Chapter 1 : Regulation of Bacterial Transcription by Anti-σ Factors

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Regulation of Bacterial Transcription by Anti-σ Factors, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818395/9781555813017_Chap01-1.gif /docserver/preview/fulltext/10.1128/9781555818395/9781555813017_Chap01-2.gif


In bacteria, gene expression is regulated primarily at the step of transcription initiation. The DNA-dependent RNA polymerase (RNAP), the central enzyme of transcription, comprises an evolutionarily conserved, 400-kDa catalytic core of five subunits (aβ β'ω). The transcription cycle begins when the σ factor associates with core RNAP to form the holoenzyme, which then locates promoters through sequence-specific interactions between elements of σ and the promoter DNA. The studies described in this chapter were performed with group 1, or primary, σ factors, which transcribe genes necessary for exponential growth under favorable conditions. The chapter focuses on cognate anti-σ/σ pairs for which structural studies have provided insights into function and regulation. A signal transduction pathway involving ECF σ factors related to σ plays an important role in pathogenesis in some organisms. The evolution of structurally and functionally diverse anti-σ factors provide much more flexibility for the regulation of transcription initiation. Thus, the authors propose that the functional and structural diversity of anti-σ factors reflects the need for bacteria to relay a wide variety of environmental cues to the core transcriptional apparatus via regulation of the structurally conserved σ factors.

Citation: Campbell E, Darst S. 2005. Regulation of Bacterial Transcription by Anti-σ Factors, p 1-16. In Waksman G, Caparon M, Hultgren S (ed), Structural Biology of Bacterial Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555818395.ch1

Key Concept Ranking

Two-Component Signal Transduction Systems
Transcription Start Site
Gene Expression
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Ades, S. E.,, L. E. Connolly,, B. M. Alba,, and C. A. Gross. 1999. The Escherichia coli σE-dependent extracytoplasmic stress response is controlled by the regulated proteolysis of an anti-sigma factor. Genes Dev. 13:24492461.
2. Alba, B. M.,, J. A. Leeds,, C. Onufryk,, C. H. Lu,, and C. A. Gross. 2002. DegS and YaeL participate sequentially in the cleavage of RseA to activate the σE-dependent extracytoplasmic stress response. Genes Dev. 16:21562168.
3. Alba, B. M.,, H. J. Zhong,, J. C. Pelayo,, and C. A. Gross. 2001. degS (hhoB) is an essential Escherichia coli gene whose indispensable function is to provide σE activity. Mol. Microbiol. 40:13231333.
4. Alper, S.,, L. Duncan,, and R. Losick. 1994. An adenosine nucleotide switch controlling the activity of a cell type-specific transcription factor in B. subtilis. Cell 77:195205.
5. Arigoni, F.,, L. Duncan,, S. Alper,, R. Losick,, and P. Stragier. 1996. SpoIIE governs the phosphorylation state of a protein regulating transcription factor σF during sporulation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 93:32383242.
6. Barne, K. A.,, J. A. Bown,, S. J. W. Busby,, and S. D. Minchin. 1997. Region 2.5 of the Escherichia coli RNA polymerase 7sigma;70 subunit is responsible for the recognition of the ‘extended-10’ motif at promoters. EMBO J. 16:40344040.
7. Bergerat, A. 1997. An atypical topoisomerase II from Archaea with implications for meiotic recombination. Nature 386:414417.
8. Bilwes, A. M.,, L. R. Alex,, B. R. Crane,, and M. I. Simon. 1999. Structure of CheA, a signal-transducing histidine kinase. Cell 96:131141.
9. Bilwes, A. M.,, C. M. Quezada,, L. R. Croal,, B. R. Crane,, and M. I. Simon. 2001. Nucleotide binding of the histidine kinase CheA. Nat. Struct. Biol. 8:353360.
10. Brown, K. L.,, and K. T. Hughes. 1995. The role of anti-sigma factors in gene regulation. Mol. Microbiol. 16:397404.
11. Brown, M. S.,, J. Ye,, R. B. Rawson,, and J. L. Goldstein. 2000. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100:391398.
12. Burgess, R. R.,, A. A. Travers,, J. J. Dunn,, and E. K. F. Bautz. 1969. Factor stimulating transcription by RNA polymerase. Nature 221:4344.
13. Bylund, J.,, L. Zhang,, M. Haines,, M. Higgins,, and P. Piggot. 1994. Analysis by fluorescence microscopy of the development of compartment-specific gene expression during sporulation of Bacillus subtilis. J. Bacteriol. 176:28982905.
14. Campbell, E.,, J. Tupy,, T. Gruber,, S. Wang,, M. Sharp,, C. Gross,, and S. Darst. 2003. Crystal structure of Escherichia coli σE with the cytoplasic domain of its anti-σ RseA. Mol. Cell 11:10671078.
15. Campbell, E. A.,, and S. A. Darst. 2000. The anti-σ factor SpoIIAB forms a 2:1 complex with σF, contacting multiple conserved regions of the σ factor. J. Mol. Biol. 300:1728.
16. Campbell, E. A.,, S. Masuda,, J. L. Sun,, O. Muzzin,, C. A. Olson,, S. Wang,, and S. A. Darst. 2002a. Crystal structure of the Bacillus stearothermophilus anti-σ factor SpoIIAB with the sporulation σ factor σF. Cell 108:795807.
17. Campbell, E. A.,, O. Muzzin,, M. Chlenov,, J. L. Sun,, C. A. Olson,, O. Weinman,, M. L. Trester-Zedlitz,, and S. A. Darst. 2002b. Structure of the bacterial RNA polymerase promoter specificity σ subunit. Mol. Cell 9:527539.
18. Cannon, W.,, S. Missailidis,, C. Smith,, A. Cottier,, S. Austin,, M. Moore,, and M. Buck. 1995. Core RNA polymerase and promoter DNA interactions of purified domains of σN: bipartite functions. J. Mol. Biol. 248:781803
19. Chadsey, M. S.,, and K. T. Hughes. 2001. A multipartite interaction between Salmonella transcription factorσ28 and its anti-sigma factor FlgM: implications for σ28 holoenzyme destablilization through stepwise binding. J. Mol. Biol. 306:915929.
20. Chadsey, M. S.,, J. E. Karlinsey,, and K. T. Hughes. 1998. The flagellar anti-σ factor FlgM actively dissociates Salmonella typhimurium σ28 RNA polymerase holoenzyme. Genes Dev. 12:31233136.
21. Chang, B.-Y.,, and R. H. Doi. 1990. Overproduction, purification, and characterization of Bacillus subtilis RNA polymerase σA factor. J. Bacteriol. 172:32573263.
22. Chen, Y. F.,, and J. D. Helmann. 1995. The Bacillus subtilis flagellar regulatory protein σD: overproduction, domain analysis and DNA-binding properties. J. Mol. Biol. 249:743753.
23. Colland, F.,, G. Orsini,, E. Brody,, H. Buc,, and A. Kolb. 1998. The bacteriophage T4 AsiA protein: a molecular switch for sigma 70-dependent promoters. Mol. Microbiol. 27:819829.
24. Connolly, L.,, A. De Las Penas,, B. M. Alba,, and C. A. Gross. 1997. The response to extracytoplasmic stress in Escherichia coli is controlled by partially overlapping pathways. Genes Dev. 11:20122021.
25. Danese, P. N.,, and T. J. Silhavy. 1997. The sigma (E) and the Cpx signal transduction systems control the synthesis of periplasmic protein-folding enzymes in Escherichia coli. Genes Dev. 11:11831193.
26. Daniels, D.,, P. Zuber,, and R. Losick. 1990. Two amino acids in an RNA polymerase σ factor involved in the recognition of adjacent base pairs in the -10 region of a cognate promoter. Proc. Natl. Acad. Sci. USA 87:80758079.
27. Darst, S. A.,, J. W. Roberts,, A. Malhotra,, M. Marr,, K. Severinov,, and E. Severinova,. 1997. Pribnow box recognition and melting by Escherichia coli RNA polymerase, p. 2740. In F. Ekstein, and D. M. J. Lilley (ed.), Nucleic Acids and Molecular Biology. Springer-Verlag, London, United Kingdom.
28. Dartigalongue, C.,, D. Missiakas,, and S. Raina. 2001. Characterization of the Escherichia coli σE regulon. J. Biol. Chem. 276:2086620875.
29. Daughdrill, G. W.,, M. S. Chadsey,, J. E. Karlinsey,, K. T. Hughes,, and F. W. Dahlquist. 1997. The C-terminal half of the anti-sigma factor, FlgM, becomes structured when bound to its target σ28. Nat. Struct. Biol. 4:285291.
30. Decatur, A. L.,, and R. Losick. 1996. Three sites of contact between the Bacillus subtilis transcription factor σF and its antisigma factor SpoIIAB. Genes Dev. 10:23482358.
31. deHaseth, P. L.,, and J. D. Helmann. 1995. Open complex formation by Escherichia coli RNA polymerase: the mechanism of polymerase-induced strand separation of double helical DNA. Mol. Microbiol. 16:817824.
32. De Las Penas, A.,, L. Connolly,, and C. A. Gross. 1997a. σE is an essential sigma factor in Escherichia coli. J. Bacteriol. 179:68626864.
33. De Las Penas, A.,, L. Connolly,, and C. A. Gross. 1997b. The σE-mediated response to extracytoplasmic stress in Escherichia coli is transduced by RseA and RseB, two negative regulators of σE. Mol. Microbiol. 24:373385.
34. Diederich, B.,, J. F. Wilkinson,, T. Magnin,, S. M. A. Najafi,, J. Errington,, and M. D. Yudkin. 1994. Role of interactions between SpoIIAA and SpoIIAB in regulating cell-specific transcription factor σF of Bacillus subtilis. Genes Dev. 8:26532663.
35. Dove, S. L.,, and A. Hochschild. 2001. Bacterial two-hybrid analysis of interactions between region 4 of the σ70 subunit of RNA polymerase and the transcriptional regulators Rsd from Escherichia coli and AlgQ from Pseudomonas aeruginosa. J. Bacteriol. 183:64136421.
36. Driks, A.,, and R. Losick. 1991. Compartmentalized expression of a gene under the control of sporulation transcription factor σE of Bacillus subtilis. Proc. Natl. Acad. Sci. USA 88:99349938.
37. Duncan, L.,, S. Alper,, and R. Losick. 1994. Establishment of cell type specific gene expression during sporulation in Bacillus subtilis. Curr. Opin. Genet. Dev. 4:630636.
38. Duncan, L.,, S. Alper,, and R. Losick. 1995. Activation of cell-specific transcription by a serine phosphatase at the site of asymmetric division. Science 270:641644.
39. Duncan, L.,, S. Alper,, and R. Losick. 1996. SpoIIAA governs the release of the cell-type-specific transcription factor σF from its anti-sigma factor SpoIIAB. J. Mol. Biol 260:147164.
40. Duncan, L.,, and R. Losick. 1993. SpoIIAB is an anti-σ facor that binds to and inhibits transcription by regulatory protein σF from Bacillus subtilis. Proc. Natl. Acad. Sci. USA 90:23252329.
41. Dutta, R.,, and M. Inouye. 2000. GHKL, an emergent ATPase/kinase superfamily. Trends Biochem. Sci. 25:2428.
42. Dworkin, J.,, and R. Losick. 2001. Differential gene expression governed by chromosomal spatial asymmetry. Cell 107:339346.
43. Erickson, J. W.,, and C. A. Gross. 1989. Identification of the σE subunit of Escherichia coli RNA polymerase: a second alternate σ factor involved in high-temperature gene expression. Genes Dev. 3:14621471.
44. Errington, J. 1993. Sporulation in Bacillus subtilis: regulation of gene expression and control of morphogenesis. Microbiol. Rev. 57:133.
45. Feucht, A.,, M. D. Duncan,, and J. Errington. 1996. Bifunctional protein required for asymmetric cell division and cell-specific transcription in Bacillus subtilis. Genes Dev. 10:794803.
46. Flynn, J. M.,, S. B. Neher,, Y. I. Kim,, R. T. Sauer,, and T. A. Baker. 2003. Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of signals. Mol. Cell 11:671683.
47. Gardella, T.,, T. Moyle,, and M. M. Susskind. 1989. A mutant Escherichia coli sigma 70 subunit of RNA polymerase with altered promoter specificity. J. Mol. Biol. 206:579590.
48. Garsin, D. A.,, D. M. Paskowitz,, L. Duncan,, and R. Losick. 1998. Evidence for common sites of contact between the antisigma factor SpoIIAB and its partner SpoIIAA and the developmental transcription factor σF in Bacillus subtilis. J. Mol. Biol. 284:557568.
49. Gillen, K. L.,, and K. T. Hughes. 1991a. Molecular characterization of flgM, a gene encoding a negative regulator of flagellin synthesis in Salmonella typhimurium. J. Bacteriol. 173:64356459.
50. Gillen, K. L.,, and K. T. Hughes. 1991b. Negative regulatory loci coupling flagellin synthesis to flagellar assembly in Salmonella typhimurium. J. Bacteriol. 173:23012310.
51. Gribskov, M.,, and R. R. Burgess. 1983. Overexpression and purification of the sigma subunit of Escherichia coli RNA polymerase. Gene 26:109118.
52. Gross, C. A.,, C. Chan,, A. Dombroski,, T. Gruber,, M. Sharp,, J. Tupy,, and B. Young. 1998. The functional and regulatory roles of sigma factors in transcription. Cold Spring Harbor Symp. Quant. Biol. 63:141155.
53. Gross, C. A.,, C. L. Chan,, and M. A. Lonetto. 1996. A structure/function analysis of Escherichia coli RNA polymerase. Philos. Trans. R. Soc. Lond. Ser. B 351:475482.
54. Gross, C. A.,, M. Lonetto,, and R. Losick. 1992. Bacterial sigma factors, p. 129176. In K. Yamamoto and S. McKnight (ed.), Transcriptional Regulation. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
55. Gruber, T. M.,, and D. A. Bryant. 1997. Molecular systematic studies of eubacteria, using sigma70-type sigma factors of group 1 and group 2. J. Bacteriol. 179:17341747.
56. Harley, C. B.,, and R. P. Reynolds. 1987. Analysis of E. coli promoter sequences. Nucleic Acids Res. 15:23432361.
57. Hawley, D. K.,, and W. R. McClure. 1983. Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res. 11:22372255.
58. Helmann, J. D. 2002. The extracytoplasmic function (ECF) sigma factors. Adv. Microb. Physiol. 46:47110.
59. Helmann, J. D.,, and M. J. Chamberlin. 1988. Structure and function of bacterial sigma factors. Annu. Rev. Biochem. 57:839872.
60. Hinton, D. M.,, R. March-Amegadzie,, J. S. Gerber,, and M. Sharma. 1996. Characterization of pretranscription complexes made at a bacteriophage T4 middle promoter: involvement of the T4 MotA activator and the T4 AsiA protein, a sigma 70 binding protein, in the formation of the open complex. J. Mol. Biol. 256:235248.
61. Ho, M.,, K. Carniol,, and R. Losick. 2003. Evidence in support of a docking model for the release of the transcription factor σF from the antisigma factor SpoIIAB in Bacillus subtilis. J. Biol. Chem. 278:2089820905.
62. Hughes, K. T.,, K. L. Gillen,, M. J. Semon,, and J. E. Karlinsey. 1993. Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator. Science 262:12771280.
63. Hughes, K. T.,, and K. Mathee. 1998. The Anti-sigma factors. Annu. Rev. Microbiol. 52:231286.
64. Humphreys, S.,, A. Stevenson,, A. Bacon,, A. Weinhardt,, and M. Roberts. 1999. The alternative sigma factor, σE is critically important for virulence of Salmonella typhimurium. Infect. Immun. 67:15601568.
65. Jensen-Cain, D.,, and F. Quinn. 2001. Differential expression of sigE by Mycobacterium tuberculosis during intracellular growth. Microb. Pathog. 30:271278.
66. Jishage, M.,, D. Dasgupta,, and A. Ishihama. 2001. Mapping of the Rsd contact site on the sigma 70 subunit of Escherichia coli RNA polymerase. J. Bacteriol. 183:29522956.
67. Jishage, M.,, and A. Ishihama. 1998. A stationary phase protein in Escherichia coli with binding activity to the major sigma subunit of RNA polymerase. Proc. Natl. Acad. Sci. USA 95:49534958.
68. Jishage, M.,, and A. Ishihama. 1999. Transcriptional organization and in vivo role of the Escherichia coli rsd gene, encoding the regulator of RNA polymerase sigma D. J. Bacteriol. 181:37683776.
69. Jones, C. H.,, and C. P. J. Moran. 1992. Mutant σ factor blocks transition between promoter binding and initiation of transcription. Proc. Natl. Acad. Sci. USA 89:19581962.
70. Joo, D. M.,, N. Ng,, and R. Calender. 1997. A sigma32 mutant with a single amino acid change in the highly conserved region 2.2 exhibits reduced core RNA polymerase affinity. Proc. Natl. Acad. Sci. USA 94:49074912.
71. Juang, Y. L.,, and J. D. Helmann. 1994. A promoter melting region in the primary sigma factor of Bacillus subtilis: identification of functionally important aromatic amino acids. J. Mol. Biol. 235:14701488.
72. Juang, Y.-L.,, and J. D. Helmann. 1995. Pathway of promoter melting by Bacillus subtilis RNA polymerase at a stable RNA promoter: effects of temperature, δ protein, and σ factor mutations. Biochemistry 34:84658473.
73. Kanehara, K.,, K. Ito,, and Y. Akiyama. 2002. YaeL (EcfE) activates the σE pathway of stress response through a site-2 cleavage of anti-σE, RseA. Genes Dev. 16:21562168.
74. Kapatral, V.,, J. W. Olson,, J. C. Pepe,, V. L. Miller,, and S. A. Minnich. 1996. Temperature-dependent regulation of Yersinia enterocolitica class III flagellar genes. Mol. Microbiol. 19:10611071.
75. Karlinsey, J. E.,, J. Lonner,, K. L. Brown,, and K. T. Hughes. 2000. Translation/secretion coupling by type III secretion systems. Cell 102:487497.
76. Kennelly, P. J.,, and M. Potts. 1996. Fancy meeting you here! A fresh look at “prokaryotic” protein phosphorylation. J. Bacteriol. 178:47594764.
77. Kenney, T. J.,, K. York,, P. Youngman,, and C. P. J. Moran. 1989. Genetic evidence that RNA polymerase associated with σA factor uses a sporulation-specific promoter in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 86:91099113.
78. Klose, K. E.,, and J. J. Mekalanos. 1997. Differential regulation of multiple flagellins in Vibrio cholerae. J. Bacteriol. 180:303316.
79. Komeda, U.,, H. Suzuki,, J. I. Ishidsu,, and T. Iino. 1975. The role of cAMP in flagellation of Salmonella typhimurium. Mol. Gen. Genet. 142:289298.
80. Kovacikova, G.,, and K. Skorupski. 2002. The alternative sigma factor σE plays an important role in intestinal survival and virulence in Vibrio cholerae. Infect. Immun. 70:53555362.
81. Kutsukake, K. 1994. Excretion of the anti-sigma factor through a flagellar substructure couples flagellar gene expression with flagellar assembly in Salmonella typhimurium. Mol. Gen. Genet. 243:805812.
82. Kutsukake, K. 1997. Autogenous and global control of the flagellar master operon, flhD, in Salmonella typhimurium. Mol. Gen. Genet. 254:440448.
83. Kutsukake, K.,, and T. Iino. 1994. Role of the FliA-FlgM regulatory system on the transcriptional control of the flagellar regulon and flagellar formation in Salmonella typhimurium. J. Bacteriol. 176:35983605.
84. Kutsukake, K.,, Y. Ohya,, and T. Iino. 1990. Transcriptional analysis of the flagellar regulon of Salmonella typhimurium. J. Bacteriol. 172:741747.
85. Levin, P.,, and R. Losick. 1994. Characterization of a cell division gene from Bacillus subtilis that is required for vegetative and sporulation septum formation. J. Bacteriol. 176:14511459.
86. Liu, X.,, and P. Matsumura. 1994. The FlhD/FlhC complex, a transcriptional activator of the Escherichia coli flagellar class II operons. J. Bacteriol. 176:73457351.
87. Liu, X.,, and P. Matsumura. 1995. An alternative sigma factor controls transcription of flagellar class-III operons in Escherichia coli: gene sequence, overproduction, purification, and characterization. Gene 164:8184.
88. Liu, X.,, and P. Matsumura. 1996. Differential regulation of multiple overlapping promoters in flagellar class II operons in Escherichia coli. Mol. Microbiol. 21:613615.
89. Lonetto, M.,, M. Gribskov,, and C. A. Gross. 1992. The σ70 family: sequence conservation and evolutionary relationships. J. Bacteriol. 174:38433849.
90. Losick, R.,, and J. Pero. 1981. Cascades of sigma factors. Cell 25:582584.
91. Losick, R.,, P. Youngman,, and P. Piggot. 1986. Genetics of endospore formation in Bacillus subtilis. Annu. Rev. Genet. 20:625669.
92. Lowe, P. A.,, D. A. Hager,, and R. R. Burgess. 1979. Purification and properties of the σ subunit of Escherichia coli DNA-dependent RNA polymerase. Biochemistry 18:13441352.
93. Macnab, R. M., 1995. Flagella and motility, p. 123145. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella:Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C.
94. Malhotra, A.,, E. Severinova,, and S. A. Darst. 1996. Crystal structure of a σ70 subunit fragment from Escherichia coli RNA polymerase. Cell 87:127136.
95. Manganelli, R.,, M. Voskuil,, G. K. Schoolnik,, and I. Smith. 2001. The Mycobacterium turberculosis ECF sigma factor σE: role in global gene expression and survival in macrophages. Mol. Microbiol. 41:423437.
96. Margolis, P. S.,, A. Driks,, and R. Losick. 1991. Establishment of cell type by compartmentalized activation of a transcription factor. Science 254:562565.
97. Martin, D.,, B. Holloway,, and V. Deretic. 1993a. Characterization of a locus determining the mucoid status of Pseudomonas aeruginosa. J. Bacteriol. 175:11531164.
98. Martin, D.,, M. Schurr,, M. Mudd,, and V. Deretic. 1993b. Differentiation of Pseudomonas aeruginosa into the alginate-producing form: inactivation of mucB causes conversion to mucoidy. Mol. Microbiol. 9:497506.
99. Martin, D.,, M. Schurr,, M. Mudd,, J. Govan,, and B. Holloway. 1993c. Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. Proc. Natl. Acad. Sci. USA 90:83778381.
100. Masuda, S.,, K. S. Murakami,, S. Wang,, O. C. Anders,, J. Donigian,, F. Leon,, S. A. Darst,, and E. A. Campbell. 2004. Crystal structures of the ADP and ATP bound forms of the Bacillus anti-sigma factor SpoIIAB in complex with the anti-anti-sigma SpoIIAA. J. Mol. Biol. 340:941956.
101. Mekler, V.,, E. Kortkhonjia,, J. Mukhopadhyay,, J. Knight,, A. Revyakin,, A. N. Kapanidis,, W. Niu,, Y. W. Ebright,, R. Levy,, and R. H. Ebright. 2002. Structural organization of bacterial RNA polymerase holoenzyme and the RNA polymerase-promoter open complex. Cell 108:599614.
102. Min, K. T.,, C. M. Hilditch,, B. Diederich,, J. Errington,, and M. D. Yudkin. 1993. σF, the first compartmentspecific transcription factor of B. subtilis, is regulated by an anti-σ factor that is also a protein kinase. Cell 74:735742.
103. Missiakas, D.,, M. P. Mayer,, M. Lemaire,, C. Georgopoulos,, and S. Raina. 1997. Modulation of the Escherichia coli σE (RpoE) heat-shock transcription-factor activity by the RseA, RseB and RseC proteins. Mol. Microbiol. 24:355371.
104. Murakami, K.,, and S. A. Darst. 2003. Bacterial RNA polymerases: the wholo story. Curr. Opin. Struct. Biol. 13:3139.
105. Murakami, K.,, S. Masuda,, and S. A. Darst. 2002a. Structural basis of transcription initiation: RNA polymerase holoenzyme at 4 Å resolution. Science 269:12801284.
106. Murakami, K.,, S. Masuda,, E. A. Campbell,, O. Muzzin,, and S. A. Darst. 2002b. Structural basis of transcription initiation: an RNA polymerase holoenzyme-DNA complex. Science 296:12851290.
107. Ohnishi, K.,, K. Kutsukake,, H. Suzuki,, and T. Iino. 1990. Gene fliA encodes an alternative σ factor specific for flagellar operons in Salmonella typhimurium. Mol. Gen. Genet. 221:139147.
108. Ohnishi, K.,, K. Kutsukake,, H. Suzuki,, and T. Lino. 1992. A novel transcriptional regulation mechanism in the flagellar regulon of Salmonella typhimurium: an antisigma factor inhibits the activity of the flagellum-specific sigma factor, sigma F. Mol. Microbiol. 6:31493157.
109. Ouhammouch, M.,, K. Adelman,, S. R. Harvey,, G. Orsini,, and E. N. Brody. 1995. Bacteriophage T4 MotA and AsiA proteins suffice to direct Escherichia coli RNA polymerase to initiate transcription at T4 middle promoters. Proc. Natl. Acad. Sci. USA 92:14511455.
110. Patridge, S.,, and J. Errington. 1993. Importance of morphological events and intercellular interactions in the regulation of prespore-specific gene expression during sporulation in Bacillus subtilis. Mol. Microbiol. 8: 945955.
111. Piggot, P.,, and J. Coote. 1976. Genetic aspects of bacterial endospore formation. Bacteriol. Rev. 40:908962.
112. Prouty, M. G.,, N. E. Correa,, and K. E. Klose. 2001. The novel sigma54- and sigma28-dependent flagellar gene transcription hierarchy of Vibrio cholerae. Mol. Microbiol. 39:15951609.
113. Raina, S.,, D. Missiakas,, and C. Georgopoulos. 1995. The rpoE gene encoding the 8σE24) heat shock sigma factor of Escherichia coli. EMBO J. 14:10431055.
114. Ravio, T. L.,, and T. J. Silhavy. 2001. Periplasmic stress and ECF sigma factors. Annu. Rev. Microbiol. 55:591624.
115. Rouviere, P. E.,, A. De Las Penas,, J. Mescas,, Z. L. Chin,, K. E. Rudd,, and C. A. Gross. 1995. rpoE, the gene encoding the second heat-shock sigma factor, σE, in Escherichia coli. EMBO J. 14:10321042.
116. Rudner, D. Z.,, P. Fawcett,andR.Losick. 1999.Afamily ofmembrane-embeddedmetalloproteases involved in regulated proteolysis of membrane-associated transcription factors. Proc. Natl. Acad. Sci. USA 96:1476514770.
117. Schmidt, R.,, P. Margolis,, L. Duncan,, R. Coppolecchia,, C. J. Moran,, and R. Losick. 1990. Control of developmental transcriptional factor σF by sporulation regulatory proteins SpoIIAA and SpoIIAB in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 87:92219225.
118. Schmitt, C. K.,, S. C. Darnell,, and A. D. O’Brien. 1996a. The attenuated phenotype of a Salmonella typhimurium flgM mutant is related to expression of FliC flagellin. J. Bacteriol. 178:29112915.
119. Schmitt, C. K.,, S. C. Darnell,, and A. D. O’Brien. 1996b. The Salmonella typhimurium flgM gene, which encodes a negative regulator of flagella synthesis and is involved in virulence, is present and functional in other Salmonella species. FEMS Microbiol. Lett. 135:281285.
120. Schmitt, C. K.,, S. C. Darnell,, V. L. Tesh,, B. A. Stocker,, and A. D. O’Brien. 1994. Mutation of flgM attenuates virulence of Salmonella typhimurium, and mutation of fliA represses the attenuated phenotype. J. Bacteriol. 176:368377.
121. Setlow, P.,, and E. A. Johnson,. 1997. Spores and their significance, p. 3065. In M. P. Doyle,, L. R. Beuchat,, and T. J. Montville (ed.), Food Microbiology: Fundamentals and Frontiers. American Society for Microbiology, Washington, D.C.
122. Severinova, E.,, K. Severinov,, and S. A. Darst. 1998. Inhibition of Escherichia coli RNA polymerase by bacteriophage T4 AsiA. J. Mol. Biol. 279:918.
123. Severinova, E.,, K. Severinov,, D. Fenyö,, M. Marr,, E. N. Brody,, J. W. Roberts,, B. T. Chait,, and S. A. Darst. 1996. Domain organization of the Escherichia coli RNA polymerase σ70 subunit. J. Mol. Biol. 263:637647.
124. Sharp, M. M.,, C. L. Chan,, C. Z. Lu,, M. T. Marr,, S. Nechaev,, E. W. Merritt,, K. Severinov,, J. W. Roberts,, and C. A. Gross. 1999. The interface of sigma with core RNA polymerase is extensive, conserved, and functionally specialized. Genes Dev. 13:30153026.
125. Siegele, D. A.,, J. C. Hu,, W. A. Walter,, and C. A. Gross. 1989. Altered promoter recognition by mutant forms of the sigma 70 subunit of Escherichia coli RNA polymerase. J. Mol. Biol. 206:591603.
126. Silverman, M.,, and M. Simon. 1974. Characterizaton of Escherichia coli flagellar mutants that are insenstitive to catabolite repression. J. Bacteriol. 120:11961203.
127. Sorenson, M. K.,, S. S. Ray,, and S. A. Darst. 2004. Crystal structure of the flagellar sigma/anti-sigma complex sigma(28)/FlgM reveals an intact sigma factor in an inactive conformation Mol. Cell 14:127138.
128. Stevens, A. 1977. Inhibition of DNA-enzyme binding by an RNA polymerase inhibitor from T4 phage-infected Escherichia coli. Biochim. Biophys. Acta 475:193196.
129. Stock, J. B.,, V. L. Robinson,, and P. N. Goudreau. 2000. Two-component signal transduction. Annu. Rev. Biochem. 69:183215.
130. Tanaka, T.,, S. Saha,, C. Tomomori,, R. Ishima,, D. Liu,, D. I. Tong,, H. Park,, R. Dutta,, L. Qin,, M. B. Swindells, et al. 1998. NMR structure of the histidine kinase domain of the E. coli osmosensor EnvZ. Nature 396:8892.
131. Tatti, K. M.,, C. H. Jones,, and C. P. J. Moran. 1991. Genetic evidence for interaction of sigma E with the spoIIID promoter in Bacillus subtilis. J. Bacteriol. 173:78287833.
132. Travers, A. A.,, and R. R. Burgess. 1969. Cyclic re-use of the RNA polymerase sigma factor. Nature 222:537540.
133. Vassylyev, D. G.,, S. Sekine,, O. Laptenko,, J. Lee,, M. N. Vassylyeva,, S. Boruhkhov,, and S. Yokoyama. 2002. Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 Å resolution. Nature 417:712719.
134. Waldburger, C.,, T. Gardella,, R. Wong,, and M. M. Susskind. 1990. Changes in conserved region 2 of Escherichia coli sigma 70 affecting promoter recognition. J. Mol. Biol. 215:267276.
135. Walsh, N.,, B. Alba,, B. Baundana,, C. Gross,, and R. Sauer. 2003.OMPpeptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by its PDZ domain. Cell 113:6171.
136. Westblade, L.,, L. Ilag,, A. Powel,, A. Kolb,, C. Robinson,, and S. Busby. 2004. Studies of the Escherichia coli Rsd-sigma70 complex. J. Mol. Biol. 335:685692.
137. Wilson, M.,, R. McNab,, and B. Henderson. 2002. Bacterial Disease Mechanisms: an Introduction to Cellular Microbiology. Cambridge University Press, Cambridge, United Kingdom.
138. Wosten, M. M. 1998. Eubacterial sigma-factors. FEMS Microbiol. Rev. 22:127150.
139. Young, G.,, J. L. Badger,, and V. L. Miller. 2000. Motility is required to initiate host cell invasion by Yersinia enterocolitica. Infect. Immun. 68:43234326.
140. Young, G. M.,, D. H. Schmiel,, and V. L. Miller. 1999. A new pathway for the secretion of virulence factors by bacteria: the flagellar export apparatus functions as a protein-secretion system. Proc. Natl. Acad. Sci. USA 96:64566461.
141. Zhang, C. C. 1996. Bacterial signalling involving eukaryotic-type protein kinases. Mol. Microbiol. 20:915.
142. Zuber, P.,, J. Healy,, H. L. Carter III,, S. Cutting,, C. P. Moran, Jr.,, and R. Losick. 1989. Mutation changing the specificity of an RNA polymerase sigma factor. J. Mol. Biol. 206:605614.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error