning and in vitro expression of a silent phenoxazinone synthase gene from Streptomyces lividans. Gene 84: 287 294.
87. Majumder, S.,, S. K. Ghosh,, N. K. Mukhopadhyay,, and S. K. Bose. 1985. Accumulation of peptides by mycoba-cillin-negative mutants of Bacillus subtilis B 3. J. Gen. Microbiol. 131: 119 127.
88. Majumder, S.,, S. K. Mudhopadhyay,, S. K. Ghosh,, and S. K. Bose. 1988. Genetic analysis of the mycobacillin biosynthetic pathway in Bacillus subtilis B 3. J. Gen. Microbiol. 134: 1147 1153.
89. Majumder, S. K.,, and S. K. Bose. 1958. Mycobacillin, a new antifungal antibiotic produced by Bacillus subtilis. Nature (London) 181: 134 135.
90. Marahiel, M. A.,, P. Zuber,, G. Czekay,, and R. Losick. 1987. Identification of the promoter for a peptide antibiotic gene from Bacillus brevis and studies on its regulation in Bacillus subtilis. J. Bacteriol. 169: 2215 2222.
91. Martin, J. F.,, and P. Liras. 1989. Organization and expression of genes involved in the biosynthesis of antibiotics and other secondary metabolites. Annu. Rev. Microbiol. 43: 173 206.
92. Mathlopoulos, C.,, J. P. Mueller,, F. J. Slack,, C. G. Murphy,, S. Patankar,, G. Bukusoglu,, and A. L. Sonenshein. 1990. A Bacillus subtilis dipeptide transport system expressed early during sporulation. Mol. Microbiol. 5: 1903 1913.
93. Meister, A. 1988. Glutathione metabolism and its selective modification. J. Biol. Chem. 263: 17205 17208.
94. Mittenhuber, G.,, R. Weckermann,, and M. A. Marahiel. 1989. Gene cluster containing the genes for tyrocidine synthetases 1 and 2 from Bacillus brevis: evidence for an operon. J. Bacteriol. 171: 4881 4887.
95. Monaghan, R. L.,, and J. S. Tkacz. 1990. Bioactive microbial products: focus upon mechanism of action. Annu. Rev. Microbiol. 44: 271 301.
96. Morris, M. E.,, and S. Jinks-Robertson. 1991. Nucleotide sequence of the LYS2 gene of Saccharomyces cerevisiae: homology to Bacillus brevis tyrocidine synthetase 1. Gene 98: 141 145.
97. Mukhopadhyay, N. K.,, S. Majumder,, S. K. Ghosh,, and S. K. Bose. 1986. Characterization of three-fraction mycobacillin synthetase. Biochem. J. 235: 639 643.
98. Murakami, T.,, H. Anzai,, S. Imai,, A. Satoh,, K. Nagaoka,, and C. J. Thompson. 1986. The bialaphos biosynthetic genes of Streptomyces hygroscopicus: molecular cloning and characterization of the gene cluster. Mol. Gen. Genet. 205: 42 50.
99. Nakano, M. M.,, N. Corbell,, J. Besson,, and P. Zuber. Isolation and characterization of sfp: a gene required for the production of the lipopeptide biosurfactant, surfactin in Bacillus subtilis. Mol. Gen. Genet. 232: 313 321.
100. Nakano, M. M.,, R. Magnuson,, A. Myers,, J. Curry,, A. D. Grossman,, and P. Zuber. 1991. srfA is an operon required for surfactin production, competence development, and efficient sporulation in Bacillus subtilis. J. Bacteriol. 173: 1770 1778.
101. Nakano, M. M.,, M. A. Marahiel,, and P. Zuber. 1988. Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis. J. Bacteriol. 170: 5662 5668.
102. Nakano, M. M.,, L. Xia,, and P. Zuber. 1991. The transcription initiation region of the srfA operon which is controlled by the comP-comA signal transduction system in Bacillus subtilis. J. Bacteriol. 173: 5487 5493.
103. Nakano, M. M.,, and P. Zuber. 1989. Cloning and characterization of srfB: a regulatory gene involved in surfactin and competence in Bacillus subtilis. J. Bacteriol. 171: 5347 5353.
104. Nakano, M. M.,, and P. Zuber,. 1990. Identification of genes required for the biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis, p. 397 405. In J. Hoch, and A. T. Ganesan (ed.), Genetics and Biotechnology of Bacilli, vol. 3. Academic Press, Inc., New York.
105. Nakano, M. M.,, and P. Zuber. 1990. Molecular biology of antibiotic production in Bacillus. Crit. Rev. Biotechnol. 10: 223 240.
106. Nakano, M. M.,, and P. Zuber. 1991. The primary role of comA in the establishment of the competent state in Bacillus subtilis is to activate the expression of srfA. J. Bacteriol. 173: 7269 7274.
107. Nakano, M. M.,, and P. Zuber. 1991. Transcriptional regulation of srfA and the involvement of srfA in competence development in Bacillus subtilis. Int. Conf. Genet. Biotechnol. Bacilli, Stanford, Calif.
108. Nishio, C.,, S. Komura,, and K. Kurahashi. 1983. Peptide antibiotic subtilin is synthesized via precursor proteins. Biochem. Biophys. Res. Gommun. 116: 751 758.
109. Perego, M.,, C. F. Higgins,, S. R. Pearce,, M. P. Gallagher,, and J. A. Hoch. 1991. The oligopeptide transport system of Bacillus subtilis plays a role in the initiation of sporulation. Mol. Microbiol. 5: 173 185.
110. Perego, M.,, G. B. Spiegelman,, and J. Hoch. 1989. Structure of the gene for the transition state regulator, abrB, regulator synthesis is controlled by the spo0A sporulation gene in Bacillus subtilis. Mol. Microbiol. 2: 689 699.
111. Peypoux, F.,, D. Marion,, R. Maget-Dana,, M. Ptak,, B. C. Das,, and G. Michel. 1985. Structure of bacillomycin F, a new peptide antibiotic of the iturin group. Eur. J. Biochem. 153: 335 340.
112. Peypoux, F.,, M.-T. Pommier,, B. C. Das,, F. Besson,, L. Delcambe,, and G. Michel. 1984. Structures of bacillomycin D and bacillomycin L peptidolipid antibiotics from Bacillus subtilis. J. Antibiot. 37: 1600 1604.
113. Peypoux, F.,, M. T. Pommier,, D. Marion,, M. Ptak,, B. C. Das,, and G. Michel. 1986. Revised structure of mycosubtilin, a peptidolipid antibiotic from Bacillus subtilis. J. Antibiot. 39: 636 641.
114. Podlesek, Z.,, and M. Grabnar. 1987. Genetic mapping of the bacitracin synthetase gene(s) in Bacillus licheniformis. J. Gen. Microbiol. 133: 3093 3097.
115. Podlesek, Z.,, and M. Grabnar. 1989. Sporulation of a bacitracin-sensitive mutant of Bacillus licheniformis is self-inhibited by bacitracin. J. Gen. Microbiol. 135: 2813 2818.
116. Raibaud, A.,, M. Zalacain,, G. Holt,, R. Tizard,, and C. J. Thompson. 1991. Nucleotide sequence analysis reveals linked N-acetyl hydrolase, thioesterase, transport, and regulatory genes encoded by the bialaphos biosynthetic gene cluster of Streptomyces hygroscopicus. J. Bacteriol. 173: 4454 4463.
117. Rapp, C.,, G. Jung,, W. Katzer,, and W. Loeffler. 1988. Chlorotetain from Bacillus subtilis, an antifungal dipeptide with an unusual chlorine-containing amino acid. Angew. Chem. 27: 1733 1734.
118. Robertson, J. R.,, M. Gocht,, M. A. Marahiel,, and P. Zuber. 1989. AbrB, a regulator of gene expression in Bacillus, interacts with the transcription initiation regions of a sporulation and an antibiotic biosynthesis gene. Proc. Natl. Acad. Sci. USA 86: 8457 8461.
119. Rogers, H. J.,, G. G. F. Newton,, and E. P. Abraham. 1965. Production and purification of bacilysin. Biochem. J. 97: 573 586.
120. Roland, I.,, O. Freyshov,, and S. G. Laland. 1975. On the presence of pantetheinic acid in the three complementary enzymes of bacitracin synthetase. FEBS Lett. 60: 305 308.
121. Rudner, D.,, J. R. LeDeaux,, K. Ireton,, and A. D. Grossman. 1991. The spo0K locus of Bacillus subtilis is homologous to the oligopeptide permease locus and is required for sporulation and competence. J. Bacteriol. 173: 1338 1398.
122. Rusnak, F.,, M. Sakaitani,, D. Drueckhammer,, J. Reichert,, and C. T. Walsh. 1991. Biosynthesis of the Escherichia coli siderophore enterobactin: sequence of the entF gene, expression and purification of EntF, and analysis of covalent phosphopantetheine. Biochemistry 30: 2916 2927.
123. Sakajoh, M.,, N. A. Solomon,, and A. L. Demain. 1987. Cell-free synthesis of the dipeptide antibiotic bacilysin. J. Ind. Microbiol. 2: 201 208.
124. Saraste, M.,, P. R. Sibbald,, and A. Wittinghofer. 1990. The P-loop: a common motif in ATP- and GTP-binding proteins. Trends Biochem. Sci. 15: 430 434.
125. Schaeffer, P. 1969. Sporulation and the production of antibiotics, exoenzymes, and exotoxins. Bacteriol. Rev. 33: 48 71.
126. Schlumbohm, W.,, T. Stein,, C. Ullrich,, J. Vater,, M. Krause,, M. A. Marahiel,, V. Kruft,, and B. Wittman-Liebold. 1991. An active serine is involved in covalent substrate amino acid binding at each reaction center of gramicidin S synthetase. J. Biol. Chem. 266: 23135 23141.
127. Schnell, N.,, K.-D. Entian,, F. Gotz,, R. Horner,, R. Kellner,, and G. Jung. 1989. Structural gene isolation and prepeptide sequence of gallidermin, a new lanthionine containing antibiotic. FEMS Lett. 58: 263 268.
128. Schnell, N.,, K.-D. Entan,, U. Schneider,, F. Gotz,, H. Zahner,, R. Kellner,, and G. Jung. 1988. Prepeptide sequence of epidermin, a ribosomally synthesized antibiotic with four sulphide-rings. Nature (London) 333: 276 278.
129. Schrempf, H. 1985. Genetic instability: amplification, deletion and rearrangement within Streptomyces DNA, p. 436 439. In L. Leive (ed.), Microbiology—1985. American Society for Microbiology, Washington, D.C.
130. Seto, H.,, S. Imai,, T. Tsuruoka,, H. Ogawa,, A. Satoh,, T. Sasaki,, and N. Otake. 1983. Studies on the biosynthesis of bialaphos (SF-1293). 3. Production of phosphinic acid derivatives, MP-103, MP-104, and MP-105, by a blocked mutant of Streptomyces hygroscopicus SF-1293 and their roles in the biosynthesis of bialaphos. J. Antibiot. 37: 1509 1511.
131. Seto, H.,, S. Imai,, T. Tsuruoka,, A. Satoh,, M. Kojima,, S. Inouye,, T. Sasaki,, and N. Otake. 1982. Studies on the biosynthesis of bialaphos (SF-1293). 1. Incorporation of l3C and 3H labeled precursors into bialaphos. J. Antibiot. 35: 1719 1721.
132. Seto, H.,, T. Sasaki,, S. Imai,, T. Tsuruoka,, H. Ogawa,, A. Satoh,, S. Inouye,, T. Niida,, and N. Otake. 1983. Studies on the biosynthesis of bialaphos (SF-1293). 2. Isolation of the first natural products with a C-P-H bond and their involvement in the C-P-C bond formation. J. Antibiot. 36: 96 98.
133. Sinderen, D. V.,, S. Withoff,, H. Boels,, and G. Venema. 1990. Isolation and characterization of comL, a transcription unit involved in competence development of Bacillus subtilis. Mol. Gen. Genet. 224: 396 404.
134. Skarpeid, H.J.,, T.-L. Zlmmer,, B. Shen,, and H. von Dohren. 1990. The proline-activating activity of the multienzyme gramicidin S synthetase 2 can be recovered on a 115-kDa tryptic fragment. Eur. J. Biochem. 187: 627 633.
135. Skarpeid, H.-J.,, T.-L. Zimmer,, and H. von Dohren. 1990. On the domain construction of the multienzyme gramicidin S synthetase 2. Eur. J. Biochem. 189: 517 522.
136. Smith, D. J.,, M. K. R. Burnham,, J. H. Bull,, J. E. Hodgson,, J. M. Ward,, P. Browne,, J. Brown,, B. Barton,, A. J. Earl,, and G. Turner. 1990. β-Lactam antibiotic biosynthetic genes have been conserved in clusters in prokaryotes and eukaryotes. EMBO J. 9: 741 747.
137. Smith, D. J.,, A. F. Earl,, and G. Turner. 1990. The multifunctional peptide synthetase performing the first step of penicillin biosynthesis in Penicillium chrysogenum is a 421 073 dalton protein similar to Bacillus brevis peptide antibiotic synthetases. EMBO J. 9: 2743 2750.
138. Staab, J. F.,, M. Elklns,, and C. F. Earhart. 1989. Nucleotide sequence of the Escherichia coli entE gene. FEMS Microbiol. Lett. 59: 15 20.
139. Stoll, E.,, 0. Freshov,, H. Holm,, T. L. Zimmer,, and S. G. Laland. 1976. On the mechanism of gramicidin S formation from intermediate peptides. FEBS Lett. 11: 348 352.
140. Strauch, E.,, E. Takano,, H. A. Baylis,, and M. J. Bibb. 1991. The stringent response in Streptomyces coelicolor. Mol. Microbiol. 5: 289 298.
141. Strauch, M. A.,, Spiegelman, G. B.,, M. Perego,, W. C. Johnson,, D. Burbulys,, and J. A. Hoch. 1989. The transition-state transcription regulator AbrB of Bacillus subtilis is a DNA-binding protein. EMBO J. 8: 1615 1621.
142. Suzuki, H.,, Y. Kawarabayashl,, J. Kondo,, T. Abe,, K. Nishikawa,, S. Kimura,, T. Hashimoto,, and T. Yamamoto. 1991. Structure and regulation of rat long-chain acyl-CoA synthetase. J. Biol. Chem. 265: 8681 8685.
143. Tomlno, S.,, M. Yamada,, H. Itoh,, and K. Kurahashl. 1967. Cell-free synthesis of gramicidin S. Biochemistry 6: 2552 2560.
144. Trowsdale, J.,, I. Hanson,, I. Mockridge,, S. Beck,, A. Townsend,, and A. Kelly. 1990. Sequences encoded in the class II region of the MHC related to the ABC superfamily of transporters. Nature (London) 348: 741 743.
145. Turgay, K.,, M. Krause,, and M. A. Marahiel. 1992. Four homologous domains in the primary structure of GrsB are related to domains in a superfamily of adenylateforming enzymes. Mol. Microbiol. 6: 529 546.
146. Ullich, C.,, B. Kluge,, P. Zbigniew,, and J. Vater. 1991. Cell-free biosynthesis of surfactin, a cyclic lipopeptide produced by Bacillus subtilis. Biochemistry 30: 6503 6508.
147. Vater, J., 1989. Lipopeptides, an interesting class of microbial secondary metabolites, p. 27 38. In U. P. Schlunegger (ed.), Biologically Active Molecules. Springer-Verlag, Berlin.
148. Vining, L. C. 1990. Functions of secondary metabolites. Annu. Rev. Microbiol. 44: 395 427.
149. Walker, J. E.,, and E. P. Abraham. 1970. The structure of bacilysin and other products of Bacillus subtilis. Biochem. J. 118: 563 570.
150. Weckermann, R.,, R. Furbaß,, and M. A. Marahiel. 1988. Complete nucleotide sequence of tycA gene coding the tyrocidine synthetase 1 from Bacillus brevis. Nucleic Acids Res. 16: 11841.
151. Weil, H.-P.,, A. G. Beck-Sickinger,, H. Metzger,, S. Stevanovlc,, G. Jung,, M. Josten,, and H.-G. Sahl. 1990. Biosynthesis of the lantibiotic Pep5. Eur. J. Biochem. 194: 217 223.
152. Welnrauch, Y.,, N. Guillen,, and D. A. Dubnau. 1989. Sequence and transcription mapping of Bacillus subtilis competence genes comB and comA, one of which is related to a family of bacterial regulatory determinants. J. Bacteriol. 171: 5362 5375.
153. Welnrauch, Y.,, T. Msadek,, F. Kunst,, G. Rapoport,, and D. Dubnau. 1991. Sequence and properties of comQ, a new competence gene of Bacillus subtilis. J. Bacteriol. 173: 5685 5693.
154. Welnrauch, Y.,, R. Penchev,, E. Dubnau,, I. Smith,, and D. Dubnau. 1990. A Bacillus subtilis regulatory gene product for genetic competence and sporulation resembles sensor protein members of the bacterial two-component signal-transduction systems. Genes Dev. 4: 860 872.
155. Willey, J.,, R. Santamaria,, J. Guijarro,, M. Geistlich,, and R. Losick. 1991. Extracellular complementation of a developmental mutation implicates a small sporulation protein in aerial mycelium formation by S. coelicolor. Cell 65: 641 650.
156. Zuber, P.,, and R. Losick. 1987. Role of AbrB in the SpoOA- and SpoOB-dependent utilization of a sporulation promoter in Bacillus subtilis. J. Bacteriol. 169: 2223 2230.

Tables

Generic image for table
Table 1

Peptide antibiotics produced by gram-positive bacteria, producing organisms, and brief descriptions of structure, function, and uses

Citation: Zuber P, Nakano M, Marahiel M. 1993. Peptide Antibiotics, p 897-916. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch61
Generic image for table
Table 2

Homology of putative active sites within adenylating and peptide synthetase enzymes

Citation: Zuber P, Nakano M, Marahiel M. 1993. Peptide Antibiotics, p 897-916. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch61

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error