1887

Chapter 12 : Toll/Interleukin-1 Receptors and Innate Immunity

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Toll/Interleukin-1 Receptors and Innate Immunity, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818395/9781555813017_Chap12-1.gif /docserver/preview/fulltext/10.1128/9781555818395/9781555813017_Chap12-2.gif

Abstract:

Innate immunity represents the sole mechanism of host defense against microbial infections in invertebrates. In mammals and other vertebrates, innate immunity provides the first line of host defense against these infections. Studies over the past few years have shown that Toll-like receptors (TLRs) are crucial molecules in the recognition of various pathogen-associatedmolecular patterns (PAMPs), and therefore represent a class of pattern-recognition receptors (PRRs). Like the TLRs, interleukin-1 receptor superfamily (IL-1Rs) also plays key roles in host responses to infection and inflammation. This chapter describes the current state of knowledge of these two superfamilies of receptors and their ligands, as well as the molecules that mediate the membrane-proximal events of their signaling. The intracellular region of Toll contains two domains (Fig. 1). The first, membraneproximal domain has about 150 residues and bears sequence homology to the intracellular domain of the IL-1 receptor (IL-1R). This domain is known as the TIR domain and is discussed in more detail. Many molecules have been identified in the signaling pathways of the IL-1Rs and TLRs. The chapter focuses on the membrane-proximal events of these pathways. The signal transduction through the TLRs and the IL-1Rs ultimately leads to the activation of the transcription factor NF-kB, the mitogenactivated protein (MAP) kinases (ERK, p38, and JNK) and transcription factors of the AP-1 family. Structural biology is the most important experimental technique for addressing issues regarding the molecular basis of innate immunity.

Citation: Tong L. 2005. Toll/Interleukin-1 Receptors and Innate Immunity, p 241-263. In Waksman G, Caparon M, Hultgren S (ed), Structural Biology of Bacterial Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555818395.ch12

Key Concept Ranking

Immune System Proteins
0.6683791
Bacterial Proteins
0.5133483
Cell Wall Components
0.4383681
Tumor Necrosis Factor
0.43584833
0.6683791
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Domain organization of TLRs, IL-1Rs, and associated molecules. The individual domains are indicated by the shapes of their symbols. For all the proteins, the N terminus is on the left.

Citation: Tong L. 2005. Toll/Interleukin-1 Receptors and Innate Immunity, p 241-263. In Waksman G, Caparon M, Hultgren S (ed), Structural Biology of Bacterial Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555818395.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Signaling pathways for TLRs and IL-1Rs. (A) Membrane-proximal events in the signal transduction. The TIR domains are shown as solid rectangles, and the death domains are shown as solid circles. (B) Overall signaling events in the TLR and IL-1R pathways. Abbreviations: TRAF, TNF-α receptor-associated factor; TAK, transforming growth factor β- activated kinase;MKK,MAPkinase kinase; IKK, I-?B kinase;TBK,TANK-binding kinase.

Citation: Tong L. 2005. Toll/Interleukin-1 Receptors and Innate Immunity, p 241-263. In Waksman G, Caparon M, Hultgren S (ed), Structural Biology of Bacterial Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555818395.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818395.chap12
1. Aderem, A.,, and R. J. Ulevitch. 2000. Toll-like receptors in the induction of the innate immune response. Nature 406:782787.
2. Anderson, K. V. 2000. Toll signaling pathways in the innate immune response. Curr. Opin. Immunol. 12:1319.
3. Arbibe, L.,, J.-P. Mira,, N. Teusch,, L. Kline,, M. Guha,, N. Mackman,, P. J. Godowski,, R. J. Ulevitch,, and U. G. Knaus. 2000. Toll-like receptor2-mediated NF-κB activation requires a Rac1-dependent pathway. Nat. Immunol. 1:533540.
4. Asai, T.,, G. Tena,, J. Plotnikova,, M. R. Willmann,, W.-L. Chiu,, L. Gomez-Gomez,, T. Boller,, F. M. Ausubel,, and J. Sheen. 2002. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977983.
5. Bahi, N.,, G. Friocourt,, A. Carrie,, M. E. Graham,, J. L. Weiss,, P. Chafey,, F. Fauchereau,, R. D. Burgoyne,, and J. Chelly. 2003. IL1 receptor accessory protein like, a protein involved in X-linked mental retardation, interacts with neuronal calcium sensor-1 and regulates exocytosis. Human Mol. Gen. 12:14151425.
6. Beutler, B. 2000. Tlr4: central component of the sole mammalian LPS sensor. Curr. Opin. Immunol. 12:2026.
7. Beutler, B.,, and H. Wagner (ed.) 2002. Toll-Like Receptor Family Members and Their Ligands. Springer-Verlag KG, Berlin, Germany.
8. Bin, L.-H.,, L.-G. Xu,, and H.-B. Shu. 2003. TIRP: a novel Toll/interleukin-1 receptor (TIR) domain containing adaptor protein involved in TIR signaling. J. Biol. Chem. 278:2452624532.
9. Brint, E. K.,, K. A. Fitzgerald,, P. Smith,, A. J. Coyle,, J.-C. Gutierrez-Ramos,, P. G. Fallon,, and L. A. J. O’Neill. 2002. Characterization of signaling pathways activated by the interleukin 1 (IL-1) receptor homologue T1/ST2. J. Biol. Chem. 277:4920549211.
10. Burns, K.,, S. Janssens,, B. Brissoni,, N. Olivos,, R. Beyaert,, and J. Tschopp. 2003. Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. J. Exp. Med. 197:263268.
11. Chamaillard, M.,, M. Hashimoto,, Y. Horie,, J. Masumoto,, S. Qiu,, L. Saab,, Y. Ogura,, A. Kawasaki,, K. Fukase,, S. Kusumoto,, M. A. Valvano,, S. J. Foster,, T. W. Mak,, G. Nunez,, and N. Inohara. 2003. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopomelic acid. Nat. Immunol. 4:702707.
12. Dunne, A.,, and L. A. J. O’Neill. 2003. The interleukin-1 recepor/Toll-like receptor superfamily: signal transduction during inflammation and host defense. Sci. STKE 2003:re3.
13. Girardin, S. E.,, I. G. Boneca,, L. A. M. Carneiro,, A. Antignac,, M. Jehanno,, J. Viala,, K. Tedin,, M.-K. Taha,, A. Labigne,, U. Zahringer,, A. J. Coyle,, P. S. DiStefano,, J. Bertin,, P. J. Sansonetti,, and D. J. Philpott. 2003. Nod1 detects a unique muropeptide from Gram-negative bacterial peptidoglycan. Science 300:15841587.
14. Grosshans, J.,, F. Schnorrer,, and C. Nusslein-Volhard. 1999. Oligomerization of Tube and Pelle leads to nuclear localisation of Dorsal. Mech. Dev. 81:127138.
15. Hajjar, A. M.,, R. K. Ernst,, J. H. Tsai,, C. B. Wilson,, and S. I. Miller. 2002. Human Toll-like receptor 4 recognizes host-specific LPS modifications. Nat. Immunol. 3:354359.
16. Hoebe, K.,, K. Du,, P. Georgel,, E. Janssen,, K. Tabeta,, S. O. Kim,, J. Goode,, P. Lin,, N. Mann,, S. Mudd,, K. Crozat,, S. Sovath,, J. Han,, and B. Beutler. 2003. Identification of Lps2 as a key transducer of MyD88- independent TIR signalling. Nature 424:743748.
17. Hoffmann, J. A.,, F. C. Kafatos,, C. A. Janeway, Jr.,., and R. A. B. Ezekowitz. 1999. Phylogenetic perspectives in innate immunity. Science 284:13131318.
18. Janeway, C. A., Jr. 1989. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harbor Symp. Quant. Biol. LIV:113.
19. Jensen, L. E.,, and A. S. Whitehead. 2003. Pellino 2 activates the mitogen activated protein kinase pathway. FEBS Lett. 545:199202.
20. Jiang, Z.,, H. J. Johnson,, H. Nie,, J. Qin,, T. A. Bird,, and X. Li. 2003. Pellino 1 is required for interleukin-1 (IL-1)-mediated signaling through its interaction with the IL-1 receptor-associated kinase 4 (IRAK4)-IRAKtumor necrosis factor receptor-associated factor 6 (TRAF6) complex. J. Biol. Chem. 278:1095210956.
21. Koh, P. O.,, A. S. Undie,, N. Kabbani,, R. Levenson,, P. S. Goldman-Rakic,, and M. S. Lidow. 2003. Upregulation of neuronal calcium sensor-1 (NCS-1) in the prefrontal cortex of schizophrenic and bipolar patients. Proc. Natl. Acad. Sci. USA 100:313317.
22. Marmiroli, S.,, A. Bavelloni,, I. Faenza,, A. Sirri,, A. Ognibene,, V. Cenni,, J. Tsukada,, Y. Koyama,, M. Ruzzene,, A. Ferri,, P. E. Auron,, A. Toker,, and N. M. Maraldi. 1998. Phosphotidylinositol 3-kinase is recruited to a specific site in the activated IL-1 receptor 1. FEBS Lett. 438:4954.
23. Medzhitov, R.,, and C. A. Janeway, Jr. 1997. Innate immunity: the virtues of a nonclonal system of recognition. Cell 91:295298.
24. Meyers, B. C.,, A. Kozik,, A. Griego,, H. Kuang,, and R. W. Michelmore. 2003. Genome-wide analysis of NBSLRR- encoding genes in Arabidopsis. Plant Cell 15:809834.
25. O’Neill, L. A. J. 2003. The role of MyD88-like adaptors in Toll-like receptor signal transduction. Biochem. Soc. Trans. 31:643647.
26. Pereira, J. P.,, R. Girard,, R. Chaby,, A. Cumano,, and P. Vieira. 2003. Monoallelic expression of the murine gene encoding Toll-like receptor 4. Nat. Immunol. 4:464470.
27. Shen, B.,, and J. L. Manley. 1998. Phosphorylation modulates direct interactions between the Toll receptor, Pelle kinase and Tube. Development 125:47194728.
28. Sims, J. E. 2002. IL-1 and IL-18 receptors, and their extended family. Curr. Opin. Immunol. 14:117122.
29. Sing, A.,, D. Rost,, N. Tvardovskaia,, A. Roggenkamp,, A. Wiedemann,, C. J. Kirschning,, M. Aepfelbacher,, and J. Heesemann. 2002. Yersinia V-antigen exploits Toll-like receptor 2 and CD14 for interleukin 10-mediated immunosupression. J. Exp. Med. 196:10171024.
30. Sun, H.,, B. N. Bristow,, G. Qu,, and S. A. Wasserman. 2002. A heterotrimeric death domain complex in Toll signaling. Proc. Natl. Acad. Sci. USA 99:1287112876.
31. Takeda, K.,, and S. Akira. 2003. Toll receptors and pathogen resistance. Cell. Microbiol. 5:143153.
32. Tschopp, J.,, F. Martinon,, and K. Burns. 2003. NALPs: a novel protein family involved in inflammation. Nat. Rev. Mol. Cell Biol. 4:95104.
33. Underhill, D. M.,, and A. Ozinsky. 2002. Toll-like receptors: key mediators of microbe detection. Curr. Opin. Immunol. 14:103110.
34. Wald, D.,, J. Qin,, Z. Zhao,, Y. Qian,, M. Naramura,, L. Tian,, J. Towne,, J. E. Sims,, G. Stark,, and X. Li. 2003. SIGIRR, a negative regulator of Toll-like receptor-interleukin 1 receptor signaling. Nat. Immunol. 4:920927.
35. Weber, A. N. R.,, S. Tauszig-Delamasure,, J. A. Hoffmann,, E. Lelievre,, H. Gascan,, K. P. Ray,, M. A. Morse,, J. L. Imler,, and N. J. Gay. 2003. Binding of the Drosophila cytokine Spatzle to Toll is direct and establishes signaling. Nat. Immunol. 4:794800.
36. Yamamoto, M.,, S. Sato,, H. Hemmi,, K. Hoshino,, T. Kaisho,, H. Sanjo,, O. Takeuchi,, M. Sugiyama,, M. Okabe,, K. Takeda,, and S. Akira. 2003. Role of adaptor TRIF in the MyD88-independent Toll-like receptor signaling pathway. Science 301:640643.
37. Yu, K.-Y.,, H.-J. Kwon,, D. A. M. Norman,, E. Vig,, M. G. Goebl,, and M. A. Harrington. 2002. Mouse Pellino-2 modulates IL-1 and lipopolysaccharide signaling. J. Immunol. 169:40754078.

Tables

Generic image for table
Table 1.

IL-1 receptors and TLRs

Citation: Tong L. 2005. Toll/Interleukin-1 Receptors and Innate Immunity, p 241-263. In Waksman G, Caparon M, Hultgren S (ed), Structural Biology of Bacterial Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555818395.ch12

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error