1887

Chapter 9 : Introduction to Metabolic Pathways

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Introduction to Metabolic Pathways, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555818388/9781555810535_Chap09-2.gif

Abstract:

The major pathway for assimilation of nitrogen is through glutamine. The step that links metabolism of carbon and nitrogen is conversion of 2-ketoglutarate to glutamate and glutamine. It is not surprising that in gram-negative bacteria the ultimate determinant of expression of nitrogen metabolism genes is the ratio of the intracellular concentrations of 2-ketoglutarate and glutamine. Some biosynthetic pathways in gram-positive bacteria have received so little attention that they could not be the subject of separate chapters. These include those for synthesis of L- and D-alanine and histidine and the intersecting pathways for glycine, serine, and cysteine. The genes of are organized in three unlinked clusters, one of which has been sequenced nearly in its entirety. The major route of serine biosynthesis in and is the 3-phosphoglycerate pathway characteristic of most bacteria. The first enzyme of this pathway, 3-phosphoglycerate dehydrogenase, is feedback inhibited by serine. In , however, a different pathway for interconversion seems to function. In this case, glycine and formaldehyde condense to form serine. Mutations at two loci cause serine auxotrophy. SerA mutants require either serine or glycine for growth. Growth is improved if threonine and serine are both provided. The first two enzymes of sulfate utilization, ATP sulfurylase and adenosine-5'-phosphosulfate kinase, and enzyme activities that convert activated sulfate to sulfite and sulfide and catalyze incorporation into cysteine are present in both and . The only pathway to D-alanine is by racemization of L-alanine.

Citation: Sonenshein A. 1993. Introduction to Metabolic Pathways, p 127-132. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch9

Key Concept Ranking

Amino Acids
0.5788989
Acetyl Coenzyme A
0.5555556
Gram-Positive Bacteria
0.45713538
Gram-Negative Bacteria
0.41799253
0.5788989
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

The central pathways of glucose dissimilation, ammonia assimilation, and production of biosynthetic precursors. The linkage between carbon and nitrogen metabolism through conversion of 2-ketoglutarate to glutamate and glutamine is also indicated. Abbreviations: P, phosphate; PRPP, phosphoribosylpyrophosphate; pABA, -aminobenzoate.

Citation: Sonenshein A. 1993. Introduction to Metabolic Pathways, p 127-132. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Pathways for utilization of carbon and nitrogen sources other than glucose and ammonia. Abbreviation: P, phosphate.

Citation: Sonenshein A. 1993. Introduction to Metabolic Pathways, p 127-132. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Pathway for histidine biosynthesis. The precursors, ATP and phosphoribosylpyrophosphate (PRPP), are converted to histidine in 10 steps. The enzymes that carry out each step and the genes that encode them are listed in Table 1. Abbreviations: PR, phosphoribosyl; PRu, phosphoribulosyl.

Citation: Sonenshein A. 1993. Introduction to Metabolic Pathways, p 127-132. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Presumed pathways for biosynthesis of serine and glycine in gram-positive bacteria. The 3-phosphoglycerate pathway seems to be the major route to serine and glycine in most gram-positive bacteria. In certain species, however, glycine is made from threonine (shown in brackets in figure). Abbreviations: PGD, 3-phosphoglycerate dehydrogenase; PSAT, 3-phosphoserine aminotransferase; PSP, 3-phosphoserine phosphatase; SHMT, serine hydroxymethyltransferase; THF, tetrahydrofolate; TA, threonine aldolase.

Citation: Sonenshein A. 1993. Introduction to Metabolic Pathways, p 127-132. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818388.chap9
1. Burke, M. E.,, and P. A. Pattee. 1972. Histidine biosyn-thetic pathway in Staphylococcus aureus. Can. J. Microbiol. 18: 569 576.
2. Callahan, J. P.,, I. P. Crawford,, G. F. Hess,, and P. S. Vary. 1983. Cotransductional mapping of the trp-his region of Bacillus megaterium. J. Bacteriol. 154: 1455 1458.
3. Carere, A.,, S. Russi,, M. Blgnami,, and G. Sermenti. 1973. An operon for histidine biosynthesis in Streptomyces coelicolor. I. Genetic evidence. Mol. Gen. Genet. 123: 219 224.
4. Chapman, L. F.,, and E. W. Nester. 1969. Gene-enzyme relationships in histidine biosynthesis in Bacillus subtilis. J. Bacteriol. 97: 1444 1448.
5. Dedonder, R.,, J.-A. Lepesant,, J. Lepesant-Kejzlarova,, A. Billault,, M. Steinmetz,, and F. Kunst. 1977. Construction of a kit of reference strains for rapid genetic mapping of Bacillus subtilis 168. Appl. Environ. Microbiol. 33: 989 993.
6. Delorme, C.,, S. D. Ehrllch,, and P. Renault. 1992. Histidine biosynthesis genes in Lactococcus lactis subsp. lactis. J. Bacteriol. 174: 6571 6579.
7. Ema, M.,, T. Kakimoto,, and I. Chibata. 1979. Production of L-serine by Sarcina albida. Appl. Environ. Microbiol. 37: 1053 1058.
8. Ferrari, E.,, D. J. Henner,, and M. Y. Yang. 1985. Isolation of an alanine racemase gene from Bacillus subtilis and its use for plasmid maintenance in B. subtilis. Bio/Technology 3: 1003 1007.
9. Freese, E.,, S. W. Park,, and M. Cashel. 1964. The developmental significance of alanine dehydrogenase in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 51: 1164 1172.
10. Heaton, M. P.,, R. B. Johnston,, and T. L. Thompson. 1988. Controlled lysis of bacterial cells utilizing mutants with defective synthesis of D-alanine. Can. J. Microbiol. 34: 256 261.
11. Henner, D. J.,, L. Band,, G. Flaggs,, and E. Chen. 1986. The organization and nucleotide sequence of the Bacillus subtilis hisH, tyrA and aroE genes. Gene 49: 147 152.
12. Hopwood, D. A.,, K. F. Chater,, J. E. Dowdlng,, and A. Vivian. 1973. Advances in Streptomyces coelicolor genetics. Bacteriol. Rev. 37: 371 405.
13. Hougland, A. E., and J. V. Beck. 1979. The formation of serine from glycine and formaldehyde by cell free extracts of Clostridium acidi-urici. Microbios 24: 151 157.
14. Jungermann, K. A.,, W. Schmidt,, F. H. Kirchiawy,, E. H. Rupprecht,, and R. K. Thauer. 1970. Glycine formation via threonine and serine aldolase. Its interrelation with the pyruvate formate lyase pathway of one-carbon unit synthesis in Clostridium kluyveri. Eur. J. Biochem. 16: 424 429.
15. Kane, J. F.,, R. L. Goode,, and J. Wainscott. 1975. Multiple mutations in cysA14 mutants of Bacillus subtilis. J. Bacteriol. 121: 204 211.
16. Kane-Falce, C.,, and W. E. Kloos. 1975. A genetic and biochemical study of histidine biosynthesis in Micrococcus luteus. Genetics 79: 361 376.
17. Kloos, W. E.,, and P. A. Pattee. 1965. A biochemical characterization of histidine-dependent mutants of Staphylococcus aureus. J. Gen. Microbiol. 39: 185 194.
18. Kloos, W. E.,, and P. A. Pattee. 1965. Transduction analysis of the histidine region in Staphylococcus aureus. J. Gen. Microbiol. 39: 195 207.
19. Kochi, H.,, and G. Klkuchi. 1969. Reactions of glycine synthesis and glycine cleavage catalyzed by extracts of Arthrobacter globiformis grown on glycine. Arch. Biochem. Biophys. 132: 359 369.
20. Kredich, N. M., 1987. Biosynthesis of cysteine, p. 419 428. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology, Washington, D.C..
21. Limauro, D.,, A. Avltablle,, C. Capellano,, M. A. Puglia,, and C. B. Bruni. 1990. Cloning and characterization of the histidine biosynthetic gene cluster of Streptomyces coelicolor A3(2). Gene 90: 31 41.
22. Limauro, D.,, A. Avltablle,, C. Capellano,, M. A. Puglia,, and C. B. Bruni. 1991. Cloning and characterization of the histidine biosynthetic gene cluster of Streptomyces coelicolor A3(2) (Correction). Gene 101: 161 162.
23. Mahler, I.,, R. Warburg,, D. J. Tipper,, and H. O. Halvor-son. 1984. Cloning of an unstable spoilA-tyrA fragment from Bacillus subtilis. J. Gen. Microbiol. 130: 411 421.
24. Mattioli, R.,, M. Bazzicalupo,, G. Federici,, E. Gallori,, and M. Polsinelll. 1979. Characterization of mutants of Bacillus subtilis resistant to S-(2-aminoethyl) cysteine. J. Gen. Microbiol. 114: 223 225.
25. Nelson, J. D., Jr.,, and H. B. Naylor. 1971. Control of serine biosynthesis in Micrococcus lysodeikticus: inhibition of phosphoglyceric acid dehydrogenase. Can. J. Microbiol. 17: 25 30.
26. Nelson, J. D., Jr.,, and H. B. Naylor. 1971. The synthesis of L-serine by Micrococcus lysodeikticus. Can. J. Microbiol. 17: 73 77.
27. Nester, E. W.,, and A. L. Montoya. 1976. An enzyme common to histidine and aromatic amino acid biosynthesis in Bacillus subtilis. J. Bacteriol. 126: 699 705.
28. Pasternak, C. A. 1962. Sulphate activation and its control in Escherichia coli and Bacillus subtilis. Biochem. J. 85: 44 49.
29. Pasternak, C. A.,, R. J. Ellis,, M. C. Jones-Mortimer,, and C. E. Crichton. 1965. The control of sulphate reduction in bacteria. Biochem. J. 96: 270 275.
30. Ponce-de-Leon, M. M.,, and L. I. Pizer. 1972. Serine biosynthesis and its regulation in Bacillus subtilis. J. Bacteriol. 110: 895 904.
31. Russi, S.,, A. Carere,, A. Siracusano,, and A. Balito. 1973. An operon for histidine biosynthesis in Streptomyces coelicolor. II. Biochemical evidence. Mol. Gen. Genet. 123: 225 232.
32. Slranosian, K. J.,, K. Ireton,, and A. D. Grossman. (Massachusetts Institute of Technology). 1992. Personal communication.
33. Sirokin, A.,, and S. D. Ehrlich. ( Institut National de la Recherche Agronomique). 1992. Personal communication.
34. Trowsdale, J.,, and D. A. Smith. 1975. Isolation, characterization, and mapping of Bacillus subtilis 168 germination mutants. J. Bacteriol. 123: 85 95.
35. Vandeyar, M. A.,, and S. A. Zahler. 1986. Chromosomal insertions of Tn977 in Bacillus subtilis. J. Bacteriol. 167: 530 534.
36. Walton, D. A.,, A. Moir,, R. Morse,, I. Roberts,, and D. A. Smith. 1984. The isolation of λ phage carrying DNA from the histidine and isoleucine-valine regions of the Bacillus subtilis chromosome. J. Gen. Microbiol. 130: 1577 1586.
37. Warren, S. C. 1968. Sporulation in Bacillus subtilis. Biochemical changes. Biochem. J. 109: 811 818.
38. Winkler, M. E., 1987. Biosynthesis of histidine, p. 395 411. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,,and H. E. Umbarger(ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology, Washington, D.C..

Tables

Generic image for table
Table 1

Genes and enzymes for histidine biosynthesis

Citation: Sonenshein A. 1993. Introduction to Metabolic Pathways, p 127-132. In Sonenshein A, Hoch J, Losick R (ed), and Other Gram-Positive Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555818388.ch9

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error