1887

Chapter 7 : , Metchnikoff, 1888

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

, Metchnikoff, 1888, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap07-2.gif

Abstract:

This chapter on spp. highlights Metchnikoff's thinking that spp. was able to undergo as many as five longitudinal divisions at the same time, giving it a characteristic fan shape. Germination of endospores occurs about 6 to 8 days after the endospore-encumbered nematode enters the plant root and begins to feed. The germ tube emerges through a central opening in the basal attachment layer and penetrates the cuticle of the nematode. After entering the hypodermal tissue of the nematode, the germ tube develops into a filamentous microcolony consisting of a dichotomously branched septate mycelium. Close scrutiny of the vegetative stage reveals its bacterial nature. The current inability to axenically cultivate these bacteria is not from any lack of trying. Even Metchnikoff mentioned his attempts at cultivation with gelatin, glycerin gels, and other nutrient media. The diversity in fine structures of sporangia has been exploited as a means of separating the several species of found in various nematode hosts. The emergence and increase in population of a natural control agent of nematodes are most probable under annual monocropping or in perennial crops. The examples of nematode-suppressive soils that have been discussed in this chapter appear to support the theory. spp. appear to have characteristics that make them ideal control agents for protecting crops against several plant-parasitic nematodes.

Citation: Sayre R. 1993. , Metchnikoff, 1888, p 101-111. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch7

Key Concept Ranking

Bacterial Diseases
0.43948406
Transmission Electron Microscopy
0.41456988
0.43948406
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Line drawings of life stages of and . (A) Life stages of , beginning with the cauliflower stage followed by the daughter colony stage. Next are the quartets of sporangia, then doublets, and finally, single sporangia in which endospores are formed. (Drawings are from Metchnikoff [18].) (B) Comparable life stages of , the bacterial parasite of the root-knot nematode (from reference ).

Citation: Sayre R. 1993. , Metchnikoff, 1888, p 101-111. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Life stages of infecting the water flea (a) Adult female that has been rendered partially opaque by the myriad of bacteria in its coelom. Bar = 100 (from reference ). (b) Photomicrograph of cauliflowerlike colonies of P. (arrows) under the carapace of Bar = 10 (from reference ). (c) Ultrathin section showing fine structure of a filamentous colony of developing within tissues of the water flea. Separation of the filamentous strands results from lysis of intercalary cells. The concept of longitudinal division was probably based on observing and monitoring the fragmentation of a microcolony, with the subsequent expansion of its individual filaments during formation of endospores. Bar = 2.5 μm (from reference ). (d) Scanning electron micrograph of several sporangia, some clearly showing the three external divisions noted by Metchnikoff ( ): a conical stem, a swollen middle cell, and an apical endogenous spore (arrows). Bar = 1 μm (from reference ). (e) Mesosome (arrow) associated with the developing septum found in an early sporangial stage of Bar = 1 (from reference ).

Citation: Sayre R. 1993. , Metchnikoff, 1888, p 101-111. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Attachment of endospores of spp. to vermiform stages of plant-parasitic nematodes, (a) Endospores of P. on the cuticle of the root-knot nematode Bar = 10 μm (from reference ). (b) Endospore on the cuticle of a sp., showing an infection germ tube (arrow) entering the nematode's body. Bar = 5 μm. (?) Numerous endospores on the cuticle of a sp. Bar = 10 (d) Endospores on the cuticle of the soybean cyst nematode Bar = 10 μm (from reference ).

Citation: Sayre R. 1993. , Metchnikoff, 1888, p 101-111. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Scanning electron micrographs of endospores on the cuticle of the male soybean cyst nematode (a) Endospores (arrows) near the slightly extended spicules of the male. These spores are covered with the velutinous layer of the exosporium. Bar = 5 (from reference ). (b) Lacking the exosporium, the central dome of the endospore is visible. This spore is attached near the base of the spicule. Bar = 1 μm (from reference ).

Citation: Sayre R. 1993. , Metchnikoff, 1888, p 101-111. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Transmission electron micrograph of cross-sections of endospores of (a) The endospore is enclosed within its sporangial wall and thinner inner exosporium (arrows). Bar = 1 . (b) Cross-section of an endospore attached to the cuticle of a juvenile root-knot nematode. Bar = 1

Citation: Sayre R. 1993. , Metchnikoff, 1888, p 101-111. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Line drawing showing the germ tube passing through the cuticle into the hypodermis of a juvenile of the root-knot nematode. (Drawn from an electron micrograph [29].) Bar = 1 µm (from reference ).

Citation: Sayre R. 1993. , Metchnikoff, 1888, p 101-111. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Vegetative life stages of parasitizing the root-knot nematode (a) Microcolony in the nematode's pseudocoelom. Bar = 0.2 μm (from reference ). (b) Formation of a septum within a cell of a microcolony. A mesosome (arrow) is associated with the developing septum. Bar = 0.5 μm. (?) Cross-section of bacterial strands within tissues of a nematode. Bar = 0.5 μm (from reference ). (d) Late stage in a microcolony, showing ovate tips that become mother cells for endospores. Bar = 0.5 μm.

Citation: Sayre R. 1993. , Metchnikoff, 1888, p 101-111. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

Line drawings of cross-sections showing generalized development of bacterial sporangia leading to endospore formation (A). These are compared with sporogenous stages of (?) and (C). Aside from parasporal structures of the two species, their life stages are very similar to those of other endospore-forming bacteria (from reference ).

Citation: Sayre R. 1993. , Metchnikoff, 1888, p 101-111. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9
Figure 9

Line drawings of cross-sections of sporangia showing the diversity of fine structures among several species of (a) (b) (c) (d) (e) sp. found in the pea cyst nematode Liebscher, 1892. Bar = 1 μm (modified and extended from reference ).

Citation: Sayre R. 1993. , Metchnikoff, 1888, p 101-111. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818388.chap7
1. Bird, A. F.,, and P. G. Brisbane. 1988. The influence of Pasteuria penetrans in field soils on the reproduction of root-knot nematodes. Rev. Nematol. 11:7581.
2. Cobb, N. A. 1906. Fungus Maladies of the Sugar Cane, with Notes on Associated Insects and Nematodes, 2nd ed. Hawaiian Sugar Planters Association bulletin no. 5. Hawaiian Sugar Planters Association, Honolulu.
3. de Kruif, P. 1926. The Microbe Hunters, p. 207233. Cornwall Press, Inc., Cornwall, N.Y..
4. Gair, R.,, P. L. Mathias,, and P. N. Harvey. 1969. Studies on cereal nematode populations and cereal yields under continuous or intensive culture. Ann. Appl. Biol. 63:503512.
5. Giblin-Davis, R. M.,, L. L. McDaniel,, and F. G. Bilz. 1990. Isolates of the Pasteuria penetrans group from phytopar-asitic nematodes in Bermuda grass turf. J. Nematol. 22(Suppl. 4):750762.
6. Henrici, A. T.,, and D. E. Johnson. 1935. Studies of freshwater bacteria. II. Stalked bacteria, a new order of schizomycetes. J. Bacteriol. 30:6193.
7. Hirsch, P. 1972. Re-evaluation of Pasteuria ramosa, Metchnikoff 1888, a bacterium pathogenic for Daphnia species. Int. J. Syst. Bacteriol. 22:112116.
8. Jirovec, O. 1939. Dermocystidium vejdovskyi n. sp., ein neuer Parasit des Hechtes, nebst einer Bemerkung über Dermocystidium daphniae (Rühberg). Arch. Protistenkd. 92:137146.
9.Judicial Commission. 1986. Opinion 61. Rejection of the type strain of Pasteuria ramosa (ATCC 27377) and conservation of the species Pasteuria ramosa Metchnikoff, 1888 on the basis of the type descriptive material. Int. J. Syst. Bacteriol. 36:119.
10. Kerry, B. R., 1981. Progress in the use of biological agents for control of nematodes, p. 7990. In G. C. Papavizas (ed.), Biological Control in Crop Production (BARC Symposium no. 5). Allenheld and Osmum, Totowa, N.J..
11. Kerry, B. R., 1987. Biological control, p. 233263. In R. H. Brown, and B. R. Kerry (ed.). Principles and Practices of Nematode Control in Crops. Academic Press, Inc., New York.
12. Mankau, R. 1973. Utilization of parasites and predators in nematode pest management ecology, p. 129143. In Proceedings: Tall Timbers Conference on Ecological Animal Control by Habitat Management, 24-25 February 1972. Tall Timbers Research Station, Tallahassee, Fla..
13. Mankau, R. 1975. Bacillus penetrans n. comb, causing a virulent disease of plant-parasitic nematodes. J. Invertebr. Pathol. 26:333339.
14. Mankau, R. 1975. Prokaryote affinities of Duboscqia penetrans Thorne. J. Prototool. 21:3134.
15. Mankau, R.,, and J. L. Imbriani. 1975. The life cycle of an endoparasite in some Tylenchid nematodes. Nematologica 21:8994.
16. Mankau, R.,, and N. Prasad. 1972. Possibilities and problems in the use of a sporozoan endoparasite for biological control of plant parasitic nematodes. Nematropica 2:78.
17. Mankau, R.,, and N. Prasad. 1977. Infectivity of Bacillus penetrans in plant-parasitic nematodes. J. Nematol. 9:4045.
18. Metchnikoff, E. 1888. Pasteurìa ramosa, un représentant des bactéries à division longitudinale. Ann. Inst. Pasteur (Paris) 2:165170.
19. Migula, W. 1900. System der Bakerìen. Gustav Fisher, Jena, Germany.
20. Minton, N. A.,, and R. M. Sayre. 1989. The suppressive influence of Pasteurìa penetrans discovered in Georgia on the reproduction of the peanut root-knot nematode, Meloidogyne incognita. J. Nematol. 24:574575.
21. Nishizawa, T. 1987. A decline phenomenon in a population of upland cyst nematode, Heterodera elachista, caused by the bacterial parasite, Pasteuria penetrans. J. Nematol. 19:546.
22. Reise, R. W.,, K. Hackett,, and R. N. Heuttel. 1991. Limited in vitro cultivation of Pasteuria nishizawae. J. Nematol. 23:547548.
23. Sayre, R. M.,, J. R. Adams,, and W. P. Wergin. 1979. Bacterial parasite of a cladoceran: morphology, development in vivo, and taxonomie relationships with Pasteuria ramosa. Int. J. Syst. Bacteriol. 29:252262.
24. Sayre, R. M.,, R. L. Gherna,, and W. P. Wergin. 1983. Morphological and taxonomie reevaluation of Pasteuria ramosa Metchnikoff, 1888 and "Bacillus penetrans" Mankau, 1975. Int. J. Syst. Bacteriol. 33:636649.
25. Sayre, R. M.,, and M. P. Starr. 1985. Pasteuria penetrans (ex Thorne 1940) nom. rev., comb, n., sp. n., a mycelial and endospore-forming bacterium parasitic in plant-parasitic nematodes. Proc. Helminthol. Soc. Washington 52:149165.
26. Sayre, R. M.,, and M. P. Starr,. 1988. Bacterial diseases and antagonisms of nematodes, vol. 1, p. 69101. In G. O. Poinar, Jr.,, and H.-B. Jansson (ed.), Diseases of Nematodes. CRC Press, Inc., Boca Raton, Fla..
27. Sayre, R. M.,, and M. P. Starr,. 1989. Genus Pasteuria Metchnikoff, 1888, p. 26012615. In S. T. Williams (ed.), Bergey's Manual of Systematic Bacteriology, vol. 4. The Williams & Wilkins Co., Baltimore.
28. Sayre, R. M.,, M. P. Starr,, A. M. Golden,, W. P. Wergin,, and B. Y. Endo. 1988. Comparison of Pasteuria penetrans from Meloidogyne incognita with a related mycelial and endospore-forming bacterial parasite from Pratylenchus brachyurus. Proc. Helminthol. Soc. Washington 55:2849.
29. Sayre, R. M.,, and W. P. Wergin. 1977. Bacterial parasite of a plant nematode: morphology and ultrastructure. J. Bacteriol. 129:10911101.
30. Sayre, R. M.,, W. P. Wergin,, and R. E. Davis. 1977. Occurrence in Monia [sic] rectirostris (Cladocera: Daphnidae) of a parasite morphologically similar to Pasteuria ramosa Metchnikoff, 1888. Can. J. Microbiol. 23:15731579.
31. Sayre, R. M.,, W. P. Wergin,, T. Nishizawa,, and M. P. Starr. 1991. Light and electron microscopy of a bacterial parasite from the cyst Heterodera glycines. J. Helminthol. Soc. Washington. 58:6981.
32. Sayre, R. M.,, W. P. Wergin,, J. Schmidt,, and M. P. Starr. 1991. Pasteuria nishizawae sp. nov., a mycelial and endospore-forming bacterium parasitic on cyst nematodes of the genera Heterodera and Globodera. Res. Microbiol. 142:551564.
33. Schneider, R. W. 1982. Suppressive Soih and Plant Disease. The American Phytopathological Society, St. Paul, Minn..
34. Staley, J. T. 1973. Budding bacteria of the Pasteuria-Blastobacter group. Can. J. Microbiol. 19:609614.
35. Starr, M. P.,, and R. M. Sayre. 1988. Pasteuria thomei sp. nov. and Pasteuria penetrans sensu stricto emend., mycelial and endospore-forming bacteria parasitic, respectively, on plant parasitic nematodes of the genera Praty-lenchus and Meloidogyne. Ann. Inst. Pasteur/Microbiol. (Paris) 139:1131.
36. Starr, M. P.,, R. M. Sayre,, and J. M. Schmidt. 1983. Assignment of ATCC 27377 to Planctomyces staley sp. nov. and conservation of Pasteuria ramosa Metchnikoff, 1888 on the basis of type descriptive material. Request for an opinion. Int. J. Syst. Bacteriol. 33:666671.
37. Stirling, G. R. 1981. Effect of temperature on infection of Meloidogyne javanica by Bacillus penetrans. Nematologica 27:458462.
38. Stirling, G. R. 1984. Biological control of Meloidogyne javanica with Bacillus penetrans. Phytopathology 74:5560.
39. Stirling, G. R., 1988. Biological control of plant-parasitic nematodes, p. 93139. In G. O. J. Poinar, and H.-B. Jansson (ed.), Diseases of Nematodes. CRC Press, Inc., Boca Raton, Fla..
40. Stirling, G. R.,, and M. F. Wachtel. 1980. Mass production of Bacillus penetrans for the biological control of root-knot nematodes. Nematologica 26:308312.
41. Stirling, G. R.,, and A. M. White. 1982. Distribution of a parasite of root-knot nematodes in south Australian vineyards. Plant Dis. 66:5253.
42. Sturhan, D. 1988. New host and geographical records of nematode-parasitic bacteria of the Pasteuria penetrans group. Nematologica 34:350356.
43. Thorne, G. 1940. Duboscqia penetrans n. sp. (Sporozoa: Microsporidia, Nosematidae), a parasite of the nematode Pratylenchus pratensis (de Man) Filipjev. Proc. Helminthol. Soc. Washington 7:5153.
44. Verdejo, S.,, and B. A. Jaffee. 1989. Reproduction of Pasteuria penetrans in a tissue-culture system containing Meloidogyne javanica and Agrobacterium rhizogenes-transformed roots. Phytopathology 78:12841286.
45. Verdejo, S.,, and R. Mankau. 1986. Culture of Pasteuria penetrans in Meloidogyne incognita on oligoxenic excised tomato root culture. J. Nematol. 18:635.
46. Weiser, J. 1943. Beiträge zur Entwicklungsgeschichte von Dermocystidium daphniae Jirovec. Zool. Anz. 142: 200205.
47. Williams, A. B.,, G. R. Stirling,, A. C. Hayward,, and J. Perry. 1989. Properties and attempted culture of Pasteuria penetrans, a bacterial parasite of root-knot nematode (Meloidogyne javanica). J. Appl. Bacteriol. 67:145156.

Tables

Generic image for table
Table 1

Comparison of , and

Citation: Sayre R. 1993. , Metchnikoff, 1888, p 101-111. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch7

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error