1887

Chapter 3 : Sugar Recognition and Bacterial Attachment

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Sugar Recognition and Bacterial Attachment, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818395/9781555813017_Chap03-1.gif /docserver/preview/fulltext/10.1128/9781555818395/9781555813017_Chap03-2.gif

Abstract:

Many bacteria harbor adhesins at the tip of adhesive organelles called pili or fimbriae. This chapter discusses the contribution of structural biology to the understanding of the molecular basis of bacterial attachment to glycoprotein and glycolipid host receptors. The chaperone-usher pathway is involved in the biogenesis of more than 100 different pili structures in pathogenic gram-negative bacteria. Examples of pili and fimbriae that are assembled through the chaperone-usher pathway are type 1 pili, P pili, and G and F17 fimbriae. To date, the adhesive interactions between host and pathogenic bacteria of over 300 different species have been investigated. Bacteria have learned to exploit the fact that mammalian tissues have glycoproteins and glycolipds in their membranes by expressing lectins at the tips of their pili. Recently, the crystal structures of FimH, PapGII, GafD, and F17a-G have been determined and are providing a wealth of information on lectin-host receptor interactions. The crystal structures of FimH, PapGII, GafD, and F17a-G provide an opportunity for understanding the molecular details of host-pathogen interactions as well as the evolutionary relationships between the different adhesins. The detailed structural analysis of bacterial adhesins has demonstrated their central role in the host-pathogen interface during the infection process and has made them attractive targets for the development of new antimicrobial therapies. Differences in pilus structure, along with differences in the lectin-binding domains, allow the bacterium to orient their adhesin in order to effectively and efficiently bind to their receptors.

Citation: Smith C, Dodson K, Hultgren S, Waksman G. 2005. Sugar Recognition and Bacterial Attachment, p 37-48. In Waksman G, Caparon M, Hultgren S (ed), Structural Biology of Bacterial Pathogenesis. ASM Press, Washington, DC. doi: 10.1128/9781555818395.ch3

Key Concept Ranking

Type 1 Pili
0.5727156
Bacterial Pathogenesis
0.52002597
Bacterial Proteins
0.5086598
Nuclear Magnetic Resonance Spectroscopy
0.45703492
0.5727156
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555818395.chap3
1. Bork, P.,, L. Holm,, and C. Sander. 1994. The immunoglobulin fold. Structural classification, sequence patterns and common core. J. Mol. Biol. 242:309320.
2. Bullitt, E.,, and L. Makowski. 1995. Structural polymorphism of bacterial adhesion pili. Nature 373:164167.
3. Buts, L.,, J. Bouckaert,, E. De Genst,, R. Loris,, S. Oscarson,, M. Lahmann,, J. Messens,, E. Brosens,, L. Wyns,, and H. De Greve. 2003. The fimbrial adhesin F17-G of enterotoxigenic Escherichia coli has an immunoglobulin-like lectin domain that binds N-acetylglucosamine. Mol. Microbiol. 49:705715.
4. Choudhury, D.,, A. Thompson,, V. Stojanoff,, S. Langermann,, J. Pinkner,, S. J. Hultgren,, and S. D. Knight. 1999. X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli. Science 285:10611066.
5. Connell, I.,, W. Agace,, P. Klemm,, M. Schembri,, S. Marild,, and C. Svanborg. 1996. Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proc. Natl. Acad. Sci. USA 93:98279832.
6. Dodson, K. W.,, F. Jacob-Dubuisson,, R. T. Striker,, and S. J. Hultgren. 1993. Outer-membrane PapC molecular usher discriminately recognizes periplasmic chaperone-pilus subunit complexes. Proc. Natl. Acad. Sci. USA 90:36703674.
7. Dodson, K. W.,, J. S. Pinkner,, T. Rose,, G. Magnusson,, S. J. Hultgren,, and G. Waksman. 2001. Structural basis of the interaction of the pyelonephritic E. coli adhesin to its human kidney receptor. Cell 105:733743.
8. Gong, M.,, and L. Makowsk. 1992. Helical structure of P pili from Escherichia coli. Evidence from X-ray fiber diffraction and scanning transmission electron microscopy. J. Mol. Biol. 228:735742.
9. Hahn, E.,, P. Wild,, U. Hermanns,, P. Sebbel,, R. Glockshuber,, M. Haner,, N. Taschner,, P. Burkhard,, U. Aebi,, and S. A. Muller. 2002. Exploring the 3D molecular architecture of Escherichia coli type 1 pili. J. Mol. Biol. 323:845857.
10. Hasty, D. L.,, H. S. Courtney,, E. V. Sokurenko,, and I. Ofek,. 1994. Bacteria-extracellular matrix interactions, p. 197211. In P. Klemm (ed.), Fimbriae: Adhesion, Genetics, Biogenesis, and Vaccines. CRC Press, Inc., Boca Raton, Fla.
11. Hultgren, S. J.,, F. Lindberg,, G. Magnusson,, J. Kihlberg,, J. M. Tennent,, and S. Normark. 1989. The PapG adhesin of uropathogenic Escherichia coli contains separate regions for receptor binding and for the incorporation into the pilus. Proc. Natl. Acad. Sci. USA 86:43574361.
12. Hung, C. S.,, J. Bouckaert,, D. Hung,, J. Pinkner,, C. Widberg,, A. DeFusco,, C. G. Auguste,, R. Strouse,, S. Langermann,, G. Waksman,, and S. J. Hultgren. 2002. Structural basis of tropism of Escherichia coli to the bladder during urinary tract infection. Mol. Microbiol. 44:903915.
13. Hung, D. L.,, and S. J. Hultgren. 1998. Pilus biogenesis via the chaperone/usher pathway: an integration of structure and function. J. Struct. Biol. 124:201220.
14. Jones, C. H.,, and S. J. Hultgren,. 1996. Structure, function, and assembly of adhesive P pili, p. 175219. In H. L. T. Mobley, and J. W. Warren (ed.), Urinary Tract Infections: Molecular Pathogenesis and Clinical Management. ASM Press, Washington, D.C.
15. Knight, S.,, M. A. Mulvey,, and J. Pinkner. 1997. Crystallization and preliminary X-ray diffraction studies of the FimC-FimH chaperone-adhesin complex from Escherichia coli. Acta Crystallogr. Ser. D D53:207210.
16. Langermann, S.,, S. Palaszynski,, M. Barnhart,, G. Auguste,, J. S. Pinkner,, J. Burlein,, P. Barren,, S. Koenig,, S. Leath,, C. H. Jones,, and S. J. Hultgren. 1997. Prevention of mucosal Escherichia coli infection by FimHadhesin- based systemic vaccination. Science 276:607611.
17. Laskowski, R. A. 1995. SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. J. Mol. Graph. 13:323330, 307308.
18. Merckel, M. C.,, J. Tanskanen,, S. Edelman,, B. Westerlund-Wikstrom,, T. K. Korhonen,, and A. Goldman. 2003. The structural basis of receptor-binding by Escherichia coli associated with diarrhea and septicemia. J. Mol. Biol. 331:897905.
19. Min, G.,, M. Stolz,, G. Zhou,, F. Liang,, P. Sebbel,, D. Stoffler,, R. Glockshuber,, T. T. Sun,, U. Aebi,, and X. P. Kong. 2002. Localization of uroplakin Ia, the urothelial receptor for bacterial adhesin FimH, on the six inner domains of the 16 nm urothelial plaque particle. J. Mol. Biol. 317:697706.
20. Mulvey, M. A.,, Y. S. Lopez-Boado,, C. L. Wilson,, R. Roth,, W. C. Parks,, J. Heuser,, and S. J. Hultgren. 1998. Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science 282:14941497.
21. Nataro, J. P.,, and J. B. Kaper. 1998. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 11:142201.
22. Nicholls, A.,, K. A. Sharp,, and B. Honig. 1991. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11:281296.
23. Ofek, I.,, D. L. Hasty,, and R. J. Doyle. 2003. Bacterial Adhesion to Animal Cell and Tissues. ASM Press, Washington, D.C.
24. Ohlsson, J.,, J. Jass,, B. E. Uhlin,, J. Kihlberg,, and U. J. Nilsson. 2002. Discovery of potent inhibitors of PapG adhesins from uropathogenic Escherichia coli through synthesis and evaluation of galabiose derivatives. Chembiochem 3:772779.
25. Pascher, I.,, M. Lundmark,, P. G. Nyholm,, and S. Sundell. 1992. Crystal structures of membrane lipids. Biochim. Biophys. Acta. 1113:339373.
26. Pellecchia, M.,, P. Sebbel,, U. Hermanns,, K. Wuthrich,, and R. Glockshuber. 1999. Pilus chaperone FimCadhesin FimH interactions mapped by TROSY-NMR. Nat. Struct. Biol. 6:336339.
27. Roberts, J. A.,, B. I. Marklund,, D. Ilver,, D. Haslam,, M. B. Kaack,, G. Baskin,, M. Louis,, R. Mollby,, J. Winberg,, and S. Normark. 1994. The Gal(alpha 1-4)Gal-specific tip adhesin of Escherichia coli P-fimbriae is needed for pyelonephritis to occur in the normal urinary tract. Proc. Natl. Acad. Sci. USA 91:1188911893.
28. Saarela, S.,, S. Taira,, E. L. Nurmiaho-Lassila,, A. Makkonen,, and M. Rhen. 1995. The Escherichia coli Gfimbrial lectin protein participates both in fimbrial biogenesis and in recognition of the receptor N-acetyl-Dglucosamine. J. Bacteriol. 177:14771484.
29. Saarela, S.,, B. Westerlund-Wikstrom,, M. Rhen,, and T. K. Korhonen. 1996. The GafD protein of the G (F17) fimbrial complex confers adhesiveness of Escherichia coli to laminin. Infect. Immun. 64:28572860.
30. Sauer, F. G.,, M. Barnhart,, D. Choudhury,, S. D. Knight,, G. Waksman,, and S. J. Hultgren. 2000a. Chaperoneassisted pilus assembly and bacterial attachment. Curr. Opin. Struct. Biol. 10:548556.
31. Sauer, F. G.,, K. Futterer,, J. S. Pinkner,, K. W. Dodson,, S. J. Hultgren,, and G. Waksman. 1999. Structural basis of chaperone function and pilus biogenesis. Science 285:10581061.
32. Sauer, F. G.,, M. A. Mulvey,, J. D. Schilling,, J. J. Martinez,, and S. J. Hultgren. 2000b. Bacterial pili: molecular mechanisms of pathogenesis. Curr. Opin. Microbiol. 3:6572.
33. Sauer, F. G.,, J. S. Pinkner,, G. Waksman,, and S. J. Hultgren. 2002. Chaperone priming of pilus subunits facilitates a topological transition that drives fiber formation. Cell 111:543551.
34. Saulino, E. T.,, E. Bullitt,, and S. J. Hultgren. 2000. Snapshots of usher-mediated protein secretion and ordered pilus assembly. Proc. Natl. Acad. Sci. USA 97:92409245.
35. Saulino, E. T.,, D. G. Thanassi,, J. S. Pinkner,, and S. J. Hultgren. 1998. Ramifications of kinetic partitioning on usher-mediated pilus biogenesis. EMBO J. 17:21772185.
36. Shindyalov, I. N.,, and P. E. Bourne. 1998. Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng. 11:739747.
37. Striker, R.,, U. Nilsson,, A. Stonecipher,, G. Magnusson,, and S. J. Hultgren. 1995. Structural requirements for the glycolipid receptor of human uropathogenic Escherichia coli. Mol. Microbiol. 16:10211029.
38. Stromberg, N.,, B. I. Marklund,, B. Lund,, D. Ilver,, A. Hamers,, W. Gaastra,, K. A. Karlsson,, and S. Normark. 1990. Host-specificity of uropathogenic Escherichia coli depends on differences in binding specificity to Gal alpha 1-4Gal-containing isoreceptors. EMBO J. 9:20012010.
39. Stromberg, N.,, P. G. Nyholm,, I. Pascher,, and S. Normark. 1991. Saccharide orientation at the cell surface affects glycolipid receptor function. Proc. Natl. Acad. Sci. USA 88:93409344.
40. Sun, T. T.,, F. X. Liang,, and X. R. Wu. 1999. Uroplakins as marker of urothelial differentiation. Adv. Exp. Med. Biol. 462:718.
41. Sun, T. T.,, H. Zhao,, J. Provet,, U. Aebi,, and X. R. Wu. 1996. Formation of asymmetric unit membrane during urothelial differentiation. Mol. Biol. Rep. 23:311.
42. Sung, M. A.,, H. A. Chen,, and S. Matthews. 2001a. Sequential assignment and secondary structure of the triplelabelled carbohydrate-binding domain of papG from uropathogenic E. coli. J. Biomol. NMR 19:197198.
43. Sung, M. A.,, K. Fleming,, H. A. Chen,, and S. Matthews. 2001b. The solution structure of PapGII from uropathogenic Escherichia coli and its recognition of glycolipid receptors. EMBO Rep. 2:621627.
44. Thanassi, D. G.,, and S. J. Hultgren. 2000. Assembly of complex organelles: pilus biogenesis in gram-negative bacteria as a model system. Methods 20:111126.
45. Thanassi, D. G.,, E. T. Saulino,, and S. J. Hultgren. 1998a. The chaperone/usher pathway: a major terminal branch of the general secretory pathway. Curr. Opin. Microbiol. 1:223231.
46. Thanassi, D. G.,, E. T. Saulino,, M. J. Lombardo,, R. Roth,, J. Heuser,, and S. J. Hultgren. 1998b. The PapC usher forms an oligomeric channel: implications for pilus biogenesis across the outer membrane. Proc. Natl. Acad. Sci. USA 95:31463151.
47. Thanassi, D. G.,, C. Stathopoulos,, K. Dodson,, D. Geiger,, and S. J. Hultgren. 2002. Bacterial outer membrane ushers contain distinct targeting and assembly domains for pilus biogenesis. J. Bacteriol. 184:62606269.
48. Thankavel, K.,, B. Madison,, T. Ikeda,, R. Malaviya,, A. H. Shah,, P. M. Arumugam,, and S. N. Abraham. 1997. Localization of a domain in the FimH adhesin of Escherichia coli type 1 fimbriae capable of receptor recognition and use of a domain-specific antibody to confer protection against experimental urinary tract infection. J. Clin. Investig. 100:11231136.
49. Zhou, G.,, W. J. Mo,, P. Sebbel,, G. Min,, T. A. Neubert,, R. Glockshuber,, X. R. Wu,, T. T. Sun,, and X. P. Kong. 2001. Uroplakin Ia is the urothelial receptor for uropathogenic Escherichia coli: evidence from in vitro FimH binding. J. Cell. Sci. 114:40954103.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error