1887

Chapter 64 : Insecticidal Toxins

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Insecticidal Toxins, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap64-1.gif /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap64-2.gif

Abstract:

is unique in that a substantial fraction (10 to 20%) of its total potential genetic information, including most protoxin genes, is present as plasmids. Since it is the synthesis of the protoxins and their deposition as inclusions that clearly differentiate these bacilli from a variety of other sporeformers, the properties of the protoxin genes, their regulation, and the mechanism of action of the 5-endotoxins is the focus of this chapter. The infestation of Japanese beetle grubs by is a classic example of bacilli producing insecticidal toxins. The most extensive studies have been done with subspecies that produce proteinaceous inclusions during sporulation. The inclusions are often bipyramidal, but some are cuboidal or multifaceted, and there is a wide variety of other morphologies. According to an analysis of flagellum antigens, includes at least 20 serotypes, and most isolates contain more than one protoxin gene, with a unique complement in each subspecies. More than 50 protoxin genes have been sequenced, and this information plus some toxicity data has provided a basis for the classification of these genes. The carboxyl halves of protoxins that are removed by gut proteases are extensively conserved among the CryI, CryIVA, and CryIVB protoxins. This portion of the molecule is probably important for the deposition of protoxins in inclusions and may also function to protect the toxin.

Citation: Aronson A. 1993. Insecticidal Toxins, p 953-963. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch64

Key Concept Ranking

RNA Polymerase
0.5050505
Bacillus cereus
0.48230633
0.5050505
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

General structural features of protoxins as deduced from gene sequences and other related data. Protoxins designated CryIA through CryIG, CryIVA, and CryIVB contain 1,100 to 1,200 amino acids, and the toxin is processed from within the amino half as shown. The CryII, CryIII, and CryIVD protoxins are smaller, with processing to toxins as indicated (not known for CryIVD). Regions marked 1 through 5 are highly conserved among the CryI, CryIII, CryIVA, and CryIVB toxins and less so (primarily regions 1 and 2) for the CryII and CryIVD toxins. The carboxyl halves of the CryI, CryIVA, and CryIVB protoxins are also extensively conserved. A major difference is the deletion of 26 amino acids (26) in most of the CryIA(b) protoxins. Other portions of the toxins are more or less conserved within a particular class (i.e., those designated CryI or CryII, etc.) but not between these classes.

Citation: Aronson A. 1993. Insecticidal Toxins, p 953-963. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch64
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Schematic ribbon representation of the CryIIIA toxin ( ). The three domains include a seven-helix bundle (upper left), a three-sheet assembly (bottom right), and a sandwich (upper right).

Citation: Aronson A. 1993. Insecticidal Toxins, p 953-963. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch64
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818388.chap64
1. Adams, L. F.,, K. L. Brown,, and H. R. Whiteley. 1991. Molecular cloning and characterization of two genes encoding sigma factors that direct transcription from a Bacillus thuringiensis crystal protein gene promoter. J. Bacterid. 173:38463854.
2. Ahmad, W.,, and D. J. Ellar. 1990. Directed mutagenesis of selected regions of a Bacillus thuringiensis entomo-cidal protein. FEMS Microbiol. Lett. 68:97104.
3. Aronson, A. I.Submitted for publication.
4. Aronson, A. I.,, W. Beckman,, and P. Dunn. 1986. Bacillus thuringiensis and related insect pathogens. Microbiol. Rev. 50:124.
5. Aronson, A. I.,, and P. C. Fitz-James. 1976. Structure and morphogenesis of the bacterial spore coat. Bacteriol. Rev. 40:360402.
6. Aronson, A. I.,, E.-S. Han,, W. McGaughey,, and D. John son. 1991. The solubility of inclusion proteins from Bacillus thuringiensis is dependent upon protoxin com position and is a factor in toxicity to insects. Appl. Environ. Microbiol. 37:981986.
7. Arvidson, H.,, P. E. Dunn,, S. Strnad,, and A. I. Aronson. 1989. Specificity of Bacillus thuringiensis for lepidopteran larvae: factors involved in vivo and in the structure of a purified protoxin. Mol. Microbiol. 3:15331543.
8. Baumann, P.,, M. A. Clark,, L. Baumann,, and A. H. Broadwell. 1991. Bacillus sphaericus as a mosquito pathogen: properties of the organism and its toxins. Microbiol. Rev. 55:425436.
9. Benolt, T. G.,, G. R. Wilson,, D. L. Bull,, and A. I. Aronson. 1990. Plasmid-associated sensitivity of Bacillus thuring iensis to UV light. Appl. Environ. Microbiol. 56:22822286.
10. Bietlot, H. P. L.,, J. Vishmulhatla,, P. R. Carey,, M. Pozsgay,, and H. Kaplan. 1990. Characterization of the cysteine residues and disulphide linkages in the protein crystal of Bacillus thuringiensis. Biochem. J. 267:309315.
11. Bourgouin, C,, A. Delécluse,, F. delaTorre,, and J. Szulmajster. 1990. Transfer of the toxin protein genes of Bacillus sphaericus into Bacillus thuringiensis subsp. is-raelensis and their expression. Appl. Environ. Microbiol. 56:340344.
12. Brown, K. L.,, and H. R. Whiteley. 1988. Isolation of a Bacillus thuringiensis RNA polymerase capable of tran scribing crystal protein genes. Proc. Natl. Acad. Sci. USA 85:41664170.
13. Bulla, L. A.,Jr.,, R. N. Costilow,, and E. S. Sharpe. 1978. Biology of Bacillus popilliae. Adv. Appl. Microbiol. 23:118.
14. Caramori, T.,, A. M. Albertinl,, and A. Gallzzi. 1991. In vivo generation of hybrids between two Bacillus thuring iensis insect-toxin-encoding genes. Gene 98:3744.
15. Carlton, B. C,, and J. M. Gonzalez, Jr., 1985. The genetics and molecular biology of Bacillus thuringiensis, p. 211249. In D. A. Dubnau (ed.), The Molecular Biology of the Bacilli, vol. II. Academic Press, Inc., New York.
16. Carroll, J.,, J. Li,, and D. J. Ellar. 1989. Proteolytic processing of a coleopteran-specific δ-endotoxin produced by Bacillus thuringiensis var. tenebrionis. Biochem. J. 261:99105.
17. Charles, J.-F.,, L. Nicolas,, M. Sebald,, and H. de Barjac. 1990. Clostridium bifermentans serovar malaysia: sporu lation, biogenesis of inclusion bodies and larvicidal ef fect on mosquitos. Res. Microbiol. 141:721733.
18. Choma, C. T.,, W. K. Surewlcz,, P. R. Carey,, M. Pozsgay,, T. Raynor,, and H. Kaplan. 1990. Unusual proteolysis of the protoxin and toxin from Bacillus thuringiensis. Eur. J. Biochem. 189:523527.
19. Convents, D.,, M. Cherlet,, J. VanDamme,, I. Lasters,, and M. Lauwereys. 1991. Two structural domains as a gen eral fold of the toxic fragment of the Bacillus thuringien sis δ-endotoxins. Eur. J. Biochem. 195:631635.
20. Convents, D.,, C. Houssier,, I. Lasters,, and M. Lauwereys. 1990. The Bacillus thuringiensis δ-endotoxin. Evidence for a two domain structure of the minimal toxic frag ment. J. Biol. Chem. 265:13691375.
20a.. Crickmore, N.,, and D. J. Ellar. 1992. Involvement of a possible chaperonin in the efficient expression of a cloned CryIIA δ-endotoxin gene in Bacillus thuringiensis. Mol. Microbiol. 6:15331537.
21. Crickmore, N.,, C. Nicholls,, D. J. Eays,, T. C. Hodgman,, and D. J. Ellar. 1990. The construction of Bacillus thur ingiensis strains expressing novel entomocidal δ-endotoxin combinations. Biochem. J. 270:133136.
22. deBarjac, H., 1981. Identification of the H-serotypes of Bacillus thuringiensis, p. 3543. In W. H. Burgess (ed.), Microbial Control of Pest and Plant Diseases, 19701980. Academic Press, Inc., New York.
23. Delecluse, A.,, C. Bourgouin,, G. Menou,, D. Lereclus,, A. Klier,, and G. Rapaport,. 1990. IS240 associated with the cryIVA gene from Bacillus thuringiensis israelensis be longs to a family of gram(+) and gram(-) IS elements, p. 181190. In M. M. Zukowski,, A. T. Ganesan,, and J. A. Hoch (ed.). Genetics and Biotechnology of Bacilli, vol. 3. Academic Press, Inc., San Diego, Calif.
24. DeUcluse, A.,, J.-F. Charles,, A. Klier,, and G. Rapaport. 1991. Deletion by in vivo recombination shows that the 28-kilodalton cytolytic polypeptide from Bacillus thur ingiensis subsp. israelensis is not essential for mosquito-cidal activity. J. Bacteriol. 173:33743381.
25. Edwards, D. L.,, J. Payne,, and G. G. Soares. 1990. Novel isolates of Bacillus thuringiensis having activity against nematodes. U.S. patent 4,948,734.
26. Fauret, M. E.,, and A. A. Yousten. 1989. Thuricin: the bacteriocin produced by Bacillus thuringiensis. J. Invertebr. Pathol. 53:206216.
27. Federici, B. A.,, P. Luthy,, and J. E. Ibarra,. 1990. Para sporal body of Bacillus thuringiensis israelensis. Struc ture, protein composition and toxicity, p. 1644. In H. deBarjac, and D. Sutherland (ed.), Bacterial Control of Mosquitoes and Black Flies. Rutgers University Press, New Brunswick, N.J.
28. Ferre, J.,, M. D. Real,, J. VanRie,, S. Jansens,, and M. Peferoen. 1991. Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proc. Natl. Acad. Sci. USA 88:51195123.
29. Garczynski, S. F.,, J. W. Crim,, and M. J. Adang. 1991. Identification of putative insect brush border mem brane-binding molecules specific to Bacillus thuringien sis δ-endotoxin by protein blot analysis. Appl. Environ. Microbiol. 57:28162820.
30. Ge, A. Z.,, N. I. Shlvarova,, and D. H. Dean. 1989. Location of the Bombyx mori specificity domain on a Bacillus thuringiensis δ-endotoxin protein. Proc. Natl. Acad. Sci. USA 86:40374041.
31. Geiser, M. (Ciba-Geigy.) 1990. Personal communication.
32. Geiser, M.,, S. Schweitzer,, and C. Grimm. 1986. The hypervariable region in the genes coding for entomopathogenic crystal protein of Bacillus thuringiensis: nucleotide sequence of the kurdhl gene of subspecies kurstaki HD1. Gene 48:109118.
33. Gonzalez, J. M., Jr.,, B. S. Brown,, and B. C. Carlton. 1982. Transfer of Bacillus thuringiensis plasmids coding for δ-endotoxin among strains of B. thuringiensis and B. cereus. Proc. Natl. Acad. Sci. USA 79:69516955.
34. Gonzalez, J. M., Jr.,, and B. C. Carlton. 1984. A large transmissible plasmid is required for crystal toxin pro auction in Bacillus thuringiensis variety israelensis. Plasmid 11:2838.
35. Haider, M. Z.,, and D. J. Ellar. 1989. Functional mapping of an entomocidal delta-endotoxin: single amino acid changes produced by site-directed mutagenesis influence toxicity and specificity of the protein. J. Mol. Biol. 208: 183194.
36. Haider, M. Z.,, E. S. Ward,, and D. J. Ellar. 1987. Cloning and heterologous expression of an insecticidal delta-endotoxin gene from Bacillus thuringiensis subsp. aiza wai IC1 toxic to both Lepidoptera and Diptera. Gene 52:285290.
37. Hodgman, T. C,, and D. J. Ellar. 1990. Models for the structure and function of the Bacillus thuringiensis δ-endotoxins determined by compilational analysis. DNA Sequence 1:96107.
38. Hofmann, C,, H. Vanderbruggen,, H. Hofte,, J. VanRie,, S. Jansens,, and H. van Mellaert. 1988. Specificity of Bacil lus thuringiensis δ-endotoxins is correlated with the presence of high affinity binding sites in the brush border membrane of target insect midguts. Proc. Natl. Acad. Sci. USA 85:78447848.
39. Hofte, H.,, J. VanRie,, S. Jansens,, A. V. Houtven,, H. Vanderbruggen,, and M. Vaeck. 1988. Monoclonal anti body analysis and insecticidal spectrum of three types of lepidopteran-specific insecticidal crystal proteins of Bacillus thuringiensis. Appl. Environ. Microbiol. 54:20112017.
40. Hofte, H.,, and H. R. Whiteley. 1989. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53:242255.
41. Jaquet, F.,, R. Hutter,, and P. Liithy. 1987. Specificity of Bacillus thuringiensis delta-endotoxin. Appl. Environ. Microbiol. 53:500504.
42. Kanda, K.,, Y. Tan,, and K. Aizawa. 1989. A novel phage genome integrated into a plasmid in Bacillus thuringiensis strain AF101. J. Gen. Microbiol. 135:30353041.
43. Knowles, B. H.,, M. R. Blatt,, M. Tester,, J. M. Horswell,, J. Carroll,, G. Menestrina,, and D. J. Ellar. 1989. A cytolytic δ-endotoxin from Bacillus thuringiensis var. israelensis forms cation-selective channels in plasmid lipid bilayers. FEBS Lett. 244:259262.
44. Knowles, B. H.,, and D. J. Ellar. 1987. Colloid-osmotic lysis is a general feature of the mechanisms of action of Bacillus thuringiensis δ-endotoxins with different insect specificities. Biochim. Biophys. Acta 924:509518.
45. Krywienczyk, H.,, H. T. Dulmage,, and P. G. Fast. 1978. Occurrence of two serologically distinct groups within Bacillus thuringiensis serotype 3ab var. kurstaki. J. Invertebr. Pathol. 31:372375.
46. Lee, C.-S.,, and A. I. Aronson. 1991. Cloning and analysis of δ-endotoxin genes from Bacillus thuringiensis subsp. alesti. J. Bacteriol 173:66356638.
47. Li, J.,, J. Carroll,, and D. J. Ellar. 1991. Crystal structure of an insecticidal protein. The δ-endotoxin from Bacillus thuringiensis subsp. tenebrionis at 2.5 Å resolution. Nature (London) 353:815821.
48. Mabillon, J.,, F. Hespel,, A.-M. Pierssens,, and J. Delcour. 1988. Cloning and partial characterization of three small cryptic plasmids from Bacillus thuringiensis. Plasmid 19:169173.
49. Masson, L.,, G. Prefontaine,, L. Peloquin,, P. C. K. Lau,, and R. Brousseau. 1989. Comparative analysis of the individual protoxin components in P1 crystals of Bacillus thuringiensis subsp. kurstaki NRD-12 and HD-1. Biochem. J. 269:507512.
50. McGaughey, W. H. 1985. Insect resistance to the biological insecticide Bacillus thuringiensis. Science 229:193195.
51. Minnich, S. A.,, and A. I. Aronson. 1984. Regulation of protoxin synthesis in Bacillus thuringiensis. J. Bacteriol. 158:447454.
51a.. Nakamura, L. K-,, and H. T. Dulmage. 1988. Bacillus thuringiensis cultures available from the U.S. Depart ment of Agriculture. Technical Bulletin no. 1738. U.S. Department of Agriculture, Beltsville, Md.
52. Oddou, P.,, H. Hartmann,, and M. Geiser. 1991. Identification and characterization of Heliothis virescens midgut membrane proteins binding Bacillus thuringiensis δ-endotoxins. Eur. J. Biochem. 202:673680.
52a.. Osterman, A., et al. Personal communication.
53. Perlak, F. J.,, R. L. Fuchs,, D. A. Dean,, S. L. McPherson,, and D. A. Fischhoff. 1991. Modification of the coding sequence enhances plant expression of insect control protein genes. Proc. Natl. Acad. Sci. USA 88:33243328.
54. Priest, F. G.,, M. Goodfellow,, and C. Todd. 1988. A numerical classification of the genus Bacillus. J. Gen. Microbiol. 134:18471882.
55. Raymond, K. C.,, T. R. John,, and L. A. Bulla, Jr. 1990. Larvicidal activity of chimeric Bacillus thuringiensis protoxins. Mol. Microbiol. 4:19671973.
56. Reddy, A.,, L. Battisti,, and C. B. Thorne. 1987. Identification of self-transmissable plasmids in four Bacillus thuringiensis subspecies. J. Bacteriol. 169:52635270.
57. Sacchi, V. G.,, P. Parent,, G. M. Hanozet,, B. Giordana,, P. Liithy,, and M. G. Wolfersberger. 1986. Bacillus thuringiensis toxin inhibits K+-gradient-dependent amino acid transport across the brush border membrane of Pieris brassicae midgut cells. FEBS Lett. 204:213218.
58. Sanchis, V.,, D. Lereclus,, G. Menou,, J. Chaufaux,, S. Guo,, and M.-M. Lecadet. 1989. Nucleotide sequence and anal ysis of the N-terminal coding region of the Spodoptera-active δ-endotoxin gene of Bacillus thuringiensis aizawai 7.29. Mol. Microbiol. 3:229238.
59. Schurter, W.,, M. Geiser,, and D. Mathé. 1989. Efficient transformation of Bacillus thuringiensis and B. cereus via electroporation: transformation of acrystalliferous strains with a cloned delta-endotoxin gene. Mol. Gen. Genet. 218:177181.
60. Sebesta, K.,, J. Farkas,, and K. Horská,. 1981. Thuringiensin, the β exotoxin of Bacillus thuringiensis, p. 249281. In W. H. Burgess (ed.). Microbial Control of Pests and Plant Diseases, 1970–1980. Academic Press, Inc., New York.
61. VanRie, J.,, S. Jansens,, H. Hofte,, D. Degheele,, and H. VanMellaert. 1989. Specificity of Bacillus thuringiensis δ-endotoxins. Importance of specific receptors on the brush border membrane of the midgut of target insects. Eur. J. Biochem. 186:239247.
62. VanRie, J.,, S. Jansens,, H. Hofte,, D. Degheele,, and H. VanMellaert. 1990. Receptors on the brush border mem brane of the insect midgut as determinants of the spec ificity of Bacillus thuringiensis delta-endotoxins. Appl. Environ. Microbiol. 56:13781385.
63. VanRie, J.,, W. H. McGaughey,, D. E. Johnson,, B. D. Barnett,, and H. VanMellaert. 1990. Mechanism of insect resistance to the microbial insecticide Bacillus thuring iensis. Science 247:7274.
64. Visser, B.,, D. Bosch,, and G. Honee,. 1991. Domain-function studies of Bacillus thuringiensis crystal pro teins: a genetic approach. In P. Entwistle,, H. Cory,, D. Bailey,, and A. Higgs (ed.). Bacillus thuringiensis: an Environmental Pesticide. John Wiley & Sons, Inc., New York, in press.
65. Visser, B.,, E. Munsterman,, A. Stoker,, and W. G. Dirkse. 1990. A novel Bacillus thuringiensis gene encoding a Spodoptera exigua-specific crystal protein. J. Bacteriol. 172:67836788.
66. Walter, T. M.,, and A. I. Aronson. 1991. Transduction of certain genes by an autonomously replicating Bacillus thuringiensis phage. Appl. Environ. Microbiol. 57:10001005.
67. Widner, W. R.,, and H. R. Whiteley. 1989. Two highly related insecticidal crystal proteins of Bacillus thuringiensis subsp. kurstaki possess different host range speci ficities.J. Bacteriol. 171:965974.
68. Widner, W. R.,, and H. R. Whiteley. 1990. Location of the dipteran specificity region in a lepidopteran-dipteran crystal protein from Bacillus thuringiensis, J. Bacteriol. 172:28262832.
69. Wolfsberger, M. 1990. The toxicity of two Bacillus thuringiensis δ-endotoxins to gypsy moth larvae is inversely related to the affinity of binding sites on midgut brush border membranes for the toxins. Experientia 46:475477.
70. Wu, D.,, and A. I. Aronson. 1992. Localized mutagenesis defines regions of the Bacillus thuringiensis δ-endotoxin involved in toxicity and specificity. J. Biol. Chem. 267:23112317.
71. Wu, D.,, X. L. Cao,, Y. Y. Bai,, and A. I. Aronson. 1991. Sequence of an operon containing a novel δ-endotoxin gene from Bacillus thuringiensis. FEMS Microbiol. Lett. 81:3136.
72. Yamamoto, T.,, and R. E. McLaughlin. 1981. Isolation of a protein from the parasporal crystal of Bacillus thuringiensis var. kurstaki toxic to the mosquito larva, Aedes aegyptii. Biochem. Biophys. Res. Commun. 103:414419.
73. Yamamoto, T.,, and I. Toshihiko. 1983. Two types of entomocidal toxins in the parasporal crystals of Bacillus thuringiensis kurstaki. Biochem. Biophys. Acta 227:233241.

Tables

Generic image for table
Table 1

Properties of -endotoxin genes and their products

Citation: Aronson A. 1993. Insecticidal Toxins, p 953-963. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch64

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error