1887

Chapter 19 :

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818463/9781555816261_Chap19-1.gif /docserver/preview/fulltext/10.1128/9781555818463/9781555816261_Chap19-2.gif

Abstract:

The group presently consists of seven , i.e., , , , , , , and the most recently recognized member of the group, , which is thermotolerant. There are two types of foodborne illness. The first type, which is caused by an emetic toxin, results in vomiting, whereas the second type, which is caused by enterotoxin(s), results in diarrhea. The most recently discovered enterotoxin, cytotoxin K (CytK), is similar to the β-toxin of (and other related toxins) and was the causative agent in a severe outbreak of foodborne illness in France in 1998. The two types of foodborne illness are caused by very different types of toxins including emetic toxin and enterotoxins. Expression of the toxins Hb1, Nhe, and CytK is regulated by the PlcR quorum-sensing system. The spore of is an important factor in contributing to foodborne illness. The spore is more hydrophobic than spores from any other spp., which enables it to adhere to several types of surfaces. foodborne illness is likely to be highly underreported because of its relatively mild symptoms with short duration. However, increased consumer interest for precooked, chilled food products with extended shelf lives may be well suited for survival and growth. Such foods could increase the prominence of as a foodborne pathogen.

Citation: Granum P, Lindbäck T. 2013. , p 491-502. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch19
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 19.1
Figure 19.1

The operon with promoter and regulatory sites. The indicated regulatory sequences are from type strain (ATCC 14579). The consensus PlcR box ( ) and the putative PlcR box with one mismatch in strain ATCC 14579 (underlined) and six bases between the palindromic flanks of the recognition sequence instead of four as in the established consensus ( ) and the two predicted sites (with mismatches towards the consensus underlined) are shown as boxes. The inverted repeat between and ( ) is indicated as a stem-loop structure. The bent arrows indicate the positions of transcriptional start sites, preceded by putative −10 and −35 regions. The transcriptional start site closest to the gene was identified using RNA isolated from strains NVH 0075/95 and NVH 1230/88 ( ), whereas the one further upstream was identified using a plasmid carrying the promoter from strain 407 ( ). The scale (in bp) is shown in the lower part of the figure. doi:10.1128/9781555818463.ch19f1

Citation: Granum P, Lindbäck T. 2013. , p 491-502. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818463.chap19
1. Agaisse, H.,, M. Gominet,, O. A. Okstad,, A. B. Kolsto,, and D. Lereclus. 1999. PlcR is a pleiotropic regulator of extracellular virulence factor gene expression in Bacillus thuringiensis. Mol. Microbiol. 32: 1043 1053.
2. Agata, N.,, M. Mori,, M. Ohta,, S. Suwan,, I. Ohtani,, and M. Isobe. 1994. A novel dodecadepsipeptide, cereulide, isolated from Bacillus cereus causes vacuole formation in HEp-2 cells. FEMS Microbiol. Lett. 121: 31 34.
3. Agata, N.,, M. Ohta,, M. Mori,, and M. Isobe. 1995. A novel dodecadepsipeptide, cereulide, is an emetic toxin of Bacillus cereus. FEMS Microbiol. Lett. 129: 17 20.
4. Andersson, A.,, P. E Granum,, and U. Rönner. 1998. The adhesion of Bacillus cereus spores to epithelial cells might be an additional virulence mechanism. Int. J. Food Microbiol. 39: 93 99.
5. Andersson, A.,, U. Rönner,, and P. E. Granum. 1995. What problems does the food industry have with the sporeforming pathogens Bacillus cereus and Clostridium perfringens? Int. J. Food Microbiol. 28: 145 156.
6. Ash, C.,, and M. D. Collins. 1992. Comparative analysis of 23S ribosomal RNA gene sequence of Bacillus anthracis and emetic Bacillus cereus determined by PCR-direct sequencing. FEMS Microbiol. Lett. 73: 75 80.
7. Ash, C.,, J. A. Farrow,, M. Dorsch,, E. Steckebrandt,, and M. D. Collins. 1991. Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase sequencing of 16S rRNA. Int. J. Syst. Bacteriol. 41: 343 346.
8. Beecher, D. J.,, and J. D. Macmillan. 1991. Characterization of the components of hemolysin BL from Bacillus cereus. Infect. Immun. 59: 1778 1784.
9. Beecher, D. J.,, J. L. Schoeni,, and A. C. L. Wong. 1995. Enterotoxin activity of hemolysin BL from Bacillus cereus. Infect. Immun. 63: 4423 4428.
10. Beecher, D. J.,, and A. C. L Wong. 1997. Tripartite hemolysin BL from Bacillus cereus. Hemolytic analysis of component interaction and model for its characteristic paradoxical zone phenomenon. J. Biol. Chem. 272: 233 239.
11. Beecher, D. J.,, and A. C. L. Wong. 1994. Identification and analysis of the antigens detected by two commercial Bacillus cereus diarrheal enterotoxin immunoassay kits. Appl. Environ. Microbiol. 60: 4614 4616.
12. Beecher, D. J.,, and A. C. L. Wong. 1994. Improved purification and characterization of hemolysin BL, a hemolytic dermonecrotic vascular permeability factor from Bacillus cereus. Infect. Immun. 62: 980 986.
13. Blatch, G. L.,, and M. Lassle. 1999. The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. Bioessays 21: 932 939.
14. Borge, G. A.,, M. Skeie,, T. Langsrud,, and P. E. Granum. 2001. Growth and toxin profiles of Bacillus cereus isolated from different food sources. Int. J. Food Microbiol 69: 237 246.
15. Bouillaut, L.,, S. Perchat,, S. Arold,, S. Zorrilla,, L. Slamti,, C. Henry,, M. Gohar,, N. Declerck,, and D. Lereclus. 2008. Molecular basis for group-specific activation of the virulence regulator PlcR by PapR heptapeptides. Nucleic Acids Res. 36: 3791 3801.
16. Brynestad, S.,, and P. E. Granum. 2002. Clostridium perfringens and foodborne infections. Int. J. Food Microbiol. 74: 195 202.
17. Carlson, C. R.,, D. A. Caugant,, and A.-B. Kolstø. 1994. Genotypic diversity among Bacillus cereus and Bacillus thuringiensis strains. Appl. Environ. Microbiol. 60: 1719 1725.
18. Christiansson, A.,, A. S. Naidu,, I. Nilsson,, T. Wadström,, and H.-E. Pettersson. 1989. Toxin production by Bacillus cereus dairy isolates in milk at low temperatures. Appl. Environ. Microbiol. 55: 2595 2600.
19. Claus, D.,, and R. C. W. Berkeley,. 1986. Genus Bacillus, p. 1105 1139, vol . 2. In P. H. A. Seneath (ed.), Bergey’s Manual of Systematic Bacteriology. The Williams and Wilkins Co., Baltimore, MD.
20. Damgaaerd, P. H.,, H. D. Larsen,, B. M. Hansen,, J. Bresciani,, and K. Jørgensen. 1996. Enterotoxin-producing strains of Bacillus thuringiensis isolated from food. Lett. Appl. Microbiol. 23: 146 150.
21. Declerck, N.,, L. Bouillaut,, D. Chaix,, N. Rugani,, L. Slamti,, F. Hoh,, D. Lereclus,, and S. T. Arold. 2007. Structure of PlcR: insights into virulence regulation and evolution of quorum sensing in Gram-positive bacteria. Proc. Natl. Acad. Sci. USA 104: 18490 18495.
22. Dierick, K.,, E. Van Coillie,, I. Swiecicka,, G. Meyfroidt,, H. Devlieger,, A. Meulemans,, G. Hoedemaekers,, L. Fourie,, M. Heyndrickx,, and J. Mahillon. 2005. Fatal family outbreak of Bacillus cereus-associated food poisoning. J. Clin. Microbiol. 43: 4277 4279.
23. Dietrich, R.,, M. Moravek,, C. Bürk,, P. E. Granum,, and E. Märtlbauer. 2005. Production and characterization of antibodies against each of the three subunits of the Bacillus cereus non-hemolytic enterotoxin complex. Appl. Environ. Microbiol. 257: 293 298.
24. Duport, C.,, S. Thomassin,, G. Bourel,, and P. Schmitt. 2004. Anaerobiosis and low specific growth rates enhance hemolysin BL production by Bacillus cereus F4430/73. Arch. Microbiol. 182: 90 95.
25. Ehling-Schulz, M.,, M. Fricker,, H. Grallert,, P. Rieck,, M. Wagner,, and S. Scherer. 2006. Cereulide synthetase gene cluster from emetic Bacillus cereus: structure and location on a mega virulence plasmid related to Bacillus anthracis toxin plasmid pXO1. BMC Microbiol. 6: 20.
26. Ehling-Schulz, M.,, B. Svensson,, M.-H. Guinebritiere,, T. Lindbäck,, M. Andersson,, A. Schulz,, A. Christiansson,, P. E. Granum,, E. Märtelbauer,, C. Nyguyen-The,, M. Salkinoja-Salonen,, and S. Scherer. 2005. Emetic toxin formation of Bacillus cereus is restricted to a single evolutionary lineage of closely related strains. Microbiology 151: 183 197.
27. Ehling-Schulz, M.,, N. Vukov,, A. Schulz,, R. Shaheen,, M. Andersson,, E. Martlbauer,, and S. Scherer. 2005. Identification and partial characterization of the nonribosomal peptide synthetase gene responsible for cereulide production in emetic Bacillus cereus. Appl. Environ. Microbiol. 71: 105 113.
28. Fagerlund, A.,, J. Brillard,, R. Furst,, M. H. Guinebretiere,, and P. E. Granum. 2007. Toxin production in a rare and genetically remote cluster of strains of the Bacillus cereus group. BMC Microbiol. 7: 43.
29. Fagerlund, A.,, T. Lindbäck,, and P. E. Granum. 2010. Bacillus cereus cytotoxins Hbl, Nhe and CytK are secreted via the Sec translocation pathway. BMC Microbiol. 10: 304.
30. Fagerlund, A.,, T. Lindbäck,, A. K. Storset,, P. E. Granum,, and S. P. Hardy. 2008. Bacillus cereus Nhe is a pore-forming toxin with structural and functional properties similar to the ClyA (HlyE, SheA) family of haemolysins, able to induce osmotic lysis in epithelia. Microbiology 154: 693 704.
31. Fagerlund, A.,, O. Ween,, T. Lund,, S. P. Hardy,, and P. E. Granum. 2004. Different cyto-toxicity of CytK and CytK-like proteins from Bacillus cereus. Microbiology 150: 2689 2697.
32. Gohar, M.,, K. Faegri,, S. Perchat,, S. Ravnum,, O. A. Okstad,, M. Gominet,, A. B. Kolsto,, and D. Lereclus. 2008. The PlcR virulence regulon of Bacillus cereus. PLoS ONE 3: e2793.
33. Gohar, M.,, O. A. Okstad,, N. Gilois,, V. Sanchis,, A. B. Kolsto,, and D. Lereclus. 2002. Two-dimensional electrophoresis analysis of the extracellular proteome of Bacillus cereus reveals the importance of the PlcR regulon. Proteomics 2: 784 791.
34. Gominet, M.,, L. Slamti,, N. Gilois,, M. Rose,, and D. Lereclus. 2001. Oligopeptide permease is required for expression of the Bacillus thuringiensis plcR regulon and for virulence. Mol. Microbiol. 40: 963 975.
35. Granum, P. E. 1994. Bacillus cereus and its toxins. J. Appl. Bacteriol. 76: 61S 66S.
36. Granum, P. E.,, A. Andersson,, C. Gayther,, M. C. te Giffel,, H. D. Larsen,, T. Lund,, and K. O’Sullivan. 1996. Evidence for a further enterotoxin complex produced by Bacillus cereus. FEMS Microbiol. Lett. 141: 145 149.
37. Granum, P. E.,, and T. C. Baird-Parker,. 2000. Bacillus spp., p. 1029 1039. In B. Lund,, T. Baird-Parker,, and G. Gould (ed.), The Microbiological Safety and Quality of Food. Aspen Publishers, Aspen Hill, MD.
38. Granum, P. E.,, S. Brynestad,, and J. M. Kramer. 1993. Analysis of enterotoxin production by Bacillus cereus from dairy products, food poisoning incidents and non-gastrointestinal infections. Int. J. Food Microbiol. 17: 269 279.
39. Granum, P. E.,, and T. Lund. 1997. Bacillus cereus enterotoxins. FEMS Microbiol. Lett. 157: 223 228.
40. Granum, P. E.,, K. O’Sullivan,, and T. Lund. 1999. The sequence of the non-haemolytic enterotoxin operon from Bacillus cereus. FEMS Microbiol. Lett. 177: 225 229.
41. Griffiths, M. W. 1990. Toxin production by psychrotrophic Bacillus spp. present in milk. J. Food Prot. 53: 790 792.
42. Haggblom, M. M.,, C. Apetroaie,, M. A. Andersson,, and M. S. Salkinoja-Salonen. 2002. Quantitative analysis of cereulide, the emetic toxin of Bacillus cereus, produced under various conditions. Appl. Environ. Microbiol. 68: 2479 2483.
43. Hardy, S. P.,, T. Lund, and P. E. Granum. 2001. CytK toxin of Bacillus cereus forms pores in planar lipid bilayers and is cytotoxic to intestinal epithelia. FEMS Microbiol. Lett. 197: 47 51.
44. Hauge, S. 1955. Food poisoning caused by aerobic spore forming bacilli. J. Appl. Bacteriol. 18: 591 595.
45. Heinrichs, J. H.,, D. J. Beecher,, J. M. MacMillan,, and B. A. Zilinskas. 1993. Molecular cloning and characterization of the hblA gene encoding the B component of hemolysin BL from Bacillus cereus. J. Bacteriol. 175: 6760 6766.
46. Hoffmaster, A. R.,, J. Ravel,, D. A. Rasko,, G. D. Chapman,, M. D. Chute,, C. K. Marston,, B. K. De,, C. T. Sacchi,, C. Fitzgerald,, L. W. Mayer,, M. C. Maiden,, F. G. Priest,, M. Barker,, L. Jiang,, R. Z. Cer,, J. Rilstone,, S. N. Peterson,, R. S. Weyant,, D. R. Galloway,, T. D. Read,, T. Popovic,, and C. M. Fraser. 2004. Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax. Proc. Natl. Acad. Sci. USA 101: 8449 8454.
47. Hoton, F. M.,, L. Andrup,, I. Swiecicka,, and J. Mahillon. 2005. The cereulide genetic determinants of emetic Bacillus cereus are plasmid-borne. Microbiology 151: 2121 2124.
48. Hueck, C. J.,, and W. Hillen. 1995. Catabolite repression in Bacillus subtilis: a global regulatory mechanism for the gram-positive bacteria? Mol. Microbiol. 15: 395 401.
49. Hughes, S.,, B. Bartholomew,, J. C. Hardy,, and J. M. Kramer. 1988. Potential application of a HEp-2 cell assay in the investigation of Bacillus cereus emetic-syndrome food poisoning. FEMS Microbiol. Lett. 52: 7 12.
50. Husmark, U. 1993. Adhesion mechanisms of bacterial spores to solid surfaces. Ph.D. thesis. Department of Food Science, Chalmers University of Technology and SIK, The Swedish Institute for Food Research, Göteborg, Sweden.
51. Jackson, S. G.,, R. B. Goodbrand,, R. Ahmed,, and S. Kasatiya. 1995. Bacillus cereus and Bacillus thuringiensis isolated in a gastroenteritis outbreak investigation. Lett. Appl. Microbiol. 21: 103 105.
52. Klimowicz, A. K.,, T. A. Benson,, and J. Handelsman. 2010. A quadruple enterotoxin-deficient mutant of Bacillus thuringiensis remains insecticidal. Microbiology 156: 3575 3583.
53. Kramer, J.M.,, and R. J. Gilbert,. 1989. Bacillus cereus and other Bacillus species, p. 21 70. In M. P. Doyle (ed.), Foodborne Bacterial Pathogens. Marcel Dekker, New York, NY.
54. Lechner, S.,, R. Mayr,, K. P. Francic,, B. M. Prub,, T. Kaplan,, E. Wieber-Gunkel,, G. A. S. B. Stewart,, and S. Scherer. 1998. Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. Int. J. Syst. Bacteriol. 48: 1373 1382.
55. Lereclus, D.,, H. Agaisse,, M. Gominet,, S. Salamitou,, and V. Sanchis. 1996. Identification of a Bacillus thuringiensis gene that positively regulates transcription of the phosphatidylinositol-specific phospholipase C gene at the onset of the stationary phase. J. Bacteriol. 178: 2749 2756.
56. Lindbäck, T.,, A. Fagerlund,, M. S. Rødland,, and P. E. Granum. 2004. Characterization of the Bacillus cereus Nhe enterotoxin. Microbiology 150: 3959 3967.
57. Lindbäck, T.,, S. P. Hardy,, R. Dietrich,, M. Sodring,, A. Didier,, M. Moravek,, A. Fagerlund,, S. Bock,, C. Nielsen,, M. Casteel,, P. E. Granum,, and E. Martlbauer. 2010. Cytotoxicity of the Bacillus cereus Nhe enterotoxin requires specific binding order of its three exoprotein components. Infect. Immun. 78: 3813 3821.
58. Lund, T.,, M. L. De Buyser,,and P. E. Granum. 2000. A new cytotoxin from Bacillus cereus that may cause necrotic enteritis. Mol. Microbiol. 38: 254 261.
59. Lund, T.,, and P. E. Granum. 1996. Characterisation of a non-haemolytic enterotoxin complex from Bacillus cereus isolated after a foodborne outbreak. FEMS Microbiol. Lett. 141: 151 156.
60. Lund, T.,, and P. E. Granum. 1997. Comparison of biological effect of the two different enterotoxin complexes isolated from three different strains of Bacillus cereus. Microbiology 143: 3329 3336.
61. Mahler, H.,, A. Pasi,, J. M. Kramer,, P. Schulte,, A. C. Scoging,, W. Bar,, and S. Krahenbuhl. 1997. Fulminant liver failure in association with the emetic toxin of Bacillus cereus. N. Engl. J. Med. 336: 1142 1148.
62. Mignot, T.,, M. Mock,, D. Robichon,, A. Landier,, D. Lereclus,, and A. Fouet. 2001. The incompatibility between the PlcR- and AtxA-controlled regulons may have selected a nonsense mutation in Bacillus anthracis. Mol. Microbiol. 42: 1189 1198.
63. Miwa, Y.,, A. Nakata,, A. Ogiwara,, M. Yamamoto,, and Y. Fujita. 2000. Evaluation and characterization of catabolite-responsive elements ( cre) of Bacillus subtilis. Nucleic Acids Res. 28: 1206 1210.
64. Moravek, M.,, R. Dietrich,, C. Buerk,, V. Broussolle,, M. H. Guinebretiere,, P. E. Granum,, C. Nguyen-The,, and E. Martlbauer. 2006. Determination of the toxic potential of Bacillus cereus isolates by quantitative enterotoxin analyses. FEMS Microbiol. Lett. 257: 293 298.
65. Mortimer, P.R.,, and G. McCann. 1974. Food poisoning episodes associated with Bacillus cereus in fried rice. Lancet i: 1043 1045.
66. Nakamura, L. K. 1998. Bacillus pseudomycoides sp. nov. Int. J. Syst. Bacteriol. 48: 1031 1035.
67. Ouhib, O.,, T. Clavel,, and P. Schmitt. 2006. The production of Bacillus cereus enterotoxins is influenced by carbohydrate and growth rate. Curr. Microbiol. 53: 222 226.
68. Ray, D.E., 1991. Pesticides derived from plants andother organisms, p. 585 636. In W. J. Hayes, and E. R. Laws, Jr. (ed.), Handbook of Pesticide Toxicology. Academic Press, Inc., New York, NY.
69. Rivera, A. M. G.,, P. E. Granum,, and F. G Priest. 2000. Common occurrence of enterotoxin genes and enterotoxicity in Bacillus thuringiensis. FEMS Microbiol. Lett. 190: 151 155.
70. Rosenquist, H.,, L. Smidt,, S. R. Andersen,, G. B. Jensen,, and A. Wilcks. 2005. Occurrence and significance of Bacillus cereus and Bacillus thuringiensis in ready-to-eat food. FEMS Microbiol Lett. 250: 129 136.
71. Ryan, P. A.,, J. M. Macmillan,, and B. A. Zilinskas. 1997. Molecular cloning and characterization of the genes encoding the L 1 and L 2 components of hemolysin BL from Bacillus cereus. J. Bacteriol. 179: 2551 2556.
72.Schmidt, K. (ed). 2001. WHO Surveillance Programme for Control of Foodborne Infections and Intoxications in Europe. Seventh Report. FAO/WHO Collaborating Centre for Research and Training in Food Hygiene and Zoonoses, Berlin, Germany.
73. Schoeni, J. L.,, and A. C. L Wong. 1999. Heterogeneity observed in the components of hemolysin BL, an enterotoxin produced by Bacillus cereus. Int. J. Food Microbiol. 53: 159 167.
74. Shinagawa, K. 1993. Serology and characterization of Bacillus cereus in relation to toxin production. Bull. Int. Dairy Fed. 287: 42 49.
75. Shinagawa, K.,, H. Konuma,, H. Sekita,, and S. Sugii. 1995. Emesis of rhesus monkeysinduced by intragastric administration with the HEp-2 vacuolation factor (cereulide) produced by Bacillus cereus. FEMS Microbiol. Lett. 130: 87 90.
76. Shinagawa, K.,, S. Otake,, N. Matsusaka,, and S. Sugii. 1992. Production of the vacuolation factor of Bacillus cereus isolated from vomiting-type food poisoning. J. Vet. Med. Sci. 54: 443 446.
77. Shiota, M.,, K. Saitou,, H. Mizumoto,, M. Matsusaka,, N. Agata,, M. Nakayama,, M. Kage,, S. Tatsumi,, A. Okamoto,, S. Yamaguchi,, M. Ohta,, and D. Hata. 2010. Rapid detoxification of cereulide in Bacillus cereus food poisoning. Pediatrics 125: e951 e955.
78. Slamti, L.,, and D. Lereclus. 2002. A cell-cell signaling peptide activates the PlcR virulence regulon in bacteria of the Bacillus cereus group. EMBO J. 21: 4550 4559.
79. Slamti, L.,, and D. Lereclus. 2005. Specificity and polymorphism of the PlcR-PapR quorum-sensing system in the Bacillus cereus group. J. Bacteriol. 187: 1182 1187.
80. Guinebretiere, M. H.,, S. Auger,, N. Galleron,, M. Contzen,, B. De Sarrau,, M. L. De Buyser,, G. Lamberet,, A. Fagerlund,, P. E. Granum,, D. Lereclus,, P. De Vos,, C. Nguyen-The,, and A. Sorokin. 2012. Bacillus cytotoxicus sp. nov. is a new thermotolerant species of the Bacillus cereus group occasionally associated with food poisoning. Int. J. Syst. Evol. Microbiol. 17 Feb 2012. [Epub ahead of print] PubMed PMID: 22328607.
81. Stenfors Arnesen, L. P.,, A. Fagerlund,, and P. E. Granum. 2008. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 32: 579 606.
82. Stenfors Arnesen, L. P.,, K. O’Sullivan,, and P. E. Granum. 2007. Food poisoning potential of Bacillus cereus strains from Norwegian dairies. Int. J. Food Microbiol. 116: 292 296.
83. Thorsen, L.,, B. B. Budde,, L. Henrichsen,, T. Martinussen,, and M. Jakobsen. 2009. Cereulide formation by Bacillus weihenstephanensis and mesophilic emetic Bacillus cereus at temperature abuse depends on pre-incubation conditions. Int. J. Food Microbiol. 134: 133 139.
84. Thorsen, L.,, B. M. Hansen,, K. F. Nielsen,, N. B. Hendriksen,, R. K. Phipps,, and B. B. Budde. 2006. Characterization of emetic Bacillus weihenstephanensis, a new cereulide-producing bacterium. Appl. Environ. Microbiol. 72: 5118 5121.
85. van Netten, P.,, A. van de Moosdijk,, P. van Hoensel,, D. A. A. Mossel,, and I. Perales. 1990. Psychrotrophic strains of Bacillus cereus producing enterotoxin. J. Appl. Bacteriol. 69: 73 79.
86. Yokoyama, K.,, M. Ito,, N. Agata,, M. Isobe,, K. Shibayama,, T. Horii,, and M. Ohta. 1999. Pathological effect of synthetic cereulide, an emetic toxin of Bacillus cereus, is reversible in mice. FEMS Immunol. Med. Microbiol. 24: 115 120.

Tables

Generic image for table
Table 19.1

Criteria to differentiate members of the group

Citation: Granum P, Lindbäck T. 2013. , p 491-502. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch19
Generic image for table
Table 19.2

Examples of foods involved in food poisoning events

Citation: Granum P, Lindbäck T. 2013. , p 491-502. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch19
Generic image for table
Table 19.3

Characteristics of the two types of illness caused by

Citation: Granum P, Lindbäck T. 2013. , p 491-502. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch19
Generic image for table
Table 19.4

Properties of the emetic toxin cereulide

Citation: Granum P, Lindbäck T. 2013. , p 491-502. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch19
Generic image for table
Table 19.5

Toxins produced by

Citation: Granum P, Lindbäck T. 2013. , p 491-502. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch19
Generic image for table
Table 19.6

Properties of the Nhe proteins

Citation: Granum P, Lindbäck T. 2013. , p 491-502. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch19

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error