1887

Chapter 1 : Regulation of Bacterial Transcription by Anti-σ Factors

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Regulation of Bacterial Transcription by Anti-σ Factors, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818395/9781555813017_Chap01-1.gif /docserver/preview/fulltext/10.1128/9781555818395/9781555813017_Chap01-2.gif

Abstract:

In bacteria, gene expression is regulated primarily at the step of transcription initiation. The DNA-dependent RNA polymerase (RNAP), the central enzyme of transcription, comprises an evolutionarily conserved, 400-kDa catalytic core of five subunits (aβ β'ω). The transcription cycle begins when the σ factor associates with core RNAP to form the holoenzyme, which then locates promoters through sequence-specific interactions between elements of σ and the promoter DNA. The studies described in this chapter were performed with group 1, or primary, σ factors, which transcribe genes necessary for exponential growth under favorable conditions. The chapter focuses on cognate anti-σ/σ pairs for which structural studies have provided insights into function and regulation. A signal transduction pathway involving ECF σ factors related to σ plays an important role in pathogenesis in some organisms. The evolution of structurally and functionally diverse anti-σ factors provide much more flexibility for the regulation of transcription initiation. Thus, the authors propose that the functional and structural diversity of anti-σ factors reflects the need for bacteria to relay a wide variety of environmental cues to the core transcriptional apparatus via regulation of the structurally conserved σ factors.

Citation: Campbell E, Darst S. 2005. Regulation of Bacterial Transcription by Anti-σ Factors, p 1-16. In Waksman G, Caparon M, Hultgren S (ed), Structural Biology of Bacterial Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555818395.ch1

Key Concept Ranking

Two-Component Signal Transduction Systems
0.54414046
Transcription Start Site
0.46307838
Chemicals
0.44406253
Gene Expression
0.43601418
0.54414046
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555818395.chap1
1. Ades, S. E.,, L. E. Connolly,, B. M. Alba,, and C. A. Gross. 1999. The Escherichia coli σ E-dependent extracytoplasmic stress response is controlled by the regulated proteolysis of an anti-sigma factor. Genes Dev. 13: 2449 2461.
2. Alba, B. M.,, J. A. Leeds,, C. Onufryk,, C. H. Lu,, and C. A. Gross. 2002. DegS and YaeL participate sequentially in the cleavage of RseA to activate the σ E-dependent extracytoplasmic stress response. Genes Dev. 16: 2156 2168.
3. Alba, B. M.,, H. J. Zhong,, J. C. Pelayo,, and C. A. Gross. 2001. degS (hhoB) is an essential Escherichia coli gene whose indispensable function is to provide σ E activity. Mol. Microbiol. 40: 1323 1333.
4. Alper, S.,, L. Duncan,, and R. Losick. 1994. An adenosine nucleotide switch controlling the activity of a cell type-specific transcription factor in B. subtilis. Cell 77: 195 205.
5. Arigoni, F.,, L. Duncan,, S. Alper,, R. Losick,, and P. Stragier. 1996. SpoIIE governs the phosphorylation state of a protein regulating transcription factor σ F during sporulation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 93: 3238 3242.
6. Barne, K. A.,, J. A. Bown,, S. J. W. Busby,, and S. D. Minchin. 1997. Region 2.5 of the Escherichia coli RNA polymerase 7sigma; 70 subunit is responsible for the recognition of the ‘extended-10’ motif at promoters. EMBO J. 16: 4034 4040.
7. Bergerat, A. 1997. An atypical topoisomerase II from Archaea with implications for meiotic recombination. Nature 386: 414 417.
8. Bilwes, A. M.,, L. R. Alex,, B. R. Crane,, and M. I. Simon. 1999. Structure of CheA, a signal-transducing histidine kinase. Cell 96: 131 141.
9. Bilwes, A. M.,, C. M. Quezada,, L. R. Croal,, B. R. Crane,, and M. I. Simon. 2001. Nucleotide binding of the histidine kinase CheA. Nat. Struct. Biol. 8: 353 360.
10. Brown, K. L.,, and K. T. Hughes. 1995. The role of anti-sigma factors in gene regulation. Mol. Microbiol. 16: 397 404.
11. Brown, M. S.,, J. Ye,, R. B. Rawson,, and J. L. Goldstein. 2000. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100: 391 398.
12. Burgess, R. R.,, A. A. Travers,, J. J. Dunn,, and E. K. F. Bautz. 1969. Factor stimulating transcription by RNA polymerase. Nature 221: 43 44.
13. Bylund, J.,, L. Zhang,, M. Haines,, M. Higgins,, and P. Piggot. 1994. Analysis by fluorescence microscopy of the development of compartment-specific gene expression during sporulation of Bacillus subtilis. J. Bacteriol. 176: 2898 2905.
14. Campbell, E.,, J. Tupy,, T. Gruber,, S. Wang,, M. Sharp,, C. Gross,, and S. Darst. 2003. Crystal structure of Escherichia coli σ E with the cytoplasic domain of its anti-σ RseA. Mol. Cell 11: 1067 1078.
15. Campbell, E. A.,, and S. A. Darst. 2000. The anti-σ factor SpoIIAB forms a 2:1 complex with σ F, contacting multiple conserved regions of the σ factor. J. Mol. Biol. 300: 17 28.
16. Campbell, E. A.,, S. Masuda,, J. L. Sun,, O. Muzzin,, C. A. Olson,, S. Wang,, and S. A. Darst. 2002a. Crystal structure of the Bacillus stearothermophilus anti-σ factor SpoIIAB with the sporulation σ factor σ F. Cell 108: 795 807.
17. Campbell, E. A.,, O. Muzzin,, M. Chlenov,, J. L. Sun,, C. A. Olson,, O. Weinman,, M. L. Trester-Zedlitz,, and S. A. Darst. 2002b. Structure of the bacterial RNA polymerase promoter specificity σ subunit. Mol. Cell 9: 527 539.
18. Cannon, W.,, S. Missailidis,, C. Smith,, A. Cottier,, S. Austin,, M. Moore,, and M. Buck. 1995. Core RNA polymerase and promoter DNA interactions of purified domains of σ N: bipartite functions. J. Mol. Biol. 248: 781 803
19. Chadsey, M. S.,, and K. T. Hughes. 2001. A multipartite interaction between Salmonella transcription factorσ28 and its anti-sigma factor FlgM: implications for σ 28 holoenzyme destablilization through stepwise binding. J. Mol. Biol. 306: 915 929.
20. Chadsey, M. S.,, J. E. Karlinsey,, and K. T. Hughes. 1998. The flagellar anti-σ factor FlgM actively dissociates Salmonella typhimurium σ 28 RNA polymerase holoenzyme. Genes Dev. 12: 3123 3136.
21. Chang, B.-Y.,, and R. H. Doi. 1990. Overproduction, purification, and characterization of Bacillus subtilis RNA polymerase σ A factor. J. Bacteriol. 172: 3257 3263.
22. Chen, Y. F.,, and J. D. Helmann. 1995. The Bacillus subtilis flagellar regulatory protein σ D: overproduction, domain analysis and DNA-binding properties. J. Mol. Biol. 249: 743 753.
23. Colland, F.,, G. Orsini,, E. Brody,, H. Buc,, and A. Kolb. 1998. The bacteriophage T4 AsiA protein: a molecular switch for sigma 70-dependent promoters. Mol. Microbiol. 27: 819 829.
24. Connolly, L.,, A. De Las Penas,, B. M. Alba,, and C. A. Gross. 1997. The response to extracytoplasmic stress in Escherichia coli is controlled by partially overlapping pathways. Genes Dev. 11: 2012 2021.
25. Danese, P. N.,, and T. J. Silhavy. 1997. The sigma (E) and the Cpx signal transduction systems control the synthesis of periplasmic protein-folding enzymes in Escherichia coli. Genes Dev. 11: 1183 1193.
26. Daniels, D.,, P. Zuber,, and R. Losick. 1990. Two amino acids in an RNA polymerase σ factor involved in the recognition of adjacent base pairs in the -10 region of a cognate promoter. Proc. Natl. Acad. Sci. USA 87: 8075 8079.
27. Darst, S. A.,, J. W. Roberts,, A. Malhotra,, M. Marr,, K. Severinov,, and E. Severinova,. 1997. Pribnow box recognition and melting by Escherichia coli RNA polymerase, p. 27 40. In F. Ekstein, and D. M. J. Lilley (ed.), Nucleic Acids and Molecular Biology. Springer-Verlag, London, United Kingdom.
28. Dartigalongue, C.,, D. Missiakas,, and S. Raina. 2001. Characterization of the Escherichia coli σ E regulon. J. Biol. Chem. 276: 20866 20875.
29. Daughdrill, G. W.,, M. S. Chadsey,, J. E. Karlinsey,, K. T. Hughes,, and F. W. Dahlquist. 1997. The C-terminal half of the anti-sigma factor, FlgM, becomes structured when bound to its target σ 28. Nat. Struct. Biol. 4: 285 291.
30. Decatur, A. L.,, and R. Losick. 1996. Three sites of contact between the Bacillus subtilis transcription factor σ F and its antisigma factor SpoIIAB. Genes Dev. 10: 2348 2358.
31. deHaseth, P. L.,, and J. D. Helmann. 1995. Open complex formation by Escherichia coli RNA polymerase: the mechanism of polymerase-induced strand separation of double helical DNA. Mol. Microbiol. 16: 817 824.
32. De Las Penas, A.,, L. Connolly,, and C. A. Gross. 1997a. σ E is an essential sigma factor in Escherichia coli. J. Bacteriol. 179: 6862 6864.
33. De Las Penas, A.,, L. Connolly,, and C. A. Gross. 1997b. The σ E-mediated response to extracytoplasmic stress in Escherichia coli is transduced by RseA and RseB, two negative regulators of σ E. Mol. Microbiol. 24: 373 385.
34. Diederich, B.,, J. F. Wilkinson,, T. Magnin,, S. M. A. Najafi,, J. Errington,, and M. D. Yudkin. 1994. Role of interactions between SpoIIAA and SpoIIAB in regulating cell-specific transcription factor σ F of Bacillus subtilis. Genes Dev. 8: 2653 2663.
35. Dove, S. L.,, and A. Hochschild. 2001. Bacterial two-hybrid analysis of interactions between region 4 of the σ 70 subunit of RNA polymerase and the transcriptional regulators Rsd from Escherichia coli and AlgQ from Pseudomonas aeruginosa. J. Bacteriol. 183: 6413 6421.
36. Driks, A.,, and R. Losick. 1991. Compartmentalized expression of a gene under the control of sporulation transcription factor σ E of Bacillus subtilis. Proc. Natl. Acad. Sci. USA 88: 9934 9938.
37. Duncan, L.,, S. Alper,, and R. Losick. 1994. Establishment of cell type specific gene expression during sporulation in Bacillus subtilis. Curr. Opin. Genet. Dev. 4: 630 636.
38. Duncan, L.,, S. Alper,, and R. Losick. 1995. Activation of cell-specific transcription by a serine phosphatase at the site of asymmetric division. Science 270: 641 644.
39. Duncan, L.,, S. Alper,, and R. Losick. 1996. SpoIIAA governs the release of the cell-type-specific transcription factor σ F from its anti-sigma factor SpoIIAB. J. Mol. Biol 260: 147 164.
40. Duncan, L.,, and R. Losick. 1993. SpoIIAB is an anti-σ facor that binds to and inhibits transcription by regulatory protein σ F from Bacillus subtilis. Proc. Natl. Acad. Sci. USA 90: 2325 2329.
41. Dutta, R.,, and M. Inouye. 2000. GHKL, an emergent ATPase/kinase superfamily. Trends Biochem. Sci. 25: 24 28.
42. Dworkin, J.,, and R. Losick. 2001. Differential gene expression governed by chromosomal spatial asymmetry. Cell 107: 339 346.
43. Erickson, J. W.,, and C. A. Gross. 1989. Identification of the σ E subunit of Escherichia coli RNA polymerase: a second alternate σ factor involved in high-temperature gene expression. Genes Dev. 3: 1462 1471.
44. Errington, J. 1993. Sporulation in Bacillus subtilis: regulation of gene expression and control of morphogenesis. Microbiol. Rev. 57: 1 33.
45. Feucht, A.,, M. D. Duncan,, and J. Errington. 1996. Bifunctional protein required for asymmetric cell division and cell-specific transcription in Bacillus subtilis. Genes Dev. 10: 794 803.
46. Flynn, J. M.,, S. B. Neher,, Y. I. Kim,, R. T. Sauer,, and T. A. Baker. 2003. Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of signals. Mol. Cell 11: 671 683.
47. Gardella, T.,, T. Moyle,, and M. M. Susskind. 1989. A mutant Escherichia coli sigma 70 subunit of RNA polymerase with altered promoter specificity. J. Mol. Biol. 206: 579 590.
48. Garsin, D. A.,, D. M. Paskowitz,, L. Duncan,, and R. Losick. 1998. Evidence for common sites of contact between the antisigma factor SpoIIAB and its partner SpoIIAA and the developmental transcription factor σ F in Bacillus subtilis. J. Mol. Biol. 284: 557 568.
49. Gillen, K. L.,, and K. T. Hughes. 1991a. Molecular characterization of flgM, a gene encoding a negative regulator of flagellin synthesis in Salmonella typhimurium. J. Bacteriol. 173: 6435 6459.
50. Gillen, K. L.,, and K. T. Hughes. 1991b. Negative regulatory loci coupling flagellin synthesis to flagellar assembly in Salmonella typhimurium. J. Bacteriol. 173: 2301 2310.
51. Gribskov, M.,, and R. R. Burgess. 1983. Overexpression and purification of the sigma subunit of Escherichia coli RNA polymerase. Gene 26: 109 118.
52. Gross, C. A.,, C. Chan,, A. Dombroski,, T. Gruber,, M. Sharp,, J. Tupy,, and B. Young. 1998. The functional and regulatory roles of sigma factors in transcription. Cold Spring Harbor Symp. Quant. Biol. 63: 141 155.
53. Gross, C. A.,, C. L. Chan,, and M. A. Lonetto. 1996. A structure/function analysis of Escherichia coli RNA polymerase. Philos. Trans. R. Soc. Lond. Ser. B 351: 475 482.
54. Gross, C. A.,, M. Lonetto,, and R. Losick. 1992. Bacterial sigma factors, p. 129 176. In K. Yamamoto and S. McKnight (ed.), Transcriptional Regulation. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
55. Gruber, T. M.,, and D. A. Bryant. 1997. Molecular systematic studies of eubacteria, using sigma70-type sigma factors of group 1 and group 2. J. Bacteriol. 179: 1734 1747.
56. Harley, C. B.,, and R. P. Reynolds. 1987. Analysis of E. coli promoter sequences. Nucleic Acids Res. 15: 2343 2361.
57. Hawley, D. K.,, and W. R. McClure. 1983. Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res. 11: 2237 2255.
58. Helmann, J. D. 2002. The extracytoplasmic function (ECF) sigma factors. Adv. Microb. Physiol. 46: 47 110.
59. Helmann, J. D.,, and M. J. Chamberlin. 1988. Structure and function of bacterial sigma factors. Annu. Rev. Biochem. 57: 839 872.
60. Hinton, D. M.,, R. March-Amegadzie,, J. S. Gerber,, and M. Sharma. 1996. Characterization of pretranscription complexes made at a bacteriophage T4 middle promoter: involvement of the T4 MotA activator and the T4 AsiA protein, a sigma 70 binding protein, in the formation of the open complex. J. Mol. Biol. 256: 235 248.
61. Ho, M.,, K. Carniol,, and R. Losick. 2003. Evidence in support of a docking model for the release of the transcription factor σ F from the antisigma factor SpoIIAB in Bacillus subtilis. J. Biol. Chem. 278: 20898 20905.
62. Hughes, K. T.,, K. L. Gillen,, M. J. Semon,, and J. E. Karlinsey. 1993. Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator. Science 262: 1277 1280.
63. Hughes, K. T.,, and K. Mathee. 1998. The Anti-sigma factors. Annu. Rev. Microbiol. 52: 231 286.
64. Humphreys, S.,, A. Stevenson,, A. Bacon,, A. Weinhardt,, and M. Roberts. 1999. The alternative sigma factor, σ E is critically important for virulence of Salmonella typhimurium. Infect. Immun. 67: 1560 1568.
65. Jensen-Cain, D.,, and F. Quinn. 2001. Differential expression of sigE by Mycobacterium tuberculosis during intracellular growth. Microb. Pathog. 30: 271 278.
66. Jishage, M.,, D. Dasgupta,, and A. Ishihama. 2001. Mapping of the Rsd contact site on the sigma 70 subunit of Escherichia coli RNA polymerase. J. Bacteriol. 183: 2952 2956.
67. Jishage, M.,, and A. Ishihama. 1998. A stationary phase protein in Escherichia coli with binding activity to the major sigma subunit of RNA polymerase. Proc. Natl. Acad. Sci. USA 95: 4953 4958.
68. Jishage, M.,, and A. Ishihama. 1999. Transcriptional organization and in vivo role of the Escherichia coli rsd gene, encoding the regulator of RNA polymerase sigma D. J. Bacteriol. 181: 3768 3776.
69. Jones, C. H.,, and C. P. J. Moran. 1992. Mutant σ factor blocks transition between promoter binding and initiation of transcription. Proc. Natl. Acad. Sci. USA 89: 1958 1962.
70. Joo, D. M.,, N. Ng,, and R. Calender. 1997. A sigma32 mutant with a single amino acid change in the highly conserved region 2.2 exhibits reduced core RNA polymerase affinity. Proc. Natl. Acad. Sci. USA 94: 4907 4912.
71. Juang, Y. L.,, and J. D. Helmann. 1994. A promoter melting region in the primary sigma factor of Bacillus subtilis: identification of functionally important aromatic amino acids. J. Mol. Biol. 235: 1470 1488.
72. Juang, Y.-L.,, and J. D. Helmann. 1995. Pathway of promoter melting by Bacillus subtilis RNA polymerase at a stable RNA promoter: effects of temperature, δ protein, and σ factor mutations. Biochemistry 34: 8465 8473.
73. Kanehara, K.,, K. Ito,, and Y. Akiyama. 2002. YaeL (EcfE) activates the σ E pathway of stress response through a site-2 cleavage of anti-σ E, RseA. Genes Dev. 16: 2156 2168.
74. Kapatral, V.,, J. W. Olson,, J. C. Pepe,, V. L. Miller,, and S. A. Minnich. 1996. Temperature-dependent regulation of Yersinia enterocolitica class III flagellar genes. Mol. Microbiol. 19: 1061 1071.
75. Karlinsey, J. E.,, J. Lonner,, K. L. Brown,, and K. T. Hughes. 2000. Translation/secretion coupling by type III secretion systems. Cell 102: 487 497.
76. Kennelly, P. J.,, and M. Potts. 1996. Fancy meeting you here! A fresh look at “prokaryotic” protein phosphorylation. J. Bacteriol. 178: 4759 4764.
77. Kenney, T. J.,, K. York,, P. Youngman,, and C. P. J. Moran. 1989. Genetic evidence that RNA polymerase associated with σA factor uses a sporulation-specific promoter in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 86: 9109 9113.
78. Klose, K. E.,, and J. J. Mekalanos. 1997. Differential regulation of multiple flagellins in Vibrio cholerae. J. Bacteriol. 180: 303 316.
79. Komeda, U.,, H. Suzuki,, J. I. Ishidsu,, and T. Iino. 1975. The role of cAMP in flagellation of Salmonella typhimurium. Mol. Gen. Genet. 142: 289 298.
80. Kovacikova, G.,, and K. Skorupski. 2002. The alternative sigma factor σ E plays an important role in intestinal survival and virulence in Vibrio cholerae. Infect. Immun. 70: 5355 5362.
81. Kutsukake, K. 1994. Excretion of the anti-sigma factor through a flagellar substructure couples flagellar gene expression with flagellar assembly in Salmonella typhimurium. Mol. Gen. Genet. 243: 805 812.
82. Kutsukake, K. 1997. Autogenous and global control of the flagellar master operon, flhD, in Salmonella typhimurium. Mol. Gen. Genet. 254: 440 448.
83. Kutsukake, K.,, and T. Iino. 1994. Role of the FliA-FlgM regulatory system on the transcriptional control of the flagellar regulon and flagellar formation in Salmonella typhimurium. J. Bacteriol. 176: 3598 3605.
84. Kutsukake, K.,, Y. Ohya,, and T. Iino. 1990. Transcriptional analysis of the flagellar regulon of Salmonella typhimurium. J. Bacteriol. 172: 741 747.
85. Levin, P.,, and R. Losick. 1994. Characterization of a cell division gene from Bacillus subtilis that is required for vegetative and sporulation septum formation. J. Bacteriol. 176: 1451 1459.
86. Liu, X.,, and P. Matsumura. 1994. The FlhD/FlhC complex, a transcriptional activator of the Escherichia coli flagellar class II operons. J. Bacteriol. 176: 7345 7351.
87. Liu, X.,, and P. Matsumura. 1995. An alternative sigma factor controls transcription of flagellar class-III operons in Escherichia coli: gene sequence, overproduction, purification, and characterization. Gene 164: 81 84.
88. Liu, X.,, and P. Matsumura. 1996. Differential regulation of multiple overlapping promoters in flagellar class II operons in Escherichia coli. Mol. Microbiol. 21: 613 615.
89. Lonetto, M.,, M. Gribskov,, and C. A. Gross. 1992. The σ70 family: sequence conservation and evolutionary relationships. J. Bacteriol. 174: 3843 3849.
90. Losick, R.,, and J. Pero. 1981. Cascades of sigma factors. Cell 25: 582 584.
91. Losick, R.,, P. Youngman,, and P. Piggot. 1986. Genetics of endospore formation in Bacillus subtilis. Annu. Rev. Genet. 20: 625 669.
92. Lowe, P. A.,, D. A. Hager,, and R. R. Burgess. 1979. Purification and properties of the σ subunit of Escherichia coli DNA-dependent RNA polymerase. Biochemistry 18: 1344 1352.
93. Macnab, R. M., 1995. Flagella and motility, p. 123 145. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella:Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C.
94. Malhotra, A.,, E. Severinova,, and S. A. Darst. 1996. Crystal structure of a σ 70 subunit fragment from Escherichia coli RNA polymerase. Cell 87: 127 136.
95. Manganelli, R.,, M. Voskuil,, G. K. Schoolnik,, and I. Smith. 2001. The Mycobacterium turberculosis ECF sigma factor σ E: role in global gene expression and survival in macrophages. Mol. Microbiol. 41: 423 437.
96. Margolis, P. S.,, A. Driks,, and R. Losick. 1991. Establishment of cell type by compartmentalized activation of a transcription factor. Science 254: 562 565.
97. Martin, D.,, B. Holloway,, and V. Deretic. 1993a. Characterization of a locus determining the mucoid status of Pseudomonas aeruginosa. J. Bacteriol. 175: 1153 1164.
98. Martin, D.,, M. Schurr,, M. Mudd,, and V. Deretic. 1993b. Differentiation of Pseudomonas aeruginosa into the alginate-producing form: inactivation of mucB causes conversion to mucoidy. Mol. Microbiol. 9: 497 506.
99. Martin, D.,, M. Schurr,, M. Mudd,, J. Govan,, and B. Holloway. 1993c. Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. Proc. Natl. Acad. Sci. USA 90: 8377 8381.
100. Masuda, S.,, K. S. Murakami,, S. Wang,, O. C. Anders,, J. Donigian,, F. Leon,, S. A. Darst,, and E. A. Campbell. 2004. Crystal structures of the ADP and ATP bound forms of the Bacillus anti-sigma factor SpoIIAB in complex with the anti-anti-sigma SpoIIAA. J. Mol. Biol. 340: 941 956.
101. Mekler, V.,, E. Kortkhonjia,, J. Mukhopadhyay,, J. Knight,, A. Revyakin,, A. N. Kapanidis,, W. Niu,, Y. W. Ebright,, R. Levy,, and R. H. Ebright. 2002. Structural organization of bacterial RNA polymerase holoenzyme and the RNA polymerase-promoter open complex. Cell 108: 599 614.
102. Min, K. T.,, C. M. Hilditch,, B. Diederich,, J. Errington,, and M. D. Yudkin. 1993. σ F, the first compartmentspecific transcription factor of B. subtilis, is regulated by an anti-σ factor that is also a protein kinase. Cell 74: 735 742.
103. Missiakas, D.,, M. P. Mayer,, M. Lemaire,, C. Georgopoulos,, and S. Raina. 1997. Modulation of the Escherichia coli σ E (RpoE) heat-shock transcription-factor activity by the RseA, RseB and RseC proteins. Mol. Microbiol. 24: 355 371.
104. Murakami, K.,, and S. A. Darst. 2003. Bacterial RNA polymerases: the wholo story. Curr. Opin. Struct. Biol. 13: 31 39.
105. Murakami, K.,, S. Masuda,, and S. A. Darst. 2002a. Structural basis of transcription initiation: RNA polymerase holoenzyme at 4 Å resolution. Science 269: 1280 1284.
106. Murakami, K.,, S. Masuda,, E. A. Campbell,, O. Muzzin,, and S. A. Darst. 2002b. Structural basis of transcription initiation: an RNA polymerase holoenzyme-DNA complex. Science 296: 1285 1290.
107. Ohnishi, K.,, K. Kutsukake,, H. Suzuki,, and T. Iino. 1990. Gene fliA encodes an alternative σ factor specific for flagellar operons in Salmonella typhimurium. Mol. Gen. Genet. 221: 139 147.
108. Ohnishi, K.,, K. Kutsukake,, H. Suzuki,, and T. Lino. 1992. A novel transcriptional regulation mechanism in the flagellar regulon of Salmonella typhimurium: an antisigma factor inhibits the activity of the flagellum-specific sigma factor, sigma F. Mol. Microbiol. 6: 3149 3157.
109. Ouhammouch, M.,, K. Adelman,, S. R. Harvey,, G. Orsini,, and E. N. Brody. 1995. Bacteriophage T4 MotA and AsiA proteins suffice to direct Escherichia coli RNA polymerase to initiate transcription at T4 middle promoters. Proc. Natl. Acad. Sci. USA 92: 1451 1455.
110. Patridge, S.,, and J. Errington. 1993. Importance of morphological events and intercellular interactions in the regulation of prespore-specific gene expression during sporulation in Bacillus subtilis. Mol. Microbiol. 8: 945 955.
111. Piggot, P.,, and J. Coote. 1976. Genetic aspects of bacterial endospore formation. Bacteriol. Rev. 40: 908 962.
112. Prouty, M. G.,, N. E. Correa,, and K. E. Klose. 2001. The novel sigma54- and sigma28-dependent flagellar gene transcription hierarchy of Vibrio cholerae. Mol. Microbiol. 39: 1595 1609.
113. Raina, S.,, D. Missiakas,, and C. Georgopoulos. 1995. The rpoE gene encoding the 8σ E24) heat shock sigma factor of Escherichia coli. EMBO J. 14: 1043 1055.
114. Ravio, T. L.,, and T. J. Silhavy. 2001. Periplasmic stress and ECF sigma factors. Annu. Rev. Microbiol. 55: 591 624.
115. Rouviere, P. E.,, A. De Las Penas,, J. Mescas,, Z. L. Chin,, K. E. Rudd,, and C. A. Gross. 1995. rpoE, the gene encoding the second heat-shock sigma factor, σ E, in Escherichia coli. EMBO J. 14: 1032 1042.
116. Rudner, D. Z.,, P. Fawcett,andR.Losick. 1999. Afamily ofmembrane-embeddedmetalloproteases involved in regulated proteolysis of membrane-associated transcription factors. Proc. Natl. Acad. Sci. USA 96: 14765 14770.
117. Schmidt, R.,, P. Margolis,, L. Duncan,, R. Coppolecchia,, C. J. Moran,, and R. Losick. 1990. Control of developmental transcriptional factor σ F by sporulation regulatory proteins SpoIIAA and SpoIIAB in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 87: 9221 9225.
118. Schmitt, C. K.,, S. C. Darnell,, and A. D. O’Brien. 1996a. The attenuated phenotype of a Salmonella typhimurium flgM mutant is related to expression of FliC flagellin. J. Bacteriol. 178: 2911 2915.
119. Schmitt, C. K.,, S. C. Darnell,, and A. D. O’Brien. 1996b. The Salmonella typhimurium flgM gene, which encodes a negative regulator of flagella synthesis and is involved in virulence, is present and functional in other Salmonella species. FEMS Microbiol. Lett. 135: 281 285.
120. Schmitt, C. K.,, S. C. Darnell,, V. L. Tesh,, B. A. Stocker,, and A. D. O’Brien. 1994. Mutation of flgM attenuates virulence of Salmonella typhimurium, and mutation of fliA represses the attenuated phenotype. J. Bacteriol. 176: 368 377.
121. Setlow, P.,, and E. A. Johnson,. 1997. Spores and their significance, p. 30 65. In M. P. Doyle,, L. R. Beuchat,, and T. J. Montville (ed.), Food Microbiology: Fundamentals and Frontiers. American Society for Microbiology, Washington, D.C.
122. Severinova, E.,, K. Severinov,, and S. A. Darst. 1998. Inhibition of Escherichia coli RNA polymerase by bacteriophage T4 AsiA. J. Mol. Biol. 279: 9 18.
123. Severinova, E.,, K. Severinov,, D. Fenyö,, M. Marr,, E. N. Brody,, J. W. Roberts,, B. T. Chait,, and S. A. Darst. 1996. Domain organization of the Escherichia coli RNA polymerase σ 70 subunit. J. Mol. Biol. 263: 637 647.
124. Sharp, M. M.,, C. L. Chan,, C. Z. Lu,, M. T. Marr,, S. Nechaev,, E. W. Merritt,, K. Severinov,, J. W. Roberts,, and C. A. Gross. 1999. The interface of sigma with core RNA polymerase is extensive, conserved, and functionally specialized. Genes Dev. 13: 3015 3026.
125. Siegele, D. A.,, J. C. Hu,, W. A. Walter,, and C. A. Gross. 1989. Altered promoter recognition by mutant forms of the sigma 70 subunit of Escherichia coli RNA polymerase. J. Mol. Biol. 206: 591 603.
126. Silverman, M.,, and M. Simon. 1974. Characterizaton of Escherichia coli flagellar mutants that are insenstitive to catabolite repression. J. Bacteriol. 120: 1196 1203.
127. Sorenson, M. K.,, S. S. Ray,, and S. A. Darst. 2004. Crystal structure of the flagellar sigma/anti-sigma complex sigma(28)/FlgM reveals an intact sigma factor in an inactive conformation Mol. Cell 14: 127 138.
128. Stevens, A. 1977. Inhibition of DNA-enzyme binding by an RNA polymerase inhibitor from T4 phage-infected Escherichia coli. Biochim. Biophys. Acta 475: 193 196.
129. Stock, J. B.,, V. L. Robinson,, and P. N. Goudreau. 2000. Two-component signal transduction. Annu. Rev. Biochem. 69: 183 215.
130. Tanaka, T.,, S. Saha,, C. Tomomori,, R. Ishima,, D. Liu,, D. I. Tong,, H. Park,, R. Dutta,, L. Qin,, M. B. Swindells, et al. 1998. NMR structure of the histidine kinase domain of the E. coli osmosensor EnvZ. Nature 396: 88 92.
131. Tatti, K. M.,, C. H. Jones,, and C. P. J. Moran. 1991. Genetic evidence for interaction of sigma E with the spoIIID promoter in Bacillus subtilis. J. Bacteriol. 173: 7828 7833.
132. Travers, A. A.,, and R. R. Burgess. 1969. Cyclic re-use of the RNA polymerase sigma factor. Nature 222: 537 540.
133. Vassylyev, D. G.,, S. Sekine,, O. Laptenko,, J. Lee,, M. N. Vassylyeva,, S. Boruhkhov,, and S. Yokoyama. 2002. Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 Å resolution. Nature 417: 712 719.
134. Waldburger, C.,, T. Gardella,, R. Wong,, and M. M. Susskind. 1990. Changes in conserved region 2 of Escherichia coli sigma 70 affecting promoter recognition. J. Mol. Biol. 215: 267 276.
135. Walsh, N.,, B. Alba,, B. Baundana,, C. Gross,, and R. Sauer. 2003. OMPpeptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by its PDZ domain. Cell 113: 61 71.
136. Westblade, L.,, L. Ilag,, A. Powel,, A. Kolb,, C. Robinson,, and S. Busby. 2004. Studies of the Escherichia coli Rsd-sigma70 complex. J. Mol. Biol. 335: 685 692.
137. Wilson, M.,, R. McNab,, and B. Henderson. 2002. Bacterial Disease Mechanisms: an Introduction to Cellular Microbiology. Cambridge University Press, Cambridge, United Kingdom.
138. Wosten, M. M. 1998. Eubacterial sigma-factors. FEMS Microbiol. Rev. 22: 127 150.
139. Young, G.,, J. L. Badger,, and V. L. Miller. 2000. Motility is required to initiate host cell invasion by Yersinia enterocolitica. Infect. Immun. 68: 4323 4326.
140. Young, G. M.,, D. H. Schmiel,, and V. L. Miller. 1999. A new pathway for the secretion of virulence factors by bacteria: the flagellar export apparatus functions as a protein-secretion system. Proc. Natl. Acad. Sci. USA 96: 6456 6461.
141. Zhang, C. C. 1996. Bacterial signalling involving eukaryotic-type protein kinases. Mol. Microbiol. 20: 9 15.
142. Zuber, P.,, J. Healy,, H. L. Carter III,, S. Cutting,, C. P. Moran, Jr.,, and R. Losick. 1989. Mutation changing the specificity of an RNA polymerase sigma factor. J. Mol. Biol. 206: 605 614.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error