1887

Chapter 3 : Sugar Recognition and Bacterial Attachment

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Sugar Recognition and Bacterial Attachment, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818395/9781555813017_Chap03-1.gif /docserver/preview/fulltext/10.1128/9781555818395/9781555813017_Chap03-2.gif

Abstract:

Many bacteria harbor adhesins at the tip of adhesive organelles called pili or fimbriae. This chapter discusses the contribution of structural biology to the understanding of the molecular basis of bacterial attachment to glycoprotein and glycolipid host receptors. The chaperone-usher pathway is involved in the biogenesis of more than 100 different pili structures in pathogenic gram-negative bacteria. Examples of pili and fimbriae that are assembled through the chaperone-usher pathway are type 1 pili, P pili, and G and F17 fimbriae. To date, the adhesive interactions between host and pathogenic bacteria of over 300 different species have been investigated. Bacteria have learned to exploit the fact that mammalian tissues have glycoproteins and glycolipds in their membranes by expressing lectins at the tips of their pili. Recently, the crystal structures of FimH, PapGII, GafD, and F17a-G have been determined and are providing a wealth of information on lectin-host receptor interactions. The crystal structures of FimH, PapGII, GafD, and F17a-G provide an opportunity for understanding the molecular details of host-pathogen interactions as well as the evolutionary relationships between the different adhesins. The detailed structural analysis of bacterial adhesins has demonstrated their central role in the host-pathogen interface during the infection process and has made them attractive targets for the development of new antimicrobial therapies. Differences in pilus structure, along with differences in the lectin-binding domains, allow the bacterium to orient their adhesin in order to effectively and efficiently bind to their receptors.

Citation: Smith C, Dodson K, Hultgren S, Waksman G. 2005. Sugar Recognition and Bacterial Attachment, p 37-48. In Waksman G, Caparon M, Hultgren S (ed), Structural Biology of Bacterial Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555818395.ch3

Key Concept Ranking

Type 1 Pili
0.5727156
Bacterial Pathogenesis
0.52002597
Bacterial Proteins
0.5086598
Nuclear Magnetic Resonance Spectroscopy
0.45703492
0.5727156
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555818395.chap3
1. Bork, P.,, L. Holm,, and C. Sander. 1994. The immunoglobulin fold. Structural classification, sequence patterns and common core. J. Mol. Biol. 242: 309 320.
2. Bullitt, E.,, and L. Makowski. 1995. Structural polymorphism of bacterial adhesion pili. Nature 373: 164 167.
3. Buts, L.,, J. Bouckaert,, E. De Genst,, R. Loris,, S. Oscarson,, M. Lahmann,, J. Messens,, E. Brosens,, L. Wyns,, and H. De Greve. 2003. The fimbrial adhesin F17-G of enterotoxigenic Escherichia coli has an immunoglobulin-like lectin domain that binds N-acetylglucosamine. Mol. Microbiol. 49: 705 715.
4. Choudhury, D.,, A. Thompson,, V. Stojanoff,, S. Langermann,, J. Pinkner,, S. J. Hultgren,, and S. D. Knight. 1999. X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli. Science 285: 1061 1066.
5. Connell, I.,, W. Agace,, P. Klemm,, M. Schembri,, S. Marild,, and C. Svanborg. 1996. Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proc. Natl. Acad. Sci. USA 93: 9827 9832.
6. Dodson, K. W.,, F. Jacob-Dubuisson,, R. T. Striker,, and S. J. Hultgren. 1993. Outer-membrane PapC molecular usher discriminately recognizes periplasmic chaperone-pilus subunit complexes. Proc. Natl. Acad. Sci. USA 90: 3670 3674.
7. Dodson, K. W.,, J. S. Pinkner,, T. Rose,, G. Magnusson,, S. J. Hultgren,, and G. Waksman. 2001. Structural basis of the interaction of the pyelonephritic E. coli adhesin to its human kidney receptor. Cell 105: 733 743.
8. Gong, M.,, and L. Makowsk. 1992. Helical structure of P pili from Escherichia coli. Evidence from X-ray fiber diffraction and scanning transmission electron microscopy. J. Mol. Biol. 228: 735 742.
9. Hahn, E.,, P. Wild,, U. Hermanns,, P. Sebbel,, R. Glockshuber,, M. Haner,, N. Taschner,, P. Burkhard,, U. Aebi,, and S. A. Muller. 2002. Exploring the 3D molecular architecture of Escherichia coli type 1 pili. J. Mol. Biol. 323: 845 857.
10. Hasty, D. L.,, H. S. Courtney,, E. V. Sokurenko,, and I. Ofek,. 1994. Bacteria-extracellular matrix interactions, p. 197 211. In P. Klemm (ed.), Fimbriae: Adhesion, Genetics, Biogenesis, and Vaccines. CRC Press, Inc., Boca Raton, Fla.
11. Hultgren, S. J.,, F. Lindberg,, G. Magnusson,, J. Kihlberg,, J. M. Tennent,, and S. Normark. 1989. The PapG adhesin of uropathogenic Escherichia coli contains separate regions for receptor binding and for the incorporation into the pilus. Proc. Natl. Acad. Sci. USA 86: 4357 4361.
12. Hung, C. S.,, J. Bouckaert,, D. Hung,, J. Pinkner,, C. Widberg,, A. DeFusco,, C. G. Auguste,, R. Strouse,, S. Langermann,, G. Waksman,, and S. J. Hultgren. 2002. Structural basis of tropism of Escherichia coli to the bladder during urinary tract infection. Mol. Microbiol. 44: 903 915.
13. Hung, D. L.,, and S. J. Hultgren. 1998. Pilus biogenesis via the chaperone/usher pathway: an integration of structure and function. J. Struct. Biol. 124: 201 220.
14. Jones, C. H.,, and S. J. Hultgren,. 1996. Structure, function, and assembly of adhesive P pili, p. 175 219. In H. L. T. Mobley, and J. W. Warren (ed.), Urinary Tract Infections: Molecular Pathogenesis and Clinical Management. ASM Press, Washington, D.C.
15. Knight, S.,, M. A. Mulvey,, and J. Pinkner. 1997. Crystallization and preliminary X-ray diffraction studies of the FimC-FimH chaperone-adhesin complex from Escherichia coli. Acta Crystallogr. Ser. D D 53: 207 210.
16. Langermann, S.,, S. Palaszynski,, M. Barnhart,, G. Auguste,, J. S. Pinkner,, J. Burlein,, P. Barren,, S. Koenig,, S. Leath,, C. H. Jones,, and S. J. Hultgren. 1997. Prevention of mucosal Escherichia coli infection by FimHadhesin- based systemic vaccination. Science 276: 607 611.
17. Laskowski, R. A. 1995. SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. J. Mol. Graph. 13: 323 330, 307 308.
18. Merckel, M. C.,, J. Tanskanen,, S. Edelman,, B. Westerlund-Wikstrom,, T. K. Korhonen,, and A. Goldman. 2003. The structural basis of receptor-binding by Escherichia coli associated with diarrhea and septicemia. J. Mol. Biol. 331: 897 905.
19. Min, G.,, M. Stolz,, G. Zhou,, F. Liang,, P. Sebbel,, D. Stoffler,, R. Glockshuber,, T. T. Sun,, U. Aebi,, and X. P. Kong. 2002. Localization of uroplakin Ia, the urothelial receptor for bacterial adhesin FimH, on the six inner domains of the 16 nm urothelial plaque particle. J. Mol. Biol. 317: 697 706.
20. Mulvey, M. A.,, Y. S. Lopez-Boado,, C. L. Wilson,, R. Roth,, W. C. Parks,, J. Heuser,, and S. J. Hultgren. 1998. Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science 282: 1494 1497.
21. Nataro, J. P.,, and J. B. Kaper. 1998. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 11: 142 201.
22. Nicholls, A.,, K. A. Sharp,, and B. Honig. 1991. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11: 281 296.
23. Ofek, I.,, D. L. Hasty,, and R. J. Doyle. 2003. Bacterial Adhesion to Animal Cell and Tissues. ASM Press, Washington, D.C.
24. Ohlsson, J.,, J. Jass,, B. E. Uhlin,, J. Kihlberg,, and U. J. Nilsson. 2002. Discovery of potent inhibitors of PapG adhesins from uropathogenic Escherichia coli through synthesis and evaluation of galabiose derivatives. Chembiochem 3: 772 779.
25. Pascher, I.,, M. Lundmark,, P. G. Nyholm,, and S. Sundell. 1992. Crystal structures of membrane lipids. Biochim. Biophys. Acta. 1113: 339 373.
26. Pellecchia, M.,, P. Sebbel,, U. Hermanns,, K. Wuthrich,, and R. Glockshuber. 1999. Pilus chaperone FimCadhesin FimH interactions mapped by TROSY-NMR. Nat. Struct. Biol. 6: 336 339.
27. Roberts, J. A.,, B. I. Marklund,, D. Ilver,, D. Haslam,, M. B. Kaack,, G. Baskin,, M. Louis,, R. Mollby,, J. Winberg,, and S. Normark. 1994. The Gal(alpha 1-4)Gal-specific tip adhesin of Escherichia coli P-fimbriae is needed for pyelonephritis to occur in the normal urinary tract. Proc. Natl. Acad. Sci. USA 91: 11889 11893.
28. Saarela, S.,, S. Taira,, E. L. Nurmiaho-Lassila,, A. Makkonen,, and M. Rhen. 1995. The Escherichia coli Gfimbrial lectin protein participates both in fimbrial biogenesis and in recognition of the receptor N-acetyl-Dglucosamine. J. Bacteriol. 177: 1477 1484.
29. Saarela, S.,, B. Westerlund-Wikstrom,, M. Rhen,, and T. K. Korhonen. 1996. The GafD protein of the G (F17) fimbrial complex confers adhesiveness of Escherichia coli to laminin. Infect. Immun. 64: 2857 2860.
30. Sauer, F. G.,, M. Barnhart,, D. Choudhury,, S. D. Knight,, G. Waksman,, and S. J. Hultgren. 2000a. Chaperoneassisted pilus assembly and bacterial attachment. Curr. Opin. Struct. Biol. 10: 548 556.
31. Sauer, F. G.,, K. Futterer,, J. S. Pinkner,, K. W. Dodson,, S. J. Hultgren,, and G. Waksman. 1999. Structural basis of chaperone function and pilus biogenesis. Science 285: 1058 1061.
32. Sauer, F. G.,, M. A. Mulvey,, J. D. Schilling,, J. J. Martinez,, and S. J. Hultgren. 2000b. Bacterial pili: molecular mechanisms of pathogenesis. Curr. Opin. Microbiol. 3: 65 72.
33. Sauer, F. G.,, J. S. Pinkner,, G. Waksman,, and S. J. Hultgren. 2002. Chaperone priming of pilus subunits facilitates a topological transition that drives fiber formation. Cell 111: 543 551.
34. Saulino, E. T.,, E. Bullitt,, and S. J. Hultgren. 2000. Snapshots of usher-mediated protein secretion and ordered pilus assembly. Proc. Natl. Acad. Sci. USA 97: 9240 9245.
35. Saulino, E. T.,, D. G. Thanassi,, J. S. Pinkner,, and S. J. Hultgren. 1998. Ramifications of kinetic partitioning on usher-mediated pilus biogenesis. EMBO J. 17: 2177 2185.
36. Shindyalov, I. N.,, and P. E. Bourne. 1998. Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng. 11: 739 747.
37. Striker, R.,, U. Nilsson,, A. Stonecipher,, G. Magnusson,, and S. J. Hultgren. 1995. Structural requirements for the glycolipid receptor of human uropathogenic Escherichia coli. Mol. Microbiol. 16: 1021 1029.
38. Stromberg, N.,, B. I. Marklund,, B. Lund,, D. Ilver,, A. Hamers,, W. Gaastra,, K. A. Karlsson,, and S. Normark. 1990. Host-specificity of uropathogenic Escherichia coli depends on differences in binding specificity to Gal alpha 1-4Gal-containing isoreceptors. EMBO J. 9: 2001 2010.
39. Stromberg, N.,, P. G. Nyholm,, I. Pascher,, and S. Normark. 1991. Saccharide orientation at the cell surface affects glycolipid receptor function. Proc. Natl. Acad. Sci. USA 88: 9340 9344.
40. Sun, T. T.,, F. X. Liang,, and X. R. Wu. 1999. Uroplakins as marker of urothelial differentiation. Adv. Exp. Med. Biol. 462: 7 18.
41. Sun, T. T.,, H. Zhao,, J. Provet,, U. Aebi,, and X. R. Wu. 1996. Formation of asymmetric unit membrane during urothelial differentiation. Mol. Biol. Rep. 23: 3 11.
42. Sung, M. A.,, H. A. Chen,, and S. Matthews. 2001a. Sequential assignment and secondary structure of the triplelabelled carbohydrate-binding domain of papG from uropathogenic E. coli. J. Biomol. NMR 19: 197 198.
43. Sung, M. A.,, K. Fleming,, H. A. Chen,, and S. Matthews. 2001b. The solution structure of PapGII from uropathogenic Escherichia coli and its recognition of glycolipid receptors. EMBO Rep. 2: 621 627.
44. Thanassi, D. G.,, and S. J. Hultgren. 2000. Assembly of complex organelles: pilus biogenesis in gram-negative bacteria as a model system. Methods 20: 111 126.
45. Thanassi, D. G.,, E. T. Saulino,, and S. J. Hultgren. 1998a. The chaperone/usher pathway: a major terminal branch of the general secretory pathway. Curr. Opin. Microbiol. 1: 223 231.
46. Thanassi, D. G.,, E. T. Saulino,, M. J. Lombardo,, R. Roth,, J. Heuser,, and S. J. Hultgren. 1998b. The PapC usher forms an oligomeric channel: implications for pilus biogenesis across the outer membrane. Proc. Natl. Acad. Sci. USA 95: 3146 3151.
47. Thanassi, D. G.,, C. Stathopoulos,, K. Dodson,, D. Geiger,, and S. J. Hultgren. 2002. Bacterial outer membrane ushers contain distinct targeting and assembly domains for pilus biogenesis. J. Bacteriol. 184: 6260 6269.
48. Thankavel, K.,, B. Madison,, T. Ikeda,, R. Malaviya,, A. H. Shah,, P. M. Arumugam,, and S. N. Abraham. 1997. Localization of a domain in the FimH adhesin of Escherichia coli type 1 fimbriae capable of receptor recognition and use of a domain-specific antibody to confer protection against experimental urinary tract infection. J. Clin. Investig. 100: 1123 1136.
49. Zhou, G.,, W. J. Mo,, P. Sebbel,, G. Min,, T. A. Neubert,, R. Glockshuber,, X. R. Wu,, T. T. Sun,, and X. P. Kong. 2001. Uroplakin Ia is the urothelial receptor for uropathogenic Escherichia coli: evidence from in vitro FimH binding. J. Cell. Sci. 114: 4095 4103.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error