1887

Chapter 9 : One Health and Food-Borne Disease: Transmission between Humans, Animals, and Plants

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

One Health and Food-Borne Disease: Transmission between Humans, Animals, and Plants, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818432/9781555818425_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555818432/9781555818425_Chap09-2.gif

Abstract:

There are >2,600 recognized serovars of . Many of these serovars have a broad host range and can infect a wide variety of animals, including mammals, birds, reptiles, amphibians, and insects. In addition, can grow in plants and can survive in protozoa, soil, and water. Hence, reducing human infections will require the reduction of in animals and limitation of transmission from the environment.

Citation: Silva C, Calva E, Maloy S. 2014. One Health and Food-Borne Disease: Transmission between Humans, Animals, and Plants, p 137-148. In Atlas R, Maloy S (ed), One Health. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.OH-0020-2013
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Changes in prevalence of serovars Pullorum versus Enteritidis and Typhimurium in the United States. As the prevalence of Pullorum in U.S. poultry flocks decreased as a result of a U.S. Department of Agriculture program (blue line), the prevalence of Enteritidis in humans increased (red line). Transmission of Enteritidis to humans from chicken eggs increased coordinately with the increased prevalence in poultry. During the period when the incidence of Enteritidis infections in humans was increasing, the incidence of Typhimurium infections in humans (green line) was relatively unchanged. Figure redrawn from reference . See the original reference for precise numbers. doi:10.1128/microbiolspec.OH-0020-2013.f1

Citation: Silva C, Calva E, Maloy S. 2014. One Health and Food-Borne Disease: Transmission between Humans, Animals, and Plants, p 137-148. In Atlas R, Maloy S (ed), One Health. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.OH-0020-2013
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818432.chap9
1. Le Minor L,, Popoff MY . 1987. Designation of Salmonella enterica sp. nov., nom. rev., as the type and only species of the genus Salmonella . Int J Syst Bacteriol 37 : 465468.
2. Silva C,, Wiesner M, . 2009. An introduction to systematics, natural history and population genetics of Salmonella , p 117. In Calva JJ,, Calva E (ed.), Molecular Biology and Molecular Epidemiology of Salmonella Infections. Research Signpost, Trivandrum, India.
3. Bäumler AJ,, Tsolis RM,, Ficht TA,, Adams LG . 1998. Evolution of host adaptation in Salmonella enterica . Infect Immun 66 : 45794587. [PubMed]
4. Kingsley RA,, Bäumler AJ . 2000. Host adaptation and the emergence of infectious disease: the Salmonella paradigm. Mol Microbiol 36 : 10061014. [PubMed]
5. Uzzau S,, Brown DJ,, Wallis T,, Rubino S,, Leori G,, Bernard S,, Casadesús J,, Platt DJ,, Olsen JE . 2000. Host adapted serotypes of Salmonella enterica . Epidemiol Infect 125 : 229255. [PubMed]
6. Hoelzer K,, Moreno Switt AI,, Wiedmann M . 2011. Animal contact as a source of human non-typhoidal salmonellosis. Vet Res 42 : 34. doi:10.1186/1297-9716-42-34. [PubMed] [CrossRef]
7. Edwards RA,, Olsen GJ,, Maloy SR . 2002. Comparative genomics of closely related salmonellae. Trends Microbiol 10 : 9499. [PubMed]
8. Karch H,, Denamur E,, Dobrindt U,, Finlay BB,, Hengge R,, Johannes L,, Ron EZ,, Tønjum T,, Sansonetti PJ,, Vicente M . 2012. The enemy within us: lessons from the 2011 European Escherichia coli O104:H4 outbreak. EMBO Mol Med 4 : 841848. [PubMed] [CrossRef]
9. Winter SE,, Lopez CA,, Bäumler AJ . 2013. The dynamics of gut-associated microbial communities during inflammation. EMBO Rep 14 : 319327. [PubMed] [CrossRef]
10. Maloy S,, Mora G, . 2012. Unnecessary baggage, p 9398. In Kolter R,, Maloy S (ed), Microbes and Evolution: The World That Darwin Never Saw. ASM Press, Washington, DC.
11. Matthews TD,, Maloy SR, . 2011. Genome rearrangements in Salmonella , p 4166. In Fratamico P,, Liu Y,, Kathari S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC.
12. Silva C,, Wiesner M,, Calva E, . 2012. The importance of mobile genetic elements in the evolution of Salmonella: pathogenesis, antibiotic resistance and host adaptation, p 231254. In Kumar Y (ed), Salmonella: A Diversified Superbug. InTech, Rijeka, Croatia.
13. Chu C,, Feng Y,, Chien AC,, Hu S,, Chu CH,, Chiu CH . 2008. Evolution of genes on the Salmonella virulence plasmid phylogeny revealed from sequencing of the virulence plasmids of S. enterica serotype Dublin and comparative analysis. Genomics 92 : 339343. [PubMed] [CrossRef]
14. Guiney DG,, Fierer J . 2011. The role of the spv genes in Salmonella pathogenesis. Front Microbiol 2 : 129. doi:10.3389/fmicb.2011.00129. [PubMed] [CrossRef]
15. Gulig PA,, Curtiss R III . 1987. Plasmid-associated virulence of Salmonella typhimurium . Infect Immun 55 : 28912901. [PubMed]
16. Gulig PA,, Doyle TJ . 1993. The Salmonella typhimurium virulence plasmid increases the growth rate of salmonellae in mice. Infect Immun 61 : 504511. [PubMed]
17. Rychlik I,, Gregorova D,, Hradecka H . 2006. Distribution and function of plasmids in Salmonella enterica . Vet Microbiol 112 : 110. [PubMed] [CrossRef]
18. Chu C,, Hong SF,, Tsai C,, Lin WS,, Liu TP,, Ou JT . 1999. Comparative physical and genetic maps of the virulence plasmids of Salmonella enterica serovars Typhimurium, Enteritidis, Choleraesuis, and Dublin. Infect Immun 67 : 26112614. [PubMed]
19. Feng Y,, Liu J,, Li YG,, Cao FL,, Johnston RN,, Zhou J,, Liu GR,, Liu SL . 2012. Inheritance of the Salmonella virulence plasmids: mostly vertical and rarely horizontal. Infect Genet Evol 12 : 10581063. [PubMed] [CrossRef]
20. Boyd EF,, Hartl DL . 1998. Salmonella virulence plasmid. Modular acquisition of the spv virulence region by an F-plasmid in Salmonella enterica subspecies I and insertion into the chromosome of subspecies II, IIIa, IV and VII isolates. Genetics 149 : 11831190. [PubMed]
21. Jones GW,, Rabert DK,, Svinarich DM,, Whitfield HJ . 1982. Association of adhesive, invasive, and virulent phenotypes of Salmonella typhimurium with autonomous 60-megadalton plasmids. Infect Immun 38 : 476486. [PubMed]
22. Gulig PA,, Danbara H,, Guiney DG,, Lax AJ,, Norel F,, Rhen M . 1993. Molecular analysis of spv virulence genes of the Salmonella virulence plasmids. Mol Microbiol 7 : 825830. [PubMed]
23. Olsen JE,, Brown DJ,, Thomsen LE,, Platt DJ,, Chadfield MS . 2004. Differences in the carriage and the ability to utilize the serotype associated virulence plasmid in strains of Salmonella enterica serotype Typhimurium investigated by use of a self-transferable virulence plasmid, pOG669. Microb Pathog 36 : 337347. [PubMed] [CrossRef]
24. Ou JT,, Baron LS . 1991. Strain differences in expression of virulence by the 90 kilobase pair virulence plasmid of Salmonella serovar Typhimurium. Microb Pathog 10 : 247251. [PubMed]
25. Namimatsu T,, Asai T,, Osumi T,, Imai Y,, Sato S . 2006. Prevalence of the virulence plasmid in Salmonella Typhimurium isolates from pigs. J Vet Med Sci 68 : 187188. [PubMed]
26. Wiesner M,, Calva E,, Fernández-Mora M,, Cevallos MA,, Campos F,, Zaidi MB,, Silva C . 2011. Salmonella Typhimurium ST213 is associated with two types of IncA/C plasmids carrying multiple resistance determinants. BMC Microbiol 11 : 9. doi:10.1186/1471-2180-11-9. [PubMed] [CrossRef]
27. Wiesner M,, Zaidi MB,, Calva E,, Fernández-Mora M,, Calva JJ,, Silva C . 2009. Association of virulence plasmid and antibiotic resistance determinants with chromosomal multilocus genotypes in Mexican Salmonella enterica serovar Typhimurium strains. BMC Microbiol 9 : 131. doi:10.1186/1471-2180-9-131.
28. Mulvey MR,, Boyd DA,, Olson AB,, Doublet B,, Cloeckaert A . 2006. The genetics of Salmonella genomic island 1. Microbes Infect 8 : 19151922. [PubMed] [CrossRef]
29. Lawson B,, Hughes LA,, Peters T,, de Pinna E,, John SK,, Macgregor SK,, Cunningham AA . 2011. Pulsed-field gel electrophoresis supports the presence of host-adapted Salmonella enterica subsp. enterica serovar Typhimurium strains in the British garden bird population. Appl Environ Microbiol 77 : 81398144. [PubMed] [CrossRef]
30. Rabsch W,, Andrews HL,, Kingsley RA,, Prager R,, Tschäpe H,, Adams LG,, Bäumler AJ . 2002. Salmonella enterica serotype Typhimurium and its host-adapted variants. Infect Immun 70 : 22492255. [PubMed]
31. Xu T,, Maloy S,, McGuire KL . 2009. Macrophages influence Salmonella host-specificity in vivo . Microb Pathog 47 : 212222. [PubMed] [CrossRef]
32. Rabsch W,, Hargis BM,, Tsolis RM,, Kingsley RA,, Hinz KH,, Tschäpe H,, Bäumler AJ . 2000. Competitive exclusion of Salmonella enteritidis by Salmonella gallinarum in poultry. Emerg Infect Dis 6 : 443448. [PubMed] [CrossRef]
33. Anderson LA,, Miller DA,, Trampel DW . 2006. Epidemiological investigation, cleanup, and eradication of pullorum disease in adult chickens and ducks in two small-farm flocks. Avian Dis 50 : 142147. [PubMed]
34. Rozen Y,, Belkin S . 2001. Survival of enteric bacteria in seawater. FEMS Microbiol Rev 25 : 513529. [PubMed]
35. Winfield MD,, Groisman EA . 2003. Role of nonhost environments in the lifestyles of Salmonella and Escherichia coli . Appl Environ Microbiol 69 : 36873694. [PubMed]
36. Liebana E,, Garcia-Migura L,, Clouting C,, Clifton-Hadley FA,, Breslin M,, Davies RH . 2003. Molecular fingerprinting evidence of the contribution of wildlife vectors in the maintenance of Salmonella Enteritidis infection in layer farms. J Appl Microbiol 94 : 10241029. [PubMed]
37. Holt PS,, Geden CJ,, Moore RW,, Gast RK . 2007. Isolation of Salmonella enterica serovar Enteritidis from houseflies (Musca domestica) found in rooms containing Salmonella serovar Enteritidis-challenged hens. Appl Environ Microbiol 73 : 60306035. [PubMed] [CrossRef]
38. Mian LS,, Maag H,, Tacal JV . 2002. Isolation of Salmonella from muscoid flies at commercial animal establishments in San Bernardino County, California. J Vector Ecol 27 : 8285. [PubMed]
39. Thomason BM,, Biddle JW,, Cherry WB . 1975. Dection of salmonellae in the environment. Appl Microbiol 30 : 764767. [PubMed]
40. Semenov AM,, Kuprianov AA,, van Bruggen AH . 2010. Transfer of enteric pathogens to successive habitats as part of microbial cycles. Microb Ecol 60 : 239249. [PubMed] [CrossRef]
41. Gaze WH,, Burroughs N,, Gallagher MP,, Wellington EM . 2003. Interactions between Salmonella typhimurium and Acanthamoeba polyphaga, and observation of a new mode of intracellular growth within contractile vacuoles. Microb Ecol 46 : 358369. [PubMed] [CrossRef]
42. Gourabathini P,, Brandl MT,, Redding KS,, Gunderson JH,, Berk SG . 2008. Interactions between food-borne pathogens and protozoa isolated from lettuce and spinach. Appl Environ Microbiol 74 : 25182525. [PubMed] [CrossRef]
43. Tezcan-Merdol D,, Ljungström M,, Winiecka-Krusnell J,, Linder E,, Engstrand L,, Rhen M . 2004. Uptake and replication of Salmonella enterica in Acanthamoeba rhysodes . Appl Environ Microbiol 70 : 37063714. [PubMed] [CrossRef]
44. Brewer MT,, Xiong N,, Dier JD,, Anderson KL,, Rasmussen MA,, Franklin SK,, Carlson SA . 2011. Comparisons of Salmonella conjugation and virulence gene hyperexpression mediated by rumen protozoa from domestic and exotic ruminants. Vet Microbiol 151 : 301306. [PubMed] [CrossRef]
45. Rasmussen MA,, Carlson SA,, Franklin SK,, McCuddin ZP,, Wu MT,, Sharma VK . 2005. Exposure to rumen protozoa leads to enhancement of pathogenicity of and invasion by multiple-antibiotic-resistant Salmonella enterica bearing SGI1. Infect Immun 73 : 46684675. [PubMed] [CrossRef]
46. Wildschutte H,, Lawrence JG . 2007. Differential Salmonella survival against communities of intestinal amoebae. Microbiology 153 : 17811789. [PubMed] [CrossRef]
47. Wildschutte H,, Wolfe DM,, Tamewitz A,, Lawrence JG . 2004. Protozoan predation, diversifying selection, and the evolution of antigenic diversity in Salmonella . Proc Natl Acad Sci USA 101 : 1064410649. [PubMed] [CrossRef]
48. Fisher IS,, Threlfall EJ . 2005. The Enter-net and Salm-gene databases of foodborne bacterial pathogens that cause human infections in Europe and beyond: an international collaboration in surveillance and the development of intervention strategies. Epidemiol Infect 133 : 17. [PubMed]
49. Holden N,, Pritchard L,, Toth I . 2009. Colonization outwith the colon: plants as an alternative environmental reservoir for human pathogenic enterobacteria. FEMS Microbiol Rev 33 : 689703. [PubMed] [CrossRef]
50. Heaton JC,, Jones K . 2008. Microbial contamination of fruit and vegetables and the behaviour of enteropathogens in the phyllosphere: a review. J Appl Microbiol 104 : 613626. [PubMed] [CrossRef]
51. Berger CN,, Sodha SV,, Shaw RK,, Griffin PM,, Pink D,, Hand P,, Frankel G . 2010. Fresh fruit and vegetables as vehicles for the transmission of human pathogens. Environ Microbiol 12 : 23852397. [PubMed] [CrossRef]
52. Critzer FJ,, Doyle MP . 2010. Microbial ecology of foodborne pathogens associated with produce. Curr Opin Biotechnol 21 : 125130. [PubMed] [CrossRef]
53. Schikora A,, Garcia AV,, Hirt H . 2012. Plants as alternative hosts for Salmonella . Trends Plant Sci 17 : 245249. [PubMed] [CrossRef]
54. Schikora A,, Virlogeux-Payant I,, Bueso E,, Garcia AV,, Nilau T,, Charrier A,, Pelletier S,, Menanteau P,, Baccarini M,, Velge P,, Hirt H . 2011. Conservation of Salmonella infection mechanisms in plants and animals. PLoS One 6 : e24112. doi:10.1371/journal.pone.0024112. [PubMed] [CrossRef]
55. Barak JD,, Gorski L,, Naraghi-Arani P,, Charkowski AO . 2005. Salmonella enterica virulence genes are required for bacterial attachment to plant tissue. Appl Environ Microbiol 71 : 56855691. [PubMed] [CrossRef]
56. Barak JD,, Jahn CE,, Gibson DL,, Charkowski AO . 2007. The role of cellulose and O-antigen capsule in the colonization of plants by Salmonella enterica . Mol Plant Microbe Interact 20 : 10831091. [PubMed] [CrossRef]
57. Lapidot A,, Yaron S . 2009. Transfer of Salmonella enterica serovar Typhimurium from contaminated irrigation water to parsley is dependent on curli and cellulose, the biofilm matrix components. J Food Prot 72 : 618623. [PubMed]
58. Kroupitski Y,, Pinto R,, Brandl MT,, Belausov E,, Sela S . 2009. Interactions of Salmonella enterica with lettuce leaves. J Appl Microbiol 106 : 18761885. [PubMed] [CrossRef]
59. Gibson DL,, White AP,, Snyder SD,, Martin S,, Heiss C,, Azadi P,, Surette M,, Kay WW . 2006. Salmonella produces an O-antigen capsule regulated by AgfD and important for environmental persistence. J Bacteriol 188 : 77227730. [PubMed] [CrossRef]
60. Schikora A,, Carreri A,, Charpentier E,, Hirt H . 2008. The dark side of the salad: Salmonella Typhimurium overcomes the innate immune response of Arabidopsis thaliana and shows an endopathogenic lifestyle. PLoS One 3 : e2279. doi:10.1371/journal.pone.0002279. [PubMed] [CrossRef]
61. Kroupitski Y,, Golberg D,, Belausov E,, Pinto R,, Swartzberg D,, Granot D,, Sela S . 2009. Internalization of Salmonella enterica in leaves is induced by light and involves chemotaxis and penetration through open stomata. Appl Environ Microbiol 75 : 60766086. [PubMed] [CrossRef]
62. Guo X,, Chen J,, Brackett RE,, Beuchat LR . 2001. Survival of salmonellae on and in tomato plants from the time of inoculation at flowering and early stages of fruit development through fruit ripening. Appl Environ Microbiol 67 : 47604764. [PubMed]
63. Shi X,, Namvar A,, Kostrzynska M,, Hora R,, Warriner K . 2007. Persistence and growth of different Salmonella serovars on pre- and postharvest tomatoes. J Food Prot 70 : 27252731. [PubMed]
64. Gu G,, Hu J,, Cevallos-Cevallos JM,, Richardson SM,, Bartz JA,, van Bruggen AH . 2011. Internal colonization of Salmonella enterica serovar Typhimurium in tomato plants. PLoS One 6 : e27340. doi:10.1371/journal.pone.0027340. [PubMed] [CrossRef]
65. Bäumler AJ,, Hargis BM,, Tsolis RM . 2000. Tracing the origins of Salmonella outbreaks. Science 287 : 5052. [PubMed]

Tables

Generic image for table
Table 1

Some sources of outbreaks

Citation: Silva C, Calva E, Maloy S. 2014. One Health and Food-Borne Disease: Transmission between Humans, Animals, and Plants, p 137-148. In Atlas R, Maloy S (ed), One Health. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.OH-0020-2013

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error