1887

Chapter 20 :

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818463/9781555816261_Chap20-1.gif /docserver/preview/fulltext/10.1128/9781555818463/9781555816261_Chap20-2.gif

Abstract:

The significance of as a foodborne pathogen is complex. The severity and case-fatality rate of the disease listeriosis require appropriate preventive measures, but the characteristics of the microorganism are such that it is unrealistic to expect all food to be -free. This dilemma has generated an ongoing debate concerning both the various strategies for prevention of listeriosis and the regulation of in foods. Epidemiologic investigations of outbreaks have helped identify the vehicles of transmission and have led to an expanding list of ready-to-eat (RTE) foods that have been associated with outbreaks. Basic research on the genetics, molecular biology, and immunologic response of animals and humans to has provided detailed insights into the virulence characteristics of this fascinating pathogen. Concurrent infection can also influence susceptibility to listeriosis. FbpA behaves as a chaperone for two important virulence factors, listeriolysin O (LLO) and internalin B (InlB), probably preventing their degradation. Public health surveillance, outbreak investigations, and applied and basic research conducted during the past 30 years have helped to characterize the disease listeriosis, define the magnitude of its public health problem and its impact on the food industry, identify the risk factors associated with disease, and develop appropriate and targeted control strategies.

Citation: Ryser E, Buchanan R. 2013. , p 503-545. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch20
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 20.1
Figure 20.1

Phenotypic identification of species. doi:10.1128/9781555818463.ch20f1

Citation: Ryser E, Buchanan R. 2013. , p 503-545. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 20.2
Figure 20.2

Potential routes of transmission of . Adapted from reference . Circles or ovals indicate areas of greatest risk of multiplication. Boxes indicate where direct consumption of minimally processed products (e.g., whole fresh vegetables, cooked carcass cuts of meat and fish, and effectively pasteurized milk) presents a low risk. Double arrows indicate consumer at risk. doi:10.1128/9781555818463.ch20f2

Citation: Ryser E, Buchanan R. 2013. , p 503-545. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 20.3
Figure 20.3

Schematic representation of the pathophysiology of infection. doi:10.1128/9781555818463.ch20f3

Citation: Ryser E, Buchanan R. 2013. , p 503-545. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 20.4
Figure 20.4

Schematic representation of the successive steps of the cell infectious process. Factors implicated in the different steps are indicated. doi:10.1128/9781555818463.ch20f4

Citation: Ryser E, Buchanan R. 2013. , p 503-545. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 20.5
Figure 20.5

Directional actin polymerization by . isolates were processed for triple-labeling fluorescence microscopy, 5 h after starting the infection of Vero cells. Bacteria (red) were visualized with a polyclonal anti- antibody, actin (green) with phalloidin, and cell nuclei (blue) with DAPI (4′,6′-diamidino-2-phenylindole). Magnification, ×100. doi:10.1128/9781555818463.ch20f5

Citation: Ryser E, Buchanan R. 2013. , p 503-545. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 20.6
Figure 20.6

Schematic representation of the virulence factors. The localization of factors implicated in adhesion (green), entry (blue), escape from the phagosome and intracellular growth (red), and intracytoplasmic movement and cell-to-cell spreading (purple) is indicated. The names of factors whose expression is regulated by PrfA are in orange. doi:10.1128/9781555818463.ch20f6

Citation: Ryser E, Buchanan R. 2013. , p 503-545. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818463.chap20
1. Abram, M.,, D. Schluter,, D. Vuckovic,, B. Wraber,, M. Doric,, and M. Deckert. 2003. Murine model of pregnancy-associated Listeria monocytogenes infection. FEMS Immunol. Med. Microbiol. 35: 177 182.
2. Al-Ghazali, M.,, and S. Al-Azawi. 1990. Listeria monocytogenes contamination of crops grown on soil treated with sewage sludge cake. J. Appl. Bacteriol. 69: 642 674.
3. Alvarez-Dominguez, C.,, J. A. Vazquez-Boland,, E. Carrasco-Marin,, P. Lopez-Mato,, and F. Leyva-Cobian. 1997. Host cell heparan sulfate proteoglycans mediate attachment and entry of Listeria monocytogenes, and the listerial surface protein ActA is involved in heparan sulfate receptor recognition. Infect. Immun. 65: 78 88.
4.Anonymous. 2002. Final Assessment Report: Proposal 239 - Listeria Risk Assessment & Risk Management Strategy. Food Standards Australia New Zealand. www.foodstandards.gov.au/_srefiles/P239_DAR.021002.pdf. Accessed 24 May 2006.
5.Anonymous. 1988. Food Listeriosis—Report of the WHO Informal Working Group. WHO/EHE/FOS/88.5. World Health Organization, Geneva, Switzerland.
6.Anonymous. 2003. Interpretive Summary: Quantitative Assessment of the Relative Risk to Public Health from Foodborne Listeria monocytogenes among Selected Categories of Ready-To-Eat Meats. Center for Food Safety and Applied Nutrition, Food and Drug Administration, U.S. Department of Health and Human Services; Food Safety and Inspection Service, U.S. Department of Agriculture. www.foodsafety.gov/~dms/lmr2toc.html. Accessed 24 May 2006.
7.Anonymous. 2004. Risk Assessment of Listeria monocytogenes in Ready-To-Eat Foods: Technical Report. Microbiological Risk Assessment Series 5. World Health Organization and Food and Agriculture Organization, Geneva, Switzerland.
8.Anonymous. 2008. 2008 Listeriosis Outbreak in Ontario—Chronology of Events. http://www.health.gov.on.ca/english/public/pub/disease/listeria/listeriosis_outbreak_chronology.pdf. Accessed 7 February 2012.
9.Anonymous. 2010. FSIS comparative risk assessment for Listeria monocytogenes in ready-to-eat meat and poultry deli meats. U.S. Department of Agriculture—Food Safey and Inspection Service. http://www.fsis.usda.gov/PDF/Comparative_RA_Lm_Report_May2010.pdf.
10.Anonymous. 2010. DSHS orders Sanger Produce to close, recall products. http://www.dshs.state.tx.us/news/releases/20101020.shtm. Accessed 31 March 2012.
11. Arnaud, M.,, A. Chastanet,, and M. Debarbouille. 2004. New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria. Appl. Environ. Microbiol. 70: 6887 6891.
12. Audurier, A.,, P. Pardon,, J. Marly,, and F. Lantier. 1980. Experimental infection of mice with Listeria monocytogenes and L. innocua. Ann. Microbiol. 131B: 47 57.
13. Auerbuch, V.,, J. J. Loureiro,, F. B. Gertler,, J. A. Theriot,, and D. A. Portnoy. 2003. Ena/VASP proteins contribute to Listeria monocytogenes pathogenesis by controlling temporal and spatial persistence of bacterial actin-based motility. Mol. Microbiol. 49: 1361 1375.
14. Aureli, P.,, G. C. Fiorucci,, D. Caroli,, G. Marchiaro,, O. Novara,, L. Leone,, and S. Salmaso. 2000. An outbreak of febrile gastroenteritis associated with corn contaminated by Listeria monocytogenes. N. Engl. J. Med. 342: 1236 1241.
15. Autret, N.,, I. Dubail,, P. Trieu-Cuot,, P. Berche,, and A. Charbit. 2001. Identification of new genes involved in the virulence of Listeria monocytogenes by signature-tagged transposon mutagenesis. Infect. Immun. 69: 2054 2065.
16. Bakardjiev, A. I.,, B. A. Stacy,, S. J. Fisher,, and D. A. Portnoy. 2004. Listeriosis in the pregnant guinea pig: a model of vertical transmission. Infect. Immun. 72: 489 497.
17. Baker, M.,, M. Brett,, P. Short,, L. Calder,, and R. Thornton. 1993. Listeriosis and mussels. CDNZ 93: 12 15.
18. Barbosa, W. B.,, L. Cabedo,, H. J. Wederquist,, J. N. Sofos,, and G. R. Schmidt. 1994. Growth variation among species and strains of Listeria monocytogenes. J. Food Prot. 57: 765 769.
19. Beauregard, K. E.,, K. D. Lee,, R. J. Collier,, and J. A. Swanson. 1997. pH-dependent perforation of macrophage phagosomes by listeriolysin O from Listeria monocytogenes. J. Exp. Med. 186: 1159 1163.
20. Begley, M.,, C. G. Gahan,, and C. Hill. 2002. Bile stress response in Listeria monocytogenes LO28: adaptation, cross-protection, and identification of genetic loci involved in bile resistance. Appl. Environ. Microbiol. 68: 6005 6012.
21. Begley, M.,, C. Hill,, and C. G. Gahan. 2003. Identification and disruption of btlA, a locus involved in bile tolerance and general stress resistance in Listeria monocytogenes. FEMS Microbiol. Lett. 218: 31 38.
22. Begley, M.,, R. D. Sleator,, C. G. Gahan,, and C. Hill. 2005. Contribution of three bile-associated loci, bsh, pva, and btlB, to gastrointestinal persistence and bile tolerance of Listeria monocytogenes. Infect. Immun. 73: 894 904.
23. Bierne, H.,, and P. Cossart. 2007. Listeria monocytogenes surface proteins: from genome predictions to function. Microbiol. Mol. Biol. Rev. 71: 377 397.
24. Bierne, H.,, C. Garandeau,, M. G. Pucciarelli,, C. Sabet,, S. Newton,, F. Garcia-del Portillo,, P. Cossart,, and A. Charbit. 2004. Sortase B, a new class of sortase in Listeria monocytogenes. J. Bacteriol. 186: 1972 1982.
25. Bierne, H.,, S. K. Mazmanian,, M. Trost,, M. G. Pucciarelli,, G. Liu,, P. Dehoux,, L. Jansch,, F. Garcia-del Portillo,, O. Schneewind,, P. Cossart,, and T. E. L. G. Consortium. 2002. Inactivation of the srtA gene in Listeria monocytogenes inhibits anchoring of surface proteins and affects virulence. Mol. Microbiol. 43: 464 489.
26. Bille, J.,, J. Rocourt,, and B. Swaminathan,. 2003. Listeria and Erysipelothrix, p. 461 471. In P. R. Murray,, E. Jo Baron,, J. H. Jorgensen,, M. A. Pfaller,, and R. H. Yolken (ed.), Manual of Clinical Microbiology, 8th ed., vol. 1. ASM Press, Washington, DC.
27. Bille, J.,, D. S. Blanc,, H. Schmid,, K. Boubaker,, A. Baumgartner,, H. H. Siegrist,, M. L. Tritten,, R. Lienhard,, D. Berner,, R. Anderau,, M. Treboux,, J. M. Ducommun,, R. Malinverni,, D. Genné,, P. H. Erard,, and U. Waespi. 2006. Outbreak of human listeriosis associated with Tomme cheese in Northwest Switzerland, 2005. Euro. Surveill. 11: 91 93.
28. Boerlin, P.,, F. Boerlin-Petzold,, E. Bannerman,, J. Bille,, and T. Jemmi. 1997. Typing Listeria monocytogenes isolates from fish products and human listeriosis cases. Appl. Environ. Microbiol. 63: 1338 1343.
29. Boerlin, P.,, and J. Piffaretti. 1991. Typing of human, animal, food, and environmental isolates of Listeria monocytogenes by multilocus enzyme electrophoresis. Appl. Environ. Microbiol. 57: 1624 1629.
30. Boerlin, P.,, J. Rocourt,, F. Grimont,, P. A. D. Grimont,, C. Jacquet,, and J. C. Piffaretti. 1992. Listeria ivanovii subspecies londoniensis. Int. J. Syst. Bacteriol. 15: 42 46.
31. Bonazzi, M.,, M. Lecuit,, and P. Cossart. 2009. Listeria monocytogenes internalin and E-cadherin: from bench to bedside. Cold Spring Perspect. Biol. 2009: 1a003087. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2773623/. Accessed 21 April 2012.
32. Borezee, E.,, E. Pellegrini,, and P. Berche. 2000. OppA of Listeria monocytogenes, an oligopeptide-binding protein required for bacterial growth at low temperature and involved in intracellular survival. Infect. Immun. 68: 7069 7077.
33. Borucki, M. K.,, S. H. Kim,, D. R. Call,, S. C. Smole,, and F. Pagotto. 2004. Selective discrimination of Listeria monocytogenes epidemic strains by a mixed-genome DNA microarray compared to discrimination by pulsed-field gel electrophoresis, ribotyping, and multilocus sequence typing. J. Clin. Microbiol. 42: 5270 5276.
34. Borucki, M. K.,, J. Reynolds,, D. R. Call,, T. J. Ward,, B. Page,, and J. Kadushin. 2005. Suspension microarray with dendrimer signal amplification allows direct and high-throughput subtyping of Listeria monocytogenes from genomic DNA. J. Clin. Microbiol. 43: 3255 3259.
35. Boujemaa-Paterski, R.,, E. Gouin,, G. Hansen,, S. Samarin,, C. Le Clainche,, D. Didry,, P. Dehoux,, P. Cossart,, C. Kocks,, M. F. Carlier,, and D. Pantaloni. 2001. Listeria protein ActA mimics WASp family proteins: it activates filament barbed end branching by Arp2/3 complex. Biochemistry 40: 11390 11404.
36. Brackett, R. E., 2007. Incidence and behavior of Listeria monocytogenes in products of plant origin, p. 655 680. In E. T. Ryser, and E. H. Marth (ed.), Listeria, Listeriosis, and Food Safety, 3rd ed. CRC Press, Boca Raton, FL.
37. Braun, L.,, S. Dramsi,, P. Dehoux,, H. Bierne,, G. Lindahl,, and P. Cossart. 1997. InlB: an invasion protein of Listeria monocytogenes with a novel type of surface association. Mol. Microbiol. 25: 285 294.
38. Braun, L.,, B. Ghebrehiwet,, and P. Cossart. 2000. gC1q-R/p32, a C1q-binding protein, is a receptor for the InlB invasion protein of Listeria monocytogenes. EMBO J. 19: 1458 1466.
39. Braun, L.,, F. Nato,, B. Payrastre,, J. C. Mazie,, and P. Cossart. 1999. The 213-amino-acid leucine-rich repeat region of the Listeria monocytogenes InlB protein is sufficient for entry into mammalian cells, stimulation of PI 3-kinase and membrane ruffling. Mol. Microbiol. 34: 10 23.
40. Brehm-Stecher, F.,, and E. A. Johnson,. 2007. Rapid methods for detection of Listeria, p. 257 282. In E. T. Ryser, and E. H. Marth (ed.), Listeria, Listeriosis, and Food Safety, 3rd ed. CRC Press, Boca Raton, FL.
41. Brosch, R.,, B. Catimel,, G. Milon,, C. Burchrieser,, E. Vindel,, and J. Rocourt. 1993. Virulence heterogeneity of Listeria monocytogenes strains from various sources (food, human, animal) in immunocompetent mice and its association with typing characteristics. J. Food Prot. 56: 296 301.
42. Bubert, A.,, Z. Sokolovic,, S. K. Chun,, L. Papatheodorou,, A. Simm,, and W. Goebel. 1999. Differential expression of Listeria monocytogenes virulence genes in mammalian host cells. Mol. Gen. Genet. 261: 323 336.
43. Buchanan, R. L.,, W. G. Damert,, R. C. Whiting,, and M. van Schothorst. 1997. An approach for using epidemiologic and microbial food survey data to develop a “purposefully conservative” estimate of the dose-response relationship between Listeria monocytogenes levels and the incidence of foodborne listeriosis. J. Food Prot. 60: 918 922.
44. Buchanan, R. L.,, A. H. Havelaar,, M. A. Smith,, R. C. Whiting,, and E. Julien. 2009. The key events dose-response framework: its potential for application to foodborne pathogenic microorganisms. Crit. Rev. Food Sci. Nutr. 49: 718 728.
45. Buchrieser, C.,, R. Brosch,, B. Catimel,, and J. Rocourt. 1993. Pulsed-field electrophoresis applied for comparing Listeria monocytogenes strains involved in outbreaks. Can. J. Microbiol. 39: 395 401.
46. Bula, C.,, J. Bille,, and M. Glauser. 1995. An epidemic of food-borne listeriosis in Western Switzerland: description of 57 cases involving adults. Clin. Infect. Dis. 20: 66 72.
47. Buncie, S. 1991. The incidence of Listeria monocytogenes in slaughtered animals, in meat, and in meat products in Yugoslavia. Int. J. Food Microbiol. 12: 173 180.
48. Burt, S. 2004. Essential oils: their antibacterial properties and potential applications in foods—a review. Int. J. Food Microbiol. 94: 223 253.
49. Cabanes, D.,, P. Dehoux,, O. Dussurget,, L. Frangeul,, and P. Cossart. 2002. Surface proteins and the pathogenic potential of Listeria monocytogenes. Trends Microbiol. 10: 238 245.
50. Cabanes, D.,, O. Dussurget,, P. Dehoux,, and P. Cossart. 2004. Auto, a surface associated autolysin of Listeria monocytogenes required for entry into eukaryotic cells and virulence. Mol. Microbiol. 51: 1601 1614.
51. Cabanes, D.,, S. Sousa,, A. Cebria,, M. Lecuit,, F. Garcia-del Portillo,, and P. Cossart. 2005. Gp96 is a receptor for a novel Listeria monocytogenes virulence factor, Vip, a surface protein. EMBO J. 24: 2827 2838.
52. Cai, S.,, D. Y. Kabuki,, A. Y. Kuaye,, T. G. Cargioli,, M. S. Chung,, R. Nielsen,, and M. Wiedmann. 2002. Rational design of DNA sequence-based strategies for subtyping Listeria monocytogenes. J. Clin. Microbiol. 40: 3319 3325.
53. Camejo, A.,, C. Buchrieserr,, E. Couve,, F. Carvalho,, O. Reis,, P. Ferreira,, S. Sousa,, P. Cossart,, and D. Cabanes. 2009. In vivo transcriptional profiling of Listeria monocytogenes and mutagenesis identify new virulence factors involved in infection. PLoS Pathog. 5( 5): e1000449. www.plospathogens.org. Accessed 21 March 2012.
54. Camilli, A.,, H. Goldfine,, and D. A. Portnoy. 1991. Listeria monocytogenes mutants lacking phosphatidylinositol-specific phospholipase C are avirulent. J. Exp. Med. 173: 751 754.
55. Camilli, A.,, L. G. Tilney,, and D. A. Portnoy. 1993. Dual roles of PlcA in Listeria monocytogenes pathogenesis. Mol. Microbiol. 8: 143 157.
56. Cates, S. C.,, R. A. Morales,, S. A. Karns,, L.-A. Jaykus,, K. M. Kosa,, T. Teneyck,, C. M. Moore,, and P. Cowen. 2006 Consumer knowledge, storage, and handling practices regarding Listeria in frankfurters and deli meats: results of a web-based survey. J. Food Prot. 69: 1630 1639.
57. Centers for Disease Control and Prevention. 1989. Listeriosis associated with consumption of turkey franks. MMWR Morb. Mortal. Wkly. Rep. 38: 267268.
58. Centers for Disease Control and Prevention. 2010. Vital signs: incidence and trends of infection with pathogens transmitted commonly through food—Foodborne Diseases Active Surveillance Network, 10 U.S. sites, 1996-2010. MMWR Morb. Mortal. Wkly. Rep. 60: 749755
59. Centers for Disease Control and Prevention. 1996. Preventing Foodborne Illness: Listeriosis. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Center for Infectious Diseases, Atlanta, GA.
60. Centers for Disease Control and Prevention. 2011. Multistate outbreak of listeriosis linked to whole cantaloupes from Jensen Farms, Colorado. http://www.cdc.gov/listeria/outbreaks/cantaloupes-jensen-farms/120811/index.html. Accessed 12 February 2011.
61. Centers for Disease Control and Prevention. 2011. Multistate outbreak of listeriosis associated with Jensen Farms cantaloupe—United States, August-September 2011. http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6039a5.htm?s_cid=mm6039a5_w. Accessed 12 February 2011.
62. Centers for Disease Control and Prevention. 2010. Outbreak of invasive listeriosis associated with consumption of hog head cheese—Louisiana, 2010. MMWR Morb. Mortal. Wkly. Rep. 60: 401405
63. Chakraborty, T.,, F. Ebel,, E. Domann,, K. Niebuhr,, B. Gerstel,, S. Pistor,, C. J. Temm-Grove,, B. M. Jockusch,, M. Reinhard,, and U. Walter. 1995. A focal adhesion factor directly linking intracellularly motile Listeria monocytogenes and Listeria ivanovii to the actin-based cytoskeleton of mammalian cells. EMBO J. 14: 1314 1321.
64. Chen, Y.,, W. H. Ross,, M. J. Gray,, M. Wiedmann,, R. C. Whiting,, and V. N. Scott. 2006. Attributing risk to Listeria monocytogenes subgroups: dose response in relation to genetic lineages. J. Food Prot. 69: 335 344.
65. Chen, Y.,, W. H. Ross,, V. N. Scott,, and D. E. Gombas. 2003. Listeria monocytogenes: low levels equal low risk . J. Food Prot. 66: 570 577.
66. Chen, Y.,, W. Zhang,, and S. J. Knabel. 2005. Multi-virulence-locus sequence typing clarifies epidemiology of recent listeriosis outbreaks in the United States. J. Clin. Microbiol. 43: 5291 5294.
67. Colburn, K.,, C. Kaysner,, C. Abeyta, Jr.,, and M. Wekell. 1990. Listeria species in a California estuarine environment. Appl. Environ. Microbiol. 56: 2007 2011.
68. Corbett, D.,, J. Wang,, S. Schuler,, G. Lopez-Castejon,, S. Glenn,, D. Brough,, P. W. Andres,, J. S. Cavet,, and I. S.. Roberts. 2012. Two zinc uptake systems contribute to the full virulence of Listeria monocytogenes during growth in vitro and in vivo. Infect. Immun. 80: 14 21.
69. Cossart, P. 2000. Actin-based motility of pathogens: the Arp2/3 complex is a central player. Cell. Microbiol. 2: 195 205.
70. Cossart, P.,, and J. Mengaud. 1989. Listeria monocytogenes: a model system for the molecular study of intracellular parasitism. Mol. Biol. Med. 6: 463 474.
71. Cossart, P.,, and P. J. Sansonetti. 2004. Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 304: 242 248.
72. Cossart, P.,, M. F. Vicente,, J. Mengaud,, F. Baquero,, J. C. Perez-Diaz,, and P. Berche. 1989. Listeriolysin O is essential for virulence of Listeria monocytogenes: direct evidence obtained by gene complementation. Infect. Immun. 57: 3629 3636.
73. Cotter, P. D.,, L. A. Draper,, E. M. Lawton,, K. M. Daly,, D. S. Groeger,, P. G. Casey,, R. P. Ross,, and C. Hill. 2008. Listeriolysin S, a novel peptide haemolysin associated with a subset of lineage I Listeria monocytogenes. PLoS Pathog. 4( 9): e1000144. www.plospathogens.org. Accessed 21 March 2012.
74. Cox, L.,, T. Kleiss,, J. Cordier,, C. Cordellana,, P. Konkel,, C. Pedrazzini,, R. Beumer,, and A. Siebenga. 1989. Listeria spp. in food processing, non-food and domestic environments. Food Microbiol. 6: 49 61.
75. Cummings,, M. P. Kudt,, B. Matyas,, A. DeMaria,, T. Stiles,, L. Han,, M. Gilchrist,, P. Neves,, E. Fitzgibbons,, and S. Condon. 2008. Outbreak of Listeria monocytogenes infections associated with pasteurized milk from a local dairy—Massachusetts, 2007. MMWR Morb. Mortal. Wkly. Rep. 57: 1097 1100.
76. Czuprynski, C. J.,, N. G. Faith,, and H. Steinberg. 2003. A/J mice are susceptible and C57BL/6 mice are resistant to Listeria monocytogenes infection by intragastric inoculation. Infect. Immun. 71: 682 689.
77. Dabiri, G. A.,, J. M. Sanger,, D. A. Portnoy,, and F. S. Southwick. 1990. Listeria monocytogenes moves rapidly through the host-cell cytoplasm by inducing directional actin assembly. Proc. Natl. Acad. Sci. USA 87: 6068 6072.
78. Dalton, C. B.,, C. C. Austin,, J. Sobel,, P. S. Hayes,, W. F. Bibb,, L. M. Graves,, B. Swaminathan,, M. E. Proctor,, and P. M. Griffin. 1997. An outbreak of gastroenteritis and fever due to Listeria monocytogenes in milk. N. Engl. J. Med. 336: 100 105.
79. Danielsson-Tham, M. L.,, E. Eriksson,, S. Helmersson,, M. Leffler,, L. Ludtke,, M. Steen,, S. Sorgjerd,, and W. Tham. 2004. Causes behind a human cheese-borne outbreak of gastrointestinal listeriosis. Foodborne Pathog. Dis. 1: 153 159.
80. Davies, E.,, and M. Adams. 1994. Resistance of Listeria monocytogenes to the bacteriocin nisin. Int. J. Food Microbiol. 21: 341 347.
81. Dawson, S. J.,, M. R. W. Evans,, D. Willby,, J. Bardwell,, N. Chamberlain,, and D. A. Lewis. 2006. Listeria outbreak associated with sandwich consumption from a hospital retail shop, United Kingdom. Euro Surveill. 11: 89 91.
82. De Buyser, M. L.,, B. Dufour,, M. Maire,, and V. Lafarge. 2001. Implication of milk and milk products in food-borne diseases in France and in different industrialised countries. Int. J. Food Microbiol. 67: 1 17.
83. Decatur, A. L.,, and D. A. Portnoy. 2000. A PEST-like sequence in listeriolysin O essential for Listeria monocytogenes pathogenicity. Science 290: 992 995.
84. den Bakker, H. C.,, B. M. Bowen,, L. D. Rodriguez-Rivera,, and M. Wiedmann. 2012. FSL J1-208, a virulent uncommon phylogenetic linage IV Listeria monocytogenes strains with a small chromosome size and a putative virulence plasmid carrying internalin-like genes. Appl. Environ. Microbiol. 78: 1876 1889.
85. den Bakker, H. C.,, B. N. Bundrant,, E. D. Fortes,, R. H. Orsi,, and M. Wiedmann. 2010. A population and phylogenetic approach to understand the evolution of virulence in the genus Listeria. Appl. Environ. Microbiol. 76: 6085 6100.
86. den Bakker, H. C.,, C. A. Cummings,, V. Ferreira,, P. Vatta,, R. H. Orsi,, L. Degoricija,, M. Baker,, O. Petrauskene,, M. R. Furtado,, and M. Wiedmann. 2010. Comparative genomics of the bacterial genus Listeria: genome evolution is characterized by limited gene acquisition and limited gene loss. BMC Genomics 11: 688. http://www.biomedcentral.com/1471-2164/11/688. Accessed 30 March 2012.
87. de Simon, M.,, and M. D. Ferrer. 1998. Initial numbers, serovars and phagevars of Listeria monocytogenes isolated in prepared foods in the city of Barcelona (Spain). Int. J. Food Microbiol. 44: 141 144.
88. de Valk, H.,, V. Vaillant,, C. Jacquet,, J. Rocourt,, F. Le Querrec,, F. Stainer,, N. Quelquejeu,, O. Pierre,, V. Pierre,, J. C. Desenclos,, and V. Goulet. 2001. Two consecutive nationwide outbreaks of listeriosis in France, October 1999-February 2000. Am. J. Epidemiol. 154: 944 950.
89. Dijkstra, R. 1982. The occurrence of Listeria monocytogenes in surface water of canals and lakes, in ditches of one big polder and in the effluents and canals of a sewage treatment plant. Zentralbl. Bakteriol. Hyg. Abt. 1 Orig. B 176: 202 205.
90. Disson, O.,, S. Grayo,, E. Huillet,, G. Nikitas,, F. Langa-Vives,, O. Dussurget,, M. Ragon,, A. Le Monnier,, C. Babinet,, P. Cossart,, and M. Lecuit. 2008. Conjugated action of two species-specific invasion proteins for fetoplacental listeriosis. Nature 455: 1114 1118.
91. Disson, O.,, G. Nikitas,, S. Grayo,, O. Dussurget,, P. Cossart,, and M. Lecuit. 2009. Modeling human listeriosis in natural and genetically engineered animals. Nat. Protocols 4: 799 810.
92. Domann, E.,, M. Leimeister-Wachter,, W. Goebel,, and T. Chakraborty. 1991. Molecular cloning, sequencing, and identification of a metalloprotease gene from Listeria monocytogenes that is species specific and physically linked to the listeriolysin gene. Infect. Immun. 59: 65 72.
93. Domann, E.,, J. Wehland,, M. Rohde,, S. Pistor,, M. Hartl,, W. Goebel,, M. Leimeister-Wachter,, M. Wuenscher,, and T. Chakraborty. 1992. A novel bacterial virulence gene in Listeria monocytogenes required for host cell microfilament interaction with homology to the proline-rich region of vinculin. EMBO J. 11: 1981 1990.
94. Domenech, E.,, J. A. Amoros,, S. Martorell,, and I. Escriche. 2012. Safety assessment of smoked fish related to Listeria monocytogenes prevalence using risk management metrics. Food Control 25: 233 238.
95. Dominguez, C.,, I. Gomez,, and J. Zumalacarregui. 2001. Prevalence and contamination levels of Listeria monocytogenes in smoked fish and pate sold in Spain. J. Food Prot. 64: 2075 2077.
96. Donnelly, C. W.,, and D. G. Nyachuba,. 2007. Conventional methods to detect and isolate Listeria monocytogenes, p. 215 256. In E. T. Ryser, and E. H. Marth (ed.), Listeria, Listeriosis, and Food Safety, 3rd ed. CRC Press, Boca Raton, FL.
97. Doumith, M.,, C. Cazalet,, N. Simoes,, L. Frangeul,, C. Jacquet,, F. Kunst,, P. Martin,, P. Cossart,, P. Glaser,, and C. Buchrieser. 2004. New aspects regarding evolution and virulence of Listeria monocytogenes revealed by comparative genomics and DNA arrays. Infect. Immun. 72: 1072 1083.
98. Doumith, M.,, C. Jacquet,, P. Gerner-Smidt,, L. M. Graves,, S. Loncarevic,, T. Mathisen,, A. Morvan,, C. Salcedo,, M. Torpdahl,, J. A. Vazquez,, and P. Martin. 2005. Multicenter validation of a multiplex PCR assay for differentiating the major Listeria monocytogenes serovars 1/2a, 1/2b, 1/2c, and 4b: toward an international standard. J. Food Prot. 68: 2648 2650.
99. Doyle, M. 1988. Effect of environmental and processing conditions on Listeria monocytogenes. Food Technol. 42: 169 171.
100. Doyle, M. P.,, K. A. Glass,, J. T. Berry,, G. A. Garcia,, D. J. Pollard,, and R. D. Schultz. 1987. Survival of Listeria monocytogenes in milk during high-temperature, short-time pasteurization. Appl. Environ. Microbiol. 53: 1433 1438.
101. Dramsi, S.,, I. Biswas,, L. Braun,, E. Maguin,, P. Mastroenni,, and P. Cossart. 1995. Entry into hepatocytes requires expression of the inlB gene product. Mol. Microbiol. 16: 251 261.
102. Dramsi, S.,, F. Bourdichon,, D. Cabanes,, M. Lecuit,, H. Fsihi,, and P. Cossart. 2004. FbpA, a novel multifunctional Listeria monocytogenes virulence factor. Mol. Microbiol. 53: 639 649.
103. Dramsi, S.,, and P. Cossart. 2002. Listeriolysin O: a genuine cytolysin optimized for an intracellular parasite. J. Cell Biol. 156: 943 946.
104. Dussurget, O.,, D. Cabanes,, P. Dehoux,, M. Lecuit,, C. Buchrieser,, P. Glaser,, and P. Cossart. 2002. Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. Mol. Microbiol. 45: 1095 1106.
105. Dussurget, O.,, E. Dumas,, C. Archambaud,, I. Chafsey,, C. Chambon,, M. Hebraud,, and P. Cossart. 2005. Listeria monocytogenes ferritin protects against multiple stresses and is required for virulence. FEMS Microbiol. Lett. 250: 253 261.
106. Dussurget, O.,, J. Pizarro-Cerda,, and P. Cossart. 2004. Molecular determinants of Listeria monocytogenes virulence. Annu. Rev. Microbiol. 58: 587 610.
107. Elliott, E. L.,, and J. E. Kvenberg. 2000. Risk assessment used to evaluate the U.S. position on Listeria monocytogenes in seafood. Int. J. Food Microbiol. 62: 253 260.
108. Endrikat, S.,, D. Gallagher,, R. Pouillet,, H. H. Quesenberry, et al. 2010. A comparative risk assessment for Listeria monocytogenes in prepackaged versus retail sliced deli meat. J. Food Prot. 73: 612 619.
109. Ericsson, H.,, A. Eklow,, M. L. Danielsson-Tham,, S. Loncarevic,, L. O. Mentzing,, I. Persson,, H. Unnerstad,, and W. Tham. 1997. An outbreak of listeriosis suspected to have been caused by rainbow trout. J. Clin. Microbiol. 35: 2904 2907.
110. Evans, M. R.,, B. Swaminathan,, L. M. Graves,, E. Altermann,, T. R. Klaenhammer,, R. C. Fink,, S. Kernodle,, and S. Kathariou. 2004. Genetic markers unique to Listeria monocytogenes serotype 4b differentiate epidemic clone II (hot dog outbreak strains) from other lineages. Appl. Environ. Microbiol. 70: 2383 2390.
111. Farber, J.,, E. Coates,, N. Beausoleil,, and J. Fournier. 1991. Feeding trials of Listeria monocytogenes with a nonhuman primate model. J. Clin. Microbiol. 29: 2606 2608.
112. Farber, J. M. 2000. Present situation in Canada regarding Listeria monocytogenes and ready-to-eat seafood products. Int. J. Food Microbiol. 62: 247 251.
113. Farber, J. M.,, E. M. Daley,, M. T. MacKie,, and B. Limerick. 2000. A small outbreak of listeriosis potentially linked to the consumption of imitation crab meat. Lett. Appl. Microbiol. 31: 100 104.
114. Farber, J. M.,, and P. I. Peterkin,. 2007. Incidence and behavior of Listeria monocytogenes in meat products, p. 503 570. In E. T. Ryser, and E. H. Marth (ed.), Listeria, Listeriosis and Food Safety, 3rd ed. CRC Press, Boca Raton, FL.
115. Ferreira, A.,, D. Sue,, C. P. O’Byrne,, and K. J. Boor. 2003. Role of Listeria monocytogenes sigma(B) in survival of lethal acidic conditions and in the acquired acid tolerance response. Appl. Environ. Microbiol. 69: 2692 2698.
116. Fleming, D.,, S. Cochi,, K. MacDonald,, J. Brondum,, P. Hayes,, B. Plikaytis,, M. Holmes,, A. Audurier,, C. Broome,, and A. Reingold. 1985. Pasteurized milk as a vehicle of infection in an outbreak of listeriosis. N. Engl. J. Med. 312: 404 407.
117. Forster, B. M.,, A. P. Bitar,, E. R. Slepkov,, K. J. Kota,, H. Sondermann,, and H. Marquis. 2011. The metalloprotease of Listeria monocytogenes is regulated by pH. J. Bacteriol. 193: 5090 5097.
118. Freitag, N.,, L. Rong,, and D. Portnoy. 1993. Regulation of the prfA transcriptional activator of Listeria monocytogenes: multiple promoter elements contribute to intracellular growth and cell-to-cell spread. Infect. Immun. 61: 2537 2544.
119. Freitag, N. E., 2000. Genetic tools for use with Listeria monocytogenes, p. 488 498. In V. A. Fischetti,, R. P. Novick,, J. J. Ferretti,, D. A. Portnoy,, and J. I. Rood (ed.), Gram-Positive Pathogens. ASM Press, Washington, DC.
120. Freitag, N. E.,, and K. E. Jacobs. 1999. Examination of Listeria monocytogenes intracellular gene expression by using the green fluorescent protein of Aequorea victoria. Infect. Immun. 67: 1844 1852.
121. Fretz, R.,, J. Pichler,, U. Sagel,, P. Much,, W. Ruppitsch,, A. T. Pietzka,, A. Stöger,, S. Huhulescu,, S. Heuberger,, G. Appl,, D. Werber,, K. Stark,, R. Prager,, A. Flieger,, R. Karpíšková,, G. Pfaff,, and F. Allerberger. 2010. Update: Multinational listeriosis outbreak due to “Quargel”, a sour milk curd cheese, caused by two different L. monocytogenes serotype 1/2a strains, 2009-2010. Euro. Surveill. 15: 19543.
122. Frye, C.,, and C. W. Donnelly. 2005. Comprehensive survey of pasteurized fluid milk produced in the United States reveals a low prevalence of Listeria monocytogenes. J. Food Prot. 68: 973 979.
123. Frye, D. M.,, R. Zweig,, J. Sturgeon,, M. Tormey,, M. LeCavalier,, I. Lee,, L. Lawani,, and L. Mascola. 2002. An outbreak of febrile gastroenteritis associated with delicatessen meat contaminated with Listeria monocytogenes. Clin. Infect. Dis. 35: 943 949.
124. Fugett, E. B.,, D. Schoonmaker-Bopp,, N. B. Dumas,, J. Corby,, and M. Wiedmann. 2007. Pulsed-field gel electrophoresis (PFGE) analysis of temporally matched Listeria monocytogenes isolated from human clinical cases, foods, ruminant farms, and urban and natural environments reveals source-associated as well as widely distributed PFGE types. J. Clin. Microbiol. 45: 865 873.
125. Gahan, C. G.,, J. O’Mahony,, and C. Hill. 2001. Characterization of the groESL operon in Listeria monocytogenes: utilization of two reporter systems ( gfp and hly) for evaluating in vivo expression. Infect. Immun. 69: 3924 3932.
126. Gaillard, J.,, P. Berche,, C. Frehel,, E. Gouin,, and P. Cossart. 1991. Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from Gram-positive cocci. Cell 65: 1127 1141.
127. Gaillard, J. L.,, P. Berche,, and P. Sansonetti. 1986. Transposon mutagenesis as a tool to study the role of hemolysin in the virulence of Listeria monocytogenes. Infect. Immun. 52: 50 55.
128. Gaillot, O.,, E. Pellegrini,, S. Bregenholt,, S. Nair,, and P. Berche. 2000. The ClpP serine protease is essential for the intracellular parasitism and virulence of Listeria monocytogenes. Mol. Microbiol. 35: 1286 1294.
129. Garner, M. R.,, B. L. Njaa,, M. Wiedmann,, and K. J. Boor. 2006. Sigma B contributes to Listeria monocytogenes gastrointestinal infection but not to systemic spread in the guinea pig infection model. Infect. Immun. 74: 876 886.
130. Gasanov, U.,, D. Hughes,, and P. M. Hansbro. 2005. Methods for the isolation and identification of Listeria spp. and Listeria monocytogenes: a review. FEMS Microbiol. Rev. 29: 851 875.
131. Gaulin, C.,, D. Ramsay,, L. Ringuette,, and J. Ismail. 2003. First documented outbreak of Listeria monocytogenes in Quebec, 2002. Can. Commun. Dis. Rep. 29: 181 186.
132. Gaulin, C.,, and D. Ramsay. 2010. Rapport d’investigation et d’intervention à la suite de l’éclosion d’infections à Listeria monocytogenes pulsovar 93 liée à la consommation de fromages québecois, 2008. Cited from Health Canada (2011) Policy on Listeria monocytogenes in Ready-to-Eat Foods. http://www.hc-sc.gc.ca/fn-an/legislation/pol/policy_listeria_monocytogenes_2011-eng.php. Accessed 31 March 2012.
133. Gedde, M.,, D. Higgins,, L. Tilney,, and D. Portnoy. 2000. Role of listeriolysin O in cell-to-cell spread of Listeria monocytogenes. Infect. Immun. 68: 999 1003.
134. Geese, M.,, J. J. Loureiro,, J. E. Bear,, J. Wehland,, F. B. Gertler,, and A. S. Sechi. 2002. Contribution of Ena/VASP proteins to intracellular motility of Listeria requires phosphorylation and proline-rich core but not F-actin binding or multimerization. Mol. Biol. Cell 13: 2383 2396.
135. Geginat, G.,, M. Lalic,, M. Kretschmar,, W. Goebel,, H. Hof,, D. Palm,, and A. Bubert. 1998. Th1 cells specific for a secreted protein of Listeria monocytogenes are protective in vivo. J. Immunol. 160: 6046 6055.
136. Geginat, G.,, T. Nichterlein,, M. Kretschmar,, S. Schenk,, H. Hof,, M. Lalic-Multhaler,, W. Goebel,, and A. Bubert. 1999. Enhancement of the Listeria monocytogenes p60-specific CD4 and CD8 T cell memory by nonpathogenic Listeria innocua. J. Immunol. 162: 4781 4789.
137. Genigeorgis, C.,, D. Dutulescu,, and J. Fernandez Garayzabal. 1989. Prevalence of Listeria spp. in poultry meat at the supermarket and slaughterhouse level. J. Food Prot. 52: 618 624.
138. Gerner-Smidt, P.,, S. Ethelberg,, P. Schiellerup,, J. J. Christensen,, J. Engberg,, V. Fussing,, A. Jensen,, C. Jensen,, A. M. Petersen,, and B. G. Bruun. 2005. Invasive listeriosis in Denmark 1994-2003: a review of 299 cases with special emphasis on risk factors for mortality. Clin. Microbiol. Infect. 11: 618 624.
139. Gilmour, M. W.,, M. Graham,, G. Van Domselaar,, S. Tyler,, H. Kent,, K. M. Trout-Yakel,, O. Larios,, V. Allen,, B. Lee,, and C. Nadon. 2010. High-throughput genome sequencing of two Listeria monocytogenes clinical isolates during a large foodborne outbreak. BMC Genomics 11: 120 134.
140. Glaser, P.,, L. Frangeul,, C. Buchrieser,, C. Rusniok,, A. Amend,, F. Baquero,, P. Berche,, H. Bloecker,, P. Brandt,, T. Chakraborty,, A. Charbit,, F. Chetouani,, E. Couve,, A. de Daruvar,, P. Dehoux,, E. Domann,, G. Dominguez-Bernal,, E. Duchaud,, L. Durant,, O. Dussurget,, K. D. Entian,, H. Fsihi,, F. G. Portillo,, P. Garrido,, L. Gautier,, W. Goebel,, N. Gomez-Lopez,, T. Hain,, J. Hauf,, D. Jackson,, L. M. Jones,, U. Kaerst,, J. Kreft,, M. Kuhn,, F. Kunst,, G. Kurapkat,, E. Madueno,, A. Maitournam,, J. M. Vicente,, E. Ng,, H. Nedjari,, G. Nordsiek,, S. Novella,, B. de Pablos,, J. C. Perez-Diaz,, R. Purcell,, B. Remmel,, M. Rose,, T. Schlueter,, N. Simoes,, A. Tierrez,, J. A. Vazquez-Boland,, H. Voss,, J. Wehland,, and P. Cossart. 2001. Comparative genomics of Listeria species. Science 294: 849 852.
141. Glass, K. A.,, and M. P. Doyle. 1989. Fate of Listeria monocytogenes in processed meat products during refrigerated storage. Appl. Environ. Microbiol. 55: 1565 1569.
142. Goetz, M.,, A. Bubert,, G. Wang,, I. Chico-Calero,, J. A. Vazquez-Boland,, M. Beck,, J. Slaghuis,, A. A. Szalay,, and W. Goebel. 2001. Microinjection and growth of bacteria in the cytosol of mammalian host cells. Proc. Natl. Acad. Sci. USA 98: 12221 12226.
143. Goldfine, H.,, and S. J. Wadsworth. 2002. Macrophage intracellular signaling induced by Listeria monocytogenes. Microbes Infect. 4: 1335 1343.
144. Goldfine, H.,, S. J. Wadsworth,, and N. C. Johnston. 2000. Activation of host phospholipases C and D in macrophages after infection with Listeria monocytogenes. Infect. Immun. 68: 5735 5741.
145. Gombas, D. E.,, Y. Chen,, R. S. Clavero,, and V. N. Scott. 2003. Survey of Listeria monocytogenes in ready-to-eat foods. J. Food Prot. 66: 559 569.
146. Gonzalez-Zorn, B.,, G. Dominguez-Bernal,, M. Suarez,, M. T. Ripio,, Y. Vega,, S. Novella,, and J. A. Vazquez-Boland. 1999. The smcL gene of Listeria ivanovii encodes a sphingomyelinase C that mediates bacterial escape from the phagocytic vacuole. Mol. Microbiol. 33: 510 523.
147. Gottlieb, S. L.,, E. C. Newbern,, P. M. Griffin,, L. M. Graves,, R. M. Hoekstra,, N. L. Baker,, S. B. Hunter,, K. G. Holt,, F. Ramsey,, M. Head,, P. Levine,, G. Johnson,, D. Schoonmaker-Bopp,, V. Reddy,, L. Kornstein,, M. Gerwel,, J. Nsubuga,, L. Edwards,, S. Stonecipher,, S. Hurd,, D. Austin,, M. A. Jefferson,, S. D. Young,, K. Hise,, E. D. Chernak,, and J. Sobel. 2006. Multistate outbreak of listeriosis linked to turkey deli meat and subsequent changes in US regulatory policy. Clin. Infect. Dis. 42: 29 36.
148. Gouin, E.,, C. Egile,, P. Dehoux,, V. Villiers,, J. Adams,, F. Gertler,, R. Li,, and P. Cossart. 2004. The RickA protein of Rickettsia conorii activates the Arp2/3 complex. Nature 427: 457 461.
149. Gouin, E.,, H. Gantelet,, C. Egile,, I. Lasa,, H. Ohayon,, V. Villiers,, P. Gounon,, P. J. Sansonetti,, and P. Cossart. 1999. A comparative study of the actin-based motility of the pathogenic bacteria Listeria monocytogenes, Shigella flexneri and Rickettsia conorii. J. Cell Sci. 112: 1697 1708.
150. Gouin, E.,, M. D. Welch,, and P. Cossart. 2005. Actin-based motility of intracellular pathogens. Curr. Opin. Microbiol. 8: 35 45.
151. Goulet, V.,, H. de Valk,, O. Pierre,, F. Stainer,, J. Rocourt,, V. Vaillant,, C. Jacquet,, and J. C. Desenclos. 2001. Effect of prevention measures on incidence of human listeriosis, France, 1987-1997. Emerg. Infect. Dis. 7: 983 989.
152. Goulet, V.,, C. Jacquet,, V. Vaillant,, I. Rebiere,, E. Mouret,, E. Lorente,, F. Steiner,, and J. Rocourt. 1995. Listeriosis from consumption of raw milk cheese. Lancet 345: 1581 1582.
153. Goulet, V.,, C. Hedberg,, A. Le Monnier,, and H. de Valk. 2008. Increasing incidence of listeriosis in France and other European countries. Emerg. Infect. Dis. 14: 734 740.
154. Goulet, V. 1995. Investigation en cas d’épidémie de listériose. Méd. Mal. Infect. 25: 184 190.
155. Grau, F.,, and P. Vanderlinde. 1992. Occurrence, numbers and growth of Listeria monocytogenes on some vacuum-packaged processed meats. J. Food Prot. 55: 4 7.
156. Graves, L. M.,, S. B. Hunter,, A. R. Ong,, D. Schoonmaker-Bopp,, K. Hise,, L. Kornstein,, W. E. DeWitt,, P. S. Hayes,, E. Dunne,, P. Mead,, and B. Swaminathan. 2005. Microbiological aspects of the investigation that traced the 1998 outbreak. J. Clin. Microbiol. 43: 2350 2355.
157. Graves, L. M.,, and B. Swaminathan,. 2005. PulseNet’s step-by-step laboratory protocol for molecular subtyping of Listeria monocytogenes by macrorestriction and pulsed-field gel electrophoresis, p. 57 72. In C. Adley (ed.), Food-Borne Pathogens, vol. 21. Humana Press, Totowa, NJ.
158. Graves, L. M.,, B. Swaminathan,, and S. Hunter,. 2007. Subtyping Listeria monocytogenes, p. 283 304. In E. T. Ryser, and E. H. Marth (ed.), Listeria, Listeriosis, and Food Safety, 3rd ed. CRC Press, Boca Raton, FL.
159. Graves, L. M.,, L. O. Helsel,, A. G. Steigerwalt,, R. E. Morey,, M. I. Daneshvar,, S. E. Roof,, R. H. Orsi,, E. D. Fortes,, S. R. Milillo,, H. C. den Bakker,, M. Weidmann,, B. Swaminathan,, and B. D. Saunders. 2010. Listeria marthii sp. nov., isolated from the natural environment, Finger Lakes Natural Forest. Int. J. Syst. Evol. Microbiol. 60: 1280 1288.
160. Gray, M. J.,, R. N. Zadoks,, E. D. Fortes,, B. Dogan,, S. Cai,, Y. Chen,, V. N. Scott,, D. E. Gombas,, K. J. Boor,, and M. Wiedmann. 2004. Listeria monocytogenes isolates from foods and humans form distinct but overlapping populations. Appl. Environ. Microbiol. 70: 5833 5841.
161. Greiffenberg, L.,, W. Goebel,, K. S. Kim,, J. Daniels,, and M. Kuhn. 2000. Interaction of Listeria monocytogenes with human brain microvascular endothelial cells: an electron microscopic study. Infect. Immun. 68: 3275 3279.
162. Grif, K.,, G. Patscheider,, M. P. Dierich,, and F. Allerberger. 2003. Incidence of fecal carriage of Listeria monocytogenes in three healthy volunteers: a one-year prospective stool survey. Eur. J. Clin. Microbiol. Infect. Dis. 22: 16 20.
163. Grundling, A.,, M. D. Gonzalez,, and D. E. Higgins. 2003. Requirement of the Listeria monocytogenes broad-range phospholipase PC-PLC during Infection of human epithelial cells. J. Bacteriol. 185: 6295 6307.
164. Guenich, H.,, H. Muller,, A. Schrettenbrunner,, and H. Seeliger. 1985. The occurrence of different Listeria species in municipal waste water. Zentralbl. Bakteriol. Hyg. Abt. 1 Orig. Reihe B 181: 563 565.
165. Gutekunst, K. A.,, L. Pine,, E. White,, S. Kathariou,, and G. M.. Carlone. 1992. A filamentous-like mutant of Listeria monocytogenes with reduced expression of a 60-kilodalton extracellular protein invades and grows in 3T6 and Caco-2 cells. Can. J. Microbiol. 38: 843 851.
166. Hanawa, T.,, M. Fukuda,, H. Kawakami,, H. Hirano,, S. Kamiya,, and T. Yamamoto. 1999. The Listeria monocytogenes DnaK chaperone is required for stress tolerance and efficient phagocytosis with macrophages. Cell Stress Chaperones 4: 118 128.
167. Hanawa, T.,, T. Yamamoto,, and S. Kamiya. 1995. Listeria monocytogenes can grow in macrophages without the aid of proteins induced by environmental stresses. Infect. Immun. 63: 4595 4599.
168. Harty, J. T.,, and E. G. Pamer. 1995. CD8 T lymphocytes specific for the secreted p60 antigen protect against Listeria monocytogenes infection. J. Immunol. 154: 4642 4650.
169. Health Canada. 2011. Policy on Listeria monocytogenes on ready-to-eat foods. http://hc-sc.gc.ca/fn-an/legislation/pol/policy_listeria_monocytogenes_2011-eng.php. Accessed 11 February 2012.
170. Hebraud, M.,, and J. Guzzo. 2000. The main cold shock protein of Listeria monocytogenes belongs to the family of ferritin-like proteins. FEMS Microbiol. Lett. 190: 29 34.
171. Hess, J.,, I. Gentschev,, G. Szalay,, C. Ladel,, A. Bubert,, W. Goebel,, and S. H. Kaufmann. 1995. Listeria monocytogenes p60 supports host cell invasion by and in vivo survival of attenuated Salmonella typhimurium. Infect. Immun. 63: 2047 2053.
172. Hitchens, A. D.,, and R. C. Whiting. 2001. Food-borne Listeria monocytogenes risk assessment. Food Additives Contam. 18: 1108 1117.
173. Ho, J. L.,, K. N. Shands,, G. Friedland,, P. Eckind,, and D. W. Fraser. 1986. An outbreak of type 4b Listeria monocytogenes infection involving patients from eight Boston hospitals. Arch. Intern. Med. 146: 520 524.
174. Hodgson, D. A. 2000. Generalized transduction of serotype 1/2 and serotype 4b strains of Listeria monocytogenes. Mol. Microbiol. 35: 312 323.
175. Hoffman, A. D.,, K. L. Gall,, D. M. Norton,, and M. Wiedmann. 2003. Listeria monocytogenes contamination patterns for the smoked fish processing environment and for raw fish. J. Food Prot. 66: 52 60.
176. Hu, Y.,, K. Gall,, H. Alphina,, R. Ivanek,, Y.T. Grohn,, and M. Wiedmann. 2006. Daily variability of Listeria contamination patterns in a cold-smoked salmon processing operation. J. Food Prot. 69: 2123 2133.
177. Huss, H. H.,, A. Reilly,, and P. K. Ben Embarek. 2000. Prevention and control of safety hazards in cold smoked salmon production. Food Control 11: 149 156.
178. Husu, J.,, S. Sivela,, and A. Rauramaa. 1990. Prevalence of Listeria species as related to chemical quality of farm-ensiled grass. Grass Forage Sci. 45: 309 314.
179. Iannelli, V. 2010. Listeriosis— Listeria and the Texas celery recall. http://pediatrics.about.com/b/2010/10/21/listeriosis-listeria-and-the-texas-celery-recall.htm. Accessed 12 February 2011.
180. Inoue, S.,, A. Nakama,, Y. Arai,, Y. Kokubo,, T. Maruyama,, A. Saito,, T. Yoshida,, M. Terao,, S. Yamamoto,, and S. Kumagai. 2000. Prevalence and contamination levels of Listeria monocytogenes in retail foods in Japan. Int. J. Food Microbiol. 59: 73 77.
181. Jacobs, T.,, A. Darji,, N. Frahm,, M. Rohde,, J. Wehland,, T. Chakraborty,, and S. Weiss. 1998. Listeriolysin O: cholesterol inhibits cytolysis but not binding to cellular membranes. Mol. Microbiol. 28: 1081 1089.
182. Jacquet, C.,, B. Catimel,, R. Brosch,, C. Buchrieser,, P. Dehaumont,, V. Goulet,, V. Lepoutre,, P. Veit,, and J. Rocourt. 1995. Investigations related to the epidemic strain involved in the French listeriosis outbreak in 1992. Appl. Environ. Microbiol. 61: 2242 2246.
183. Jacquet, C.,, M. Doumith,, J. I. Gordon,, P. M. Martin,, P. Cossart,, and M. Lecuit. 2004. A molecular marker for evaluating the pathogenic potential of foodborne Listeria monocytogenes. J. Infect. Dis. 189: 2094 2100.
184. Jacquet, C.,, E. Gouin,, D. Jeannel,, P. Cossart,, and J. Rocourt. 2002. Expression of ActA, Ami, InlB, and listeriolysin O in Listeria monocytogenes of human and food origin. Appl. Environ. Microbiol. 68: 616 622.
185. Jacquet, C.,, C. Saint-Cloment,, F. Brouille,, B. Catimel,, and J. Rocourt. 1998. La listériose humaine en France en 1997. Données du Centre National de Référence des Listeria. Bull. Epidémiol. Hebdomadaire 33: 142 143.
186. Jeffers, G. T.,, J. L. Bruce,, P. L. McDonough,, J. Scarlett,, K. J. Boor,, and M. Wiedmann. 2001. Comparative genetic characterization of Listeria monocytogenes isolates from human and animal listeriosis cases. Microbiology 147: 1095 1104.
187. Jensen, A. 1993. Excretion of Listeria monocytogenes in faeces after listeriosis: rate, quantity and duration. Med. Microbiol. Lett. 2: 176 182.
188. Jensen, A.,, W. Frederiksen,, and P. Gerner-Smidt 1994. Risk factors for listeriosis in Denmark, 1989-1990. Scand. J. Infect. Dis. 26: 171 178.
189. Jeong, D.,, and J. Frank. 1994. Growth of Listeria monocytogenes at 10°C in biofilms with microorganisms isolated from meat and dairy processing environments. J. Food Prot. 57: 576 586.
190. Jinneman, K. C.,, M. M. Wekell,, and M. W. Eklund,. 2007. Incidence and behavior of Listeria monocytogenes in fish and seafood, p. 617 653. In E. T. Ryser, and E. H. Marth (ed.), Listeria, Listeriosis and Food Safety, 3rd ed. CRC Press, Boca Raton, FL.
191. Johansson, J.,, P. Mandin,, A. Renzoni,, C. Chiaruttini,, M. Springer,, and P. Cossart. 2002. An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell 110: 551 561.
192. Jonquieres, R.,, H. Bierne,, F. Fiedler,, P. Gounon,, and P. Cossart. 1999. Interaction between the protein InlB of Listeria monocytogenes and lipoteichoic acid: a novel mechanism of protein association at the surface of Gram-positive bacteria. Mol. Microbiol. 34: 902 914.
193. Jonquieres, R.,, H. Bierne,, J. Mengaud,, and P. Cossart. 1998. The inlA gene of Listeria monocytogenes LO28 harbors a nonsense mutation resulting in release of internalin. Infect. Immun. 66: 3420 3422.
194. Jonquieres, R.,, J. Pizarro-Cerda,, and P. Cossart. 2001. Synergy between the N- and C-terminal domains of InlB for efficient invasion of non-phagocytic cells by Listeria monocytogenes. Mol. Microbiol. 42: 955 965.
195. Kallipolitis, B. H.,, and H. Ingmer. 2001. Listeria monocytogenes response regulators important for stress tolerance and pathogenesis. FEMS Microbiol. Lett. 204: 111 115.
196. Kathariou, S.,, P. Metz,, H. Hof,, and W. Goebel. 1987. Tn 916-induced mutations in the hemolysin determinant affecting virulence of Listeria monocytogenes. J. Bacteriol. 169: 1291 1297.
197. Kathariou, S. 2002. Listeria monocytogenes virulence and pathogenicity, a food safety persepctive. J. Food Prot. 65: 1811 1829.
198. Keeney, K.,, L. Colosi,, W. Weber,, and M. O’Riordan. 2009. Generation of branched-chain fatty acids through lipoate-dependent metabolism facilitates intracellular growth of Listeria monocytogenes. J. Bacteriol. 191: 2187 2196.
199. Keskinen, L. A.,, E. C. D. Todd,, and E. T. Ryser. 2008. Transfer of surface-dried Listeria monocytogenes from stainless steel knife blades to roast turkey breast. J. Food Prot. 71: 176 181.
200. Keskinen, L. A.,, E. C. D. Todd,, and E. T. Ryser. 2008. Impact of bacterial stress and biofilm-forming ability on transfer of surface-dried Listeria monocytogenes during slicing of delicatessen meats. Int. J. Food Microbiol. 127: 298 304.
201. Khelef, N.,, M. Lecuit,, C. Buchrieser,, D. Cabanes,, O. Dussurget,, and P. Cossart,. 2004. Listeria monocytogenes and the Genus Listeria. http://141.150.157.117:8080/prokPUB.index.htm. In M. Dworkin,, S. Falkow,, E. Rosenberg,, K.-H. Schleifer,, and E. Stackebrandt (ed.), The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, 3rd ed. Springer, New York, NY.
202. Klarsfeld, A.,, P. Goossens,, and P. Cossart. 1994. Five Listeria monocytogenes preferentially expressed in mammalian cells: plcA, purH, purD, pyrE, and an arginine ABC transporter gene, arpJ. Mol. Microbiol. 13: 585 597.
203. Ko, R.,, and L. T. Smith. 1999. Identification of an ATP-driven, osmoregulated glycine betaine transport system in Listeria monocytogenes. Appl. Environ. Microbiol. 65: 4040 4048.
204. Kocks, C.,, E. Gouin,, M. Tabouret,, P. Berche,, H. Ohayon,, and P. Cossart. 1992. Listeria monocytogenes induced actin assembly requires the ActA gene product, a surface protein. Cell 68: 521 531.
205. Kolb-Maurer, A.,, S. Pilgrim,, E. Kampgen,, A. D. McLellan,, E. B. Brocker,, W. Goebel,, and I. Gentschev. 2001. Antibodies against listerial protein 60 act as an opsonin for phagocytosis of Listeria monocytogenes by human dendritic cells. Infect. Immun. 69: 3100 3109.
206. Kornacki, J. L.,, and J. B. Gurtler,. 2007. Listeria in food processing facilities, p. 683 766. In E. T. Ryser, and E. H. Marth (ed.), Listeria, Listeriosis and Food Safety, 3rd ed. CRC Press, Boca Raton, FL.
207. Koutsoumanis, K. P.,, and J. N. Sofos. 2005. Effect of inoculum size on the combined temperature, pH and aw limits for growth of Listeria monocytogenes. Int. J. Food Microbiol. 104: 83 91.
208. Kuhn, M.,, and W. Goebel. 1989. Identification of an extracellular protein of Listeria monocytogenes possibly involved in intracellular uptake by mammalian cells. Infect. Immun. 57: 55 61.
209. Lado, B. H.,, and A. E. Yousef,. 2007. Characteristics of Listeria monocytogenes important to food processors, p. 157 213. In E. T. Ryser, and E. H. Marth (ed.), Listeria, Listeriosis, and Food Safety, 3rd ed. CRC Press, Boca Raton, FL.
210. Lappi, V. R.,, J. Thimothe,, K. K. Nightingale,, K. Gall,, V. N. Scott,, and M. Wiedmann. 2004. Longitudinal studies on Listeria in smoked fish plants: impact of intervention strategies on contamination patterns. J. Food Prot. 67: 2500 2514.
211. Larsen, A.,, and B. Norrung. 1993. Inhibition of Listeria monocytogenes by bavaricin A, a bacteriocin produced by Lactobacillus bavaricus Ml401. Lett. Appl. Microbiol. 17: 132 134.
212. Lasa, I.,, V. David,, E. Gouin,, J. B. Marchand,, and P. Cossart. 1995. The amino-terminal part of ActA is critical for the actin-based motility of Listeria monocytogenes; the central proline-rich region acts as a stimulator. Mol. Microbiol. 18: 425 436.
213. Lasa, I.,, E. Gouin,, M. Goethals,, K. Vancompernolle,, V. David,, J. Vandekerckhove,, and P. Cossart. 1997. Identification of two regions in the N-terminal domain of ActA involved in the actin comet tail formation by Listeria monocytogenes. EMBO J. 16: 1531 1540.
214. Lauer, P.,, M. Y. Chow,, M. J. Loessner,, D. A. Portnoy,, and R. Calendar. 2002. Construction, characterization, and use of two Listeria monocytogenes site-specific phage integration vectors. J. Bacteriol. 184: 4177 4186.
215. Lecuit, M.,, and C. Cossart,. 2001. Listeria monocytogenes, p. 1437 1462. In S. Sussman (ed.), Molecular Medical Microbiology, vol. 2. Academic Press, London, United Kingdom.
216. Lecuit, M.,, and P. Cossart. 2002. Genetically-modified-animal models for human infections: the Listeria paradigm. Trends Mol. Med. 8: 537 542.
217. Lecuit, M.,, S. Dramsi,, C. Gottardi,, M. Fedor-Chaiken,, B. Gumbiner,, and P. Cossart. 1999. A single amino acid in E-cadherin responsible for host specificity towards the human pathogen Listeria monocytogenes. EMBO J. 18: 3956 3963.
218. Lecuit, M.,, D. M. Nelson,, S. D. Smith,, H. Khun,, M. Huerre,, M. C. Vacher-Lavenu,, J. I. Gordon,, and P. Cossart. 2004. Targeting and crossing of the human maternofetal barrier by Listeria monocytogenes: role of internalin interaction with trophoblast E-cadherin. Proc. Natl. Acad. Sci. USA 101: 6152 6157.
219. Lecuit, M.,, H. Ohayon,, L. Braun,, J. Mengaud,, and P. Cossart. 1997. Internalin of Listeria monocytogenes with an intact leucine-rich repeat region is sufficient to promote internalization. Infect. Immun. 65: 5309 5319.
220. Lecuit, M.,, S. Vandormael-Pournin,, J. Lefort,, M. Huerre,, P. Gounon,, C. Dupuy,, C. Babinet,, and P. Cossart. 2001. A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier. Science 292: 1722 1725.
221. Leimeister-Wachter, M.,, E. Domann,, and T. Chakraborty. 1992. The expression of virulence genes in Listeria monocytogenes is thermoregulated. J. Bacteriol. 174: 947 952.
222. Leimeister-Wachter, M.,, C. Haffner,, E. Domann,, W. Goebel,, and T. Chakraborty. 1990. Identification of a gene that positively regulates expression of listeriolysin, the major virulence factor of Listeria monocytogenes. Proc. Natl. Acad. Sci. USA 87: 8336 8340.