Chapter 21 :

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in

, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818463/9781555816261_Chap21-1.gif /docserver/preview/fulltext/10.1128/9781555818463/9781555816261_Chap21-2.gif


The etiological agents of Staphylococcal food poisoning (SFP) are members of the genus , predominantly . This form of food poisoning is considered intoxication; it does not involve infection by, and growth of, the bacteria in the host. This chapter primarily addresses SFP; however, in regard to the staphylococcal enterotoxins (SEs), there is significant overlap in the natural histories of both diseases. Humans are the main reservoir for staphylococci involved in human disease, including . is known for acquiring genetic resistance to heavy metals and antimicrobial agents used in clinical medicine. SFP occurs as either isolated cases or outbreaks affecting a large number of people. Biochemical and structural studies of SEs have revealed that some SEs are dependent on zinc ions to be functional and to be able to properly bind major histocompatibility complex class II (MHCII). SEs and other superantigens (SAgs) interact with a characteristic repertoire of T-cell receptors (TCR) sequences. The TCR specificity of each SE is determined by toxin residues in the shallow cavity at the top of the molecule. The structural aspects of SEs that enable them to survive degradation by pepsin and other enzymes in the gastrointestinal tract are required for the toxins to induce SFP. Progress has been made toward understanding the molecular aspects relevant to SFP. has some unique properties that promote its ability to produce foodborne illness.

Citation: Seo K, Bohach G. 2013. , p 547-573. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch21
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 21.1
Figure 21.1

Alignment of primary sequences of mature SEs and SEls in the current literature. Also shown are the consensus sequence (at the bottom) and dashes (–) to indicate gaps in the sequences made by alignment. Sequence alignment and output were conducted using the CLUSTAL W Program ( ). doi:10.1128/9781555818463.ch21f1

Citation: Seo K, Bohach G. 2013. , p 547-573. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 21.2
Figure 21.2

Interactions between APC and T cells facilitated by conventional antigens (Ags) and superantigens (SAgs). Following processing by the APC, conventional Ags are presented to highly specific T-cell receptors (TCR) in association with the Ag-binding groove of the MHCII molecule. SAgs interact with MHCII molecules (without processing) outside the Ag binding groove. The SAg/MHCII bimolecular complex binds to the TCR through specificity determined only by the V region of the receptor α or β chain.doi:10.1128/9781555818463.ch21f2

Citation: Seo K, Bohach G. 2013. , p 547-573. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 21.3
Figure 21.3

Tree representation demonstrating molecular relatedness of the currently known SE family and compared to TSST-1. This tree was created with the clustering feature of the PHYLIP program ( ). doi:10.1128/9781555818463.ch21f3

Citation: Seo K, Bohach G. 2013. , p 547-573. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 21.4
Figure 21.4

General characteristics of the locus in . This physical map shows the relative location of genes within the locus and other interacting regulatory genes and gene products (not drawn to scale). doi:10.1128/9781555818463.ch21f4

Citation: Seo K, Bohach G. 2013. , p 547-573. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 21.5
Figure 21.5

Schematic diagrams of the SEC3 crystal structure illustrating major structural features. Numerical designations defining the location of select residues and each α-helix and β-strand are shown within the two major domains. Also indicated are the N and C termini. The intramolecular disulfide linkage between Cys residues 93 and 110 (stick) connects the disulfide loop to the β5 strand containing the conserved residues ( Fig. 21.7 ) potentially important for emesis. The zinc atom bound by SEC3 faces the back of the SEC3 molecule between domains 1 and 2 and is coordinated by D83, H118, and H122. In contrast, the high-affinity zinc-binding site in SEA is positioned on the opposite edge of domain 2. The conformational topology of domain 1 is the same as the OB binding domains of several other proteins described in the text. doi:10.1128/9781555818463.ch21f5

Citation: Seo K, Bohach G. 2013. , p 547-573. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 21.6
Figure 21.6

(A) Schematic diagram of the SEA crystal structure. SEA has two MHCII binding sites. A relatively low-affinity MHCII binding occurs at a generic binding site that is conserved in most of SEs. A high-affinity MHCII binding site is located on the external surface of domain 2. This includes the high-affinity zinc-binding site, formed by His187, His225, and Asp227. The zinc ion mediates cross-linking of SEA with MHCII molecules and is crucial for maximal B- and T-cell activation. (B) A hypothetical model of MHCII-SEC-TCR complex based on the modeling predicted from the crystal structures of the SEC3-HLA-DR1 (low-affinity binding site) and SEB-Vβ complexes. doi:10.1128/9781555818463.ch21f6

Citation: Seo K, Bohach G. 2013. , p 547-573. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 21.7
Figure 21.7

Comparison of cysteine loop and adjacent sequences for SEs and the analogous regions of the SEls. Evidence suggests that proper positioning of the critical downstream residues by a stable disulfide bond is required for emesis. Toxins designated as emetic are those reported as inducing emesis in the monkey feeding assay ( ). SEI was reported to be weakly emetic ( ). doi:10.1128/9781555818463.ch21f7

Citation: Seo K, Bohach G. 2013. , p 547-573. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Alber, G.,, D. K. Hammer,, and B. Fleischer. 1990. Relationship between enterotoxic- and T lymphocyte-stimulating activity of staphylococcal enterotoxin B. J. Immunol. 144:45014506.
2. Alber, G.,, P. H. Scheuber,, B. Reck,, B. Sailer-Kramer,, A. Hartmann,, and D. K. Hammer. 1989. Role of substance P in immediate-type skin reactions induced by staphylococcal enterotoxin B in unsensitized monkeys. J. Allergy Clin. Immunol. 84:880885.
3. Al-Daccak, R.,, K. Mehindate,, F. Damdoumi,, P. Etongue-Mayer,, H. Nilsson,, P. Antonsson,, M. Sundstrom,, M. Dohlsten,, R. P. Sekaly,, and W. Mourad. 1998. Staphylococcal enterotoxin D is a promiscuous superantigen offering multiple modes of interactions with the MHC class II receptors. J. Immunol. 160:225232.
4.Anonymous. 1992. Foodborne Pathogenic Microorganisms and Natural Toxins. Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Rockville, MD.
5. Asao, T.,, Y. Kumeda,, T. Kawai,, T. Shibata,, H. Oda,, K. Haruki,, H. Nakazawa,, and S. Kozaki. 2003. An extensive outbreak of staphylococcal food poisoning due to low-fat milk in Japan: estimation of enterotoxin A in the incriminated milk and powdered skim milk. Epidemiol. Infect. 130:3340.
6. Bayles, K. W.,, and J. J. Iandolo. 1989. Genetic and molecular analyses of the gene encoding staphylococcal enterotoxin D. J. Bacteriol. 171:47994806.
7. Beery, J. T.,, S. L. Taylor,, L. R. Schlunz,, R. C. Freed,, and M. S. Bergdoll. 1984. Effects of staphylococcal enterotoxin A on the rat gastrointestinal tract. Infect. Immun. 44:234240.
8. Bergdoll, M. S. 1988. Monkey feeding test for staphylococcal enterotoxin. Methods Enzymol. 165:324333.
9. Bergdoll, M. S., 1985. The staphylococcal enterotoxin—an update, p. 247⋙̸254. In J. Jeljaszewicz (ed.), The Staphylococci. Gustav Fischer Verlag, Stuttgart, Germany.
10. Bergdoll, M. S., 1979. Staphylococcal intoxications, p. 443494. In H. Riemann, and F. L. Bryan (ed.), Food-Borne Infections and Intoxications. Academic Press, Inc., New York, NY.
11. Bergdoll, M. S., 1989. Staphylococcus aureus, p. 463523. In M. P. Doyle (ed.), Foodborne Bacterial Pathogens. Marcel Dekker, Inc., New York, NY.
12. Bergdoll, M. S.,, C. R. Borja,, R. N. Robbins,, and K. F. Weiss. 1971. Identification of enterotoxin E. Infect. Immun. 4:593595.
13. Bergdoll, M. S.,, M. J. Surgalla,, and G. M. Dack. 1959. Staphylococcal enterotoxin. Identification of a specific precipitating antibody with enterotoxin-neutralizing property. J. Immunol. 83:334338.
14. Betley, M. J.,, D. W. Borst,, and L. B. Regassa. 1992. Staphylococcal enterotoxins, toxic shock syndrome toxin and streptococcal pyrogenic exotoxins: a comparative study of their molecular biology. Chem. Immunol. 55:135.
15. Betley, M. J.,, and J. J. Mekalanos. 1985. Staphylococcal enterotoxin A is encoded by phage. Science 229:185187.
16. Betley, M. J.,, P. M. Schlievert,, M. S. Bergdoll,, G. A. Bohach,, J. J. Iandolo,, S. A. Khan,, P. A. Pattee,, and R. R. Reiser. 1990. Staphylococcal gene nomenclature. ASM News 56:182.
17. Blaiotta, G.,, D. Ercolini,, C. Pennacchia,, V. Fusco,, A. Casaburi,, O. Pepe,, and F. Villani. 2004. PCR detection of staphylococcal enterotoxin genes in Staphylococcus spp. strains isolated from meat and dairy products. Evidence for new variants of seG and seI in S. aureus AB-8802. J. Appl. Microbiol. 97:719730.
18. Bohach, G. A.,, D. J. Fast,, R. D. Nelson,, and P. M. Schlievert. 1990. Staphylococcal and streptococcal pyrogenic toxins involved in toxic shock syndrome and related illnesses. Crit. Rev. Microbiol. 17:251272.
19. Bohach, G. A.,, C. J. Hovde,, J. P. Handley,, and P. M. Schlievert. 1988. Cross-neutralization of staphylococcal and streptococcal pyrogenic toxins by monoclonal and polyclonal antibodies. Infect. Immun. 56:400404.
20. Bohach, G. A.,, L. M. Jablonski,, C. F. Deobald,, Y. I. Chi,, and C. V. Stauffacher,. 1995. Functional domains of staphylococcal enterotoxin, p. 339356. In M. Ecklund,, J. L. Richard,, and M. Mise (ed.), Molecular Approaches to Food Safety; Issues Involving Toxic Microorganisms. Alaken Inc., Fort Collins, CO.
21. Bohach, G. A.,, C. V. Stauffacher,, D. H. Ohlendorf,, Y. I. Chi,, G. M. Vath,, and P. M. Schlievert,. 1996. The staphylococcal and streptococcal pyrogenic toxin family, p. 131154. In B. R. Singh, and A. T. Tu (ed.), Natural Toxins II. Plenum Publishing Corporation, New York, NY.
22. Brunskill, E. W.,, and K. W. Bayles. 1996. Identification of LytSR-regulated genes from Staphylococcus aureus. J. Bacteriol. 178:58105812.
23. Bryan, F. L., 1976. Staphylococcus aureus, p. 12128. In M. P. deFigueiredo, and D. F. Splittstoesser (ed.), Food Microbiology: Public Health and Spoilage Aspects. AVI, Westport, CT.
24. Buzby, J. C.,, T. Roberts,, C. T. Lin,, and J. M. McDonald. 1996. Bacterial Foodborne Disease Medical Costs and Productivity Losses. Agricultural Economic Report 147. U.S. Department of Agriculture, Washington, DC. http://www.ers.usda.gov/publications/aer-agricultural-economic-report/aer741.aspx.
25. Casman, E. P.,, M. S. Bergdoll,, and J. Robinson. 1963. Designation of staphylococcal exterotoxins. J. Bacteriol. 85:715716.
26. Chan, P. F.,, and S. J. Foster. 1998. Role of SarA in virulence determinant production and environmental signal transduction in Staphylococcus aureus. J. Bacteriol. 180:62326241.
27. Cheung, A. L.,, Y. T. Chien,, and A. S. Bayer. 1999. Hyperproduction of alpha-hemolysin in a sigB mutant is associated with elevated SarA expression in Staphylococcus aureus. Infect. Immun. 67:13311337.
28. Cheung, A. L.,, and G. Zhang. 2002. Global regulation of virulence determinants in Staphylococcus aureus by the SarA protein family. Front. Biosci. 7:d1825d1842.
29. Chien, Y.,, and A. L. Cheung. 1998. Molecular interactions between two global regulators, sar and agr, in Staphylococcus aureus. J. Biol. Chem. 273:26452652.
30. Choi, Y.,, J. A. Lafferty,, J. R. Clements,, J. K. Todd,, E. W. Gelfand,, J. Kappler,, P. Marrack,, and B. L. Kotzin. 1990. Selective expansion of T cells expressing V beta 2 in toxic shock syndrome. J. Exp. Med. 172:981984.
31. Clark, W. G.,, and J. S. Page. 1968. Pyrogenic responses to staphylococcal enterotoxins A and B in cats. J. Bacteriol. 96:19401946.
32. Couch, J. L.,, M. T. Soltis,, and M. J. Betley. 1988. Cloning and nucleotide sequence of the type E staphylococcal enterotoxin gene. J. Bacteriol. 170:29542960.
33. Dack, G. M.,, W. E. Cary,, O. Woolper,, and H. Wiggers. 1930. An outbreak of food poisoning proved to be due to a yellow hemolytic Staphylococcus. Can. J. Microbiol. 4:167175.
34. Deringer, J. R.,, R. J. Ely,, S. R. Monday,, C. V. Stauffacher,, and G. A. Bohach. 1997. Vbeta-dependent stimulation of bovine and human T cells by host-specific staphylococcal enterotoxins. Infect. Immun. 65:40484054.
35. Do Carmo, L. S.,, C. Cummings,, V. R. Linardi,, R. S. Dias,, J. M. De Souza,, M. J. De Sena,, D. A. Dos Santos,, J. W. Shupp,, R. K. Pereira,, and M. Jett. 2004. A case study of a massive staphylococcal food poisoning incident. Foodborne Pathog. Dis. 1:241246.
36. Everson, M. L.,, M. W. Hinds,, R. S. Bernstein,, and M. S. Bergdoll. 1988. Estimation of human dose of staphylococcal enterotoxin A from a large outbreak of staphylococcal food poisoning involving chocolate milk. Int. J. Food Microbiol. 7:311316.
37. Felsenstein, J. 1989. PHYLIP-Phylogeny Inference Package (Version 3.2). Cladistics 5:164166.
38. Fields, B. A.,, E. L. Malchiodi,, H. Li,, X. Ysern,, C. V. Stauffacher,, P. M. Schlievert,, K. Karjalainen,, and R. A. Mariuzza. 1996. Crystal structure of a T-cell receptor beta-chain complexed with a superantigen. Nature 384:188192.
39. Fitzgerald, J. R.,, S. R. Monday,, T. J. Foster,, G. A. Bohach,, P. J. Hartigan,, W. J. Meaney,, and C. J. Smyth. 2001. Characterization of a putative pathogenicity island from bovine Staphylococcus aureus encoding multiple superantigens. J. Bacteriol. 183:6370.
40. Fournier, B.,, and A. Klier. 2004. Protein A gene expression is regulated by DNA supercoiling which is modified by the ArlS-ArlR two-component system of Staphylococcus aureus. Microbiology 150:38073819.
41. Fraser, J. D.,, S. Lowe,, M. J. Irwin,, N. R. Gascoigne,, and K. R. Hudson,. 1993. Structural model of staphylococcal enterotoxin A interaction with MHC class II antigens, p. 730. In B. T. Huber, and E. Palmer (ed.), Superantigens: a Pathogens’s View of the Immune System. Cold Spring Harbor Laboratory Press, Plainview, NY.
42. Friedman, M. E. 1966. Inhibition of staphylococcal enterotoxin B formation in broth cultures. J. Bacteriol. 92:277278.
43. Fukuchi, K.,, Y. Kasahara,, K. Asai,, K. Kobayashi,, S. Moriya,, and N. Ogasawara. 2000. The essential two-component regulatory system encoded by yycF and yycG modulates expression of the ftsAZ operon in Bacillus subtilis. Microbiology 146(Pt. 7):15731583.
44. Gertz, S.,, S. Engelmann,, R. Schmid,, A. K. Ziebandt,, K. Tischer,, C. Scharf,, J. Hacker,, and M. Hecker. 2000. Characterization of the sigma(B) regulon in Staphylococcus aureus. J. Bacteriol. 182:69836991.
45. Gilbert, R. J.,, and A. A. Wieneke,. 1973. Staphylococcal food poisoning with special reference to the detection of enterotoxin in food, p. 273285. In B. C. Hobbs, and J. H. Christian (ed.), The Microbiological Safety of Food. Academic Press, Inc., New York, NY.
46. Gronenborn, A. M.,, D. R. Filpula,, N. Z. Essig,, A. Achari,, M. Whitlow,, P. T. Wingfield,, and G. M. Clore. 1991. A novel, highly stable fold of the immunoglobulin binding domain of streptococcal protein G. Science 253:657661.
47. Hajek, V.,, and E. Marsalek. 1973. The occurrence of enterotoxigenic Staphylococcus aureus strains in hosts of different animal species. Zentralbl. Bakteriol. Orig. A 223:6368.
48. Harris, T. O.,, and M. J. Betley. 1995. Biological activities of staphylococcal enterotoxin type A mutants with N-terminal substitutions. Infect. Immun. 63:21332140.
49. Hase, C. C.,, and R. A. Finkelstein. 1993. Bacterial extracellular zinc-containing metalloproteases. Microbiol. Rev. 57:823837.
50. Herbert, S.,, P. Barry,, and R. P. Novick. 2001. Subinhibitory clindamycin differentially inhibits transcription of exoprotein genes in Staphylococcus aureus. Infect. Immun. 69:29963003.
51. Hoffmann, M. L.,, L. M. Jablonski,, K. K. Crum,, S. P. Hackett,, Y. I. Chi,, C. V. Stauffacher,, D. L. Stevens,, and G. A. Bohach. 1994. Predictions of T-cell receptor- and major histocompatibility complex-binding sites on staphylococcal enterotoxin C1. Infect. Immun. 62:33963407.
52. Holmberg, S. D.,, and P. A. Blake. 1984. Staphylococcal food poisoning in the United States. New facts and old misconceptions. JAMA 251:487489.
53. Hovde, C. J.,, J. C. Marr,, M. L. Hoffmann,, S. P. Hackett,, Y. I. Chi,, K. K. Crum,, D. L. Stevens,, C. V. Stauffacher,, and G. A. Bohach. 1994. Investigation of the role of the disulphide bond in the activity and structure of staphylococcal enterotoxin C1. Mol. Microbiol. 13:897909.
54. Hu, D. L.,, K. Omoe,, Y. Shimoda,, A. Nakane,, and K. Shinagawa. 2003. Induction of emetic response to staphylococcal enterotoxins in the house musk shrew (Suncus murinus). Infect. Immun. 71:567570.
55. Hu, D. L.,, G. Zhu,, F. Mori,, K. Omoe,, M. Okada,, K. Wakabayashi,, S. Kaneko,, K. Shinagawa,, and A. Nakane. 2007. Staphylococcal enterotoxin induces emesis through increasing serotonin release in intestine and it is downregulated by cannabinoid receptor 1. Cell Microbiol 9:22672277.
56. Huang, I. Y.,, and M. S. Bergdoll. 1970. The primary structure of staphylococcal enterotoxin B. 3. The cyanogen bromide peptides of reduced and aminoethylated enterotoxin B, and the complete amino acid sequence. J. Biol. Chem. 245:35183525.
57. Hudson, K. R.,, R. E. Tiedemann,, R. G. Urban,, S. C. Lowe, J. L. Strominger, and J. D. Fraser. 1995. Staphylococcal enterotoxin A has two cooperative binding sites on major histocompatibility complex class II. J. Exp. Med. 182:711720.
58. Iandolo, J. J.,, and W. M. Shafer. 1977. Regulation of staphylococcal enterotoxin B. Infect. Immun. 16:610616.
59. Ikeda, T.,, N. Tamate,, K. Yamaguchi,, and S. Makino. 2005. Mass outbreak of food poisoning disease caused by small amounts of staphylococcal enterotoxins A and H. Appl. Environ. Microbiol. 71:27932795.
60. Ingavale, S.,, W. van Wamel,, T. T. Luong,, C. Y. Lee,, and A. L. Cheung. 2005. Rat/MgrA, a regulator of autolysis, is a regulator of virulence genes in Staphylococcus aureus. Infect. Immun. 73:14231431.
61. Janzon, L.,, and S. Arvidson. 1990. The role of the delta-lysin gene (hld) in the regulation of virulence genes by the accessory gene regulator (agr) in Staphylococcus aureus. EMBO J. 9:13911399.
62. Jardetzky, T. S.,, J. H. Brown,, J. C. Gorga,, L. J. Stern,, R. G. Urban,, Y. I. Chi,, C. Stauffacher,, J. L. Strominger,, and D. C. Wiley. 1994. Three-dimensional structure of a human class II histocompatibility molecule complexed with superantigen. Nature 368:711718.
63. Jarraud, S.,, M. A. Peyrat,, A. Lim,, A. Tristan,, M. Bes,, C. Mougel,, J. Etienne,, F. Vandenesch,, M. Bonneville,, and G. Lina. 2001. egc, a highly prevalent operon of enterotoxin gene, forms a putative nursery of superantigens in Staphylococcus aureus. J. Immunol. 166:669677.
64. Jay, J. M. 1986. Modern Food Microbiology, 3rd ed., p. 437458. Van Nostrand Reinhold Company, New York, NY.
65. Jett, M.,, R. Neill,, C. Welch,, T. Boyle,, E. Bernton,, D. Hoover,, G. Lowell,, R. E. Hunt,, S. Chatterjee,, and P. Gemski. 1994. Identification of staphylococcal enterotoxin B sequences important for induction of lymphocyte proliferation by using synthetic peptide fragments of the toxin. Infect. Immun. 62:34083415.
66. Johns, M. B., Jr.,, and S. A. Khan. 1988. Staphylococcal enterotoxin B gene is associated with a discrete genetic element. J. Bacteriol. 170:40334039.
67. Johnson, L. P.,, and P. M. Schlievert. 1983. A physical map of the group A streptococcal pyrogenic exotoxin bacteriophage T12 genome. Mol. Gen. Genet. 189:251255.
68. Jones, C. L.,, and S. A. Khan. 1986. Nucleotide sequence of the enterotoxin B gene from Staphylococcus aureus. J. Bacteriol. 166:2933.
69. Kappler, J.,, B. Kotzin,, L. Herron,, E. W. Gelfand,, R. D. Bigler,, A. Boylston,, S. Carrel,, D. N. Posnett,, Y. Choi,, and P. Marrack. 1989. V beta-specific stimulation of human T cells by staphylococcal toxins. Science 244:811813.
70. Katsuno, S.,, and M. Kondo. 1973. Regulation of staphylococcal enterotoxin B synthesis and its relation to other extracellular proteins. Jpn. J. Med. Sci. Biol. 26:2629.
71. Kent, T. H. 1966. Staphylococcal enterotoxin gastroenteritis in rhesus monkeys. Am. J. Pathol. 48:387407.
72. Klimpel, K. R.,, N. Arora,, and S. H. Leppla. 1994. Anthrax toxin lethal factor contains a zinc metalloprotease consensus sequence which is required for lethal toxin activity. Mol. Microbiol. 13:10931100.
73. Komisar, J.,, J. Rivera,, A. Vega,, and J. Tseng. 1992. Effects of staphylococcal enterotoxin B on rodent mast cells. Infect. Immun. 60:29692975.
74. Kornblum, J.,, B. Kreiswirth,, S. J. Projan,, H. Ross,, and R. P. Novick,. 1990. Agr: a polycistronic locus regulating exoprotein synthesis in Staphylococcus aureus, p. 373402. In R. P. Novick, and R. Skurray (ed.), Molecular Biology of the Staphylococci. VCH Publishers, New York, NY.
75. Kullik, I. I.,, and P. Giachino. 1997. The alternative sigma factor sigmaB in Staphylococcus aureus: regulation of the sigB operon in response to growth phase and heat shock. Arch. Microbiol. 167:151159.
76. Kuroda, M.,, T. Ohta,, I. Uchiyama,, T. Baba,, H. Yuzawa,, I. Kobayashi,, L. Cui,, A. Oguchi,, K. Aoki,, Y. Nagai,, J. Lian,, T. Ito,, M. Kanamori,, H. Matsumaru,, A. Maruyama,, H. Murakami,, A. Hosoyama,, Y. Mizutani-Ui,, N. K. Takahashi,, T. Sawano,, R. Inoue,, C. Kaito,, K. Sekimizu,, H. Hirakawa,, S. Kuhara,, S. Goto,, J. Yabuzaki,, M. Kanehisa,, A. Yamashita,, K. Oshima,, K. Furuya,, C. Yoshino,, T. Shiba,, M. Hattori,, N. Ogasawara,, H. Hayashi,, and K. Hiramatsu. 2001. Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 357:12251240.
77. Leder, L.,, A. Llera,, P. M. Lavoie,, M. I. Lebedeva,, H. Li,, R. P. Sekaly,, G. A. Bohach,, P. J. Gahr,, P. M. Schlievert,, K. Karjalainen,, and R. A. Mariuzza. 1998. A mutational analysis of the binding of staphylococcal enterotoxins B and C3 to the T cell receptor beta chain and major histocompatibility complex class II. J. Exp. Med. 187:823833.
78. Letertre, C.,, S. Perelle,, F. Dilasser,, and P. Fach. 2003. Identification of a new putative enterotoxin SEU encoded by the egc cluster of Staphylococcus aureus. J. Appl. Microbiol. 95:3843.
79. Li, R.,, A. C. Manna,, S. Dai,, A. L. Cheung,, and G. Zhang. 2003. Crystal structure of the SarS protein from Staphylococcus aureus. J. Bacteriol. 185:42194225.
80. Lina, G.,, G. A. Bohach,, S. P. Nair,, K. Hiramatsu,, E. Jouvin-Marche,, and R. Mariuzza. 2004. Standard nomenclature for the superantigens expressed by Staphylococcus. J. Infect. Dis. 189:23342336.
81. Liu, Y.,, A. Manna,, R. Li,, W. E. Martin,, R. C. Murphy,, A. L. Cheung,, and G. Zhang. 2001. Crystal structure of the SarR protein from Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 98:68776882.
82. Liu, Y.,, A. C. Manna,, C. H. Pan,, I. A. Kriksunov,, D. J. Thiel,, A. L. Cheung,, and G. Zhang. 2006. Structural and function analyses of the global regulatory protein SarA from Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 103:23922397.
83. Marr, J. C.,, J. D. Lyon,, J. R. Roberson,, M. Lupher,, W. C. Davis,, and G. A. Bohach. 1993. Characterization of novel type C staphylococcal enterotoxins: biological and evolutionary implications. Infect. Immun. 61:42544262.
84. Marrack, P.,, and J. Kappler. 1990. The staphylococcal enterotoxins and their relatives. Science 248:1066.
85. McNamara, P. J.,, K. C. Milligan-Monroe,, S. Khalili,, and R. A. Proctor. 2000. Identification, cloning, and initial characterization of rot, a locus encoding a regulator of virulence factor expression in Staphylococcus aureus. J. Bacteriol. 182:31973203.
86. Merritt, E. A.,, and W. G. Hol. 1995. AB5 toxins. Curr. Opin. Struct. Biol. 5:165171.
87. Merson, M. H. 1973. The epidemiology of staphylococcal foodborne disease, p. 2037. In Proceedings of the Staphylococci in Foods Conference. Pennsylvania State University Press, University Park, PA.
88. Mitchell, D. T.,, D. G. Levitt,, P. M. Schlievert,, and D. H. Ohlendorf. 2000. Structural evidence for the evolution of pyrogenic toxin superantigens. J. Mol. Evol. 51:520531.
89. Miyazaki, E.,, J. M. Chen,, C. Ko,, and W. R. Bishai. 1999. The Staphylococcus aureus rsbW (orf159) gene encodes an anti-sigma factor of SigB. J. Bacteriol. 181:28462851.
90. Monday, S. R.,, and G. A. Bohach. 2001. Genes encoding staphylococcal enterotoxins G and I are linked and separated by DNA related to other staphylococcal enterotoxins. J. Nat. Toxins 10:18.
91. Monday, S. R.,, and G. A. Bohach. 1999. Use of multiplex PCR to detect classical and newly described pyrogenic toxin genes in staphylococcal isolates. J. Clin. Microbiol. 37:34113414.
92. Munson, S. H.,, M. T. Tremaine,, M. J. Betley,, and R. A. Welch. 1998. Identification and characterization of staphylococcal enterotoxin types G and I from Staphylococcus aureus. Infect. Immun. 66:33373348.
93. Noleto, A. L.,, L. M. Malburg, Jr.,, and M. S. Bergdoll. 1987. Production of staphylococcal enterotoxin in mixed cultures. Appl. Environ. Microbiol. 53:22712274.
94. Noleto, A. L.,, A. Tibana,, C. A. Silva,, L. Rubin,, and S. Schueller. 1980. Bacteriological analysis of milk. An. Microbiol. (Rio J.) 25:4151. (In Portuguese.)
95. Novick, R. P. 2003. Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol. Microbiol. 48:14291449.
96. Novick, R. P. 2003. Mobile genetic elements and bacterial toxinoses: the superantigen-encoding pathogenicity islands of Staphylococcus aureus. Plasmid 49:93105.
97. Novick, R. P.,, S. J. Projan,, J. Kornblum,, H. F. Ross,, G. Ji,, B. Kreiswirth,, F. Vandenesch,, and S. Moghazeh. 1995. The agr P2 operon: an autocatalytic sensory transduction system in Staphylococcus aureus. Mol. Gen. Genet. 248:446458.
98. Omoe, K.,, D. L. Hu,, H. Takahashi-Omoe,, A. Nakane,, and K. Shinagawa. 2005. Comprehensive analysis of classical and newly described staphylococcal superantigenic toxin genes in Staphylococcus aureus isolates. FEMS Microbiol. Lett. 246:191198.
99. Omoe, K.,, D. L. Hu,, H. Takahashi-Omoe,, A. Nakane,, and K. Shinagawa. 2003. Identification and characterization of a new staphylococcal enterotoxin-related putative toxin encoded by two kinds of plasmids. Infect. Immun. 71:60886094.
100. Omoe, K.,, K. Imanishi,, D. L. Hu,, H. Kato,, H. Takahashi-Omoe,, A. Nakane,, T. Uchiyama,, and K. Shinagawa. 2004. Biological properties of staphylococcal enterotoxin-like toxin type R. Infect. Immun. 72:36643667.
101. Ono, H. K.,, K. Omoe,, K. Imanishi,, Y. Iwakabe,, D. L. Hu,, H. Kato,, N. Saito,, A. Nakane,, T. Uchiyama,, and K. Shinagawa. 2008. Identification and characterization of two novel staphylococcal enterotoxins, types S and T. Infect. Immun. 76:49995005.
102. Orwin, P. M.,, J. R. Fitzgerald,, D. Y. Leung,, J. A. Gutierrez,, G. A. Bohach,, and P. M. Schlievert. 2003. Characterization of Staphylococcus aureus enterotoxin L. Infect. Immun. 71:29162919.
103. Orwin, P. M.,, D. Y. Leung,, H. L. Donahue,, R. P. Novick,, and P. M. Schlievert. 2001. Biochemical and biological properties of staphylococcal enterotoxin K. Infect. Immun. 69:360366.
104. Orwin, P. M.,, D. Y. Leung,, T. J. Tripp,, G. A. Bohach,, C. A. Earhart,, D. H. Ohlendorf,, and P. M. Schlievert. 2002. Characterization of a novel staphylococcal enterotoxin-like superantigen, a member of the group V subfamily of pyrogenic toxins. Biochemistry 41:1403314040.
105. Petersson, K.,, M. Hakansson,, H. Nilsson,, G. Forsberg,, L. A. Svensson,, A. Liljas,, and B. Walse. 2001. Crystal structure of a superantigen bound to MHC class II displays zinc and peptide dependence. EMBO J. 20:33063312.
106. Petersson, K.,, H. Pettersson,, N. J. Skartved,, B. Walse,, and G. Forsberg. 2003. Staphylococcal enterotoxin H induces V alpha-specific expansion of T cells. J. Immunol. 170:41484154.
107. Pontzer, C. H.,, J. K. Russell,, and H. M. Johnson. 1989. Localization of an immune functional site on staphylococcal enterotoxin A using the synthetic peptide approach. J. Immunol. 143:280284.
108. Pragman, A. A.,, J. M. Yarwood,, T. J. Tripp,, and P. M. Schlievert. 2004. Characterization of virulence factor regulation by SrrAB, a two-component system in Staphylococcus aureus. J. Bacteriol. 186:24302438.
109. Projan, S. J.,, S. Brown-Skrobot,, P. M. Schlievert,, F. Vandenesch,, and R. P. Novick. 1994. Glycerol monolaurate inhibits the production of beta-lactamase, toxic shock toxin-1, and other staphylococcal exoproteins by interfering with signal transduction. J. Bacteriol. 176:42044209.
110. Raj, H. D.,, and M. S. Bergdoll. 1969. Effect of enterotoxin B on human volunteers. J. Bacteriol. 98:833834.
111. Rao, L.,, R. K. Karls,, and M. J. Betley. 1995. In vitro transcription of pathogenesis-related genes by purified RNA polymerase from Staphylococcus aureus. J. Bacteriol. 177:26092614.
112. Reck, B.,, P. H. Scheuber,, W. Londong,, B. Sailer-Kramer,, K. Bartsch,, and D. K. Hammer. 1988. Protection against the staphylococcal enterotoxin-induced intestinal disorder in the monkey by anti-idiotypic antibodies. Proc. Natl. Acad. Sci. USA 85:31703174.
113. Reda, K. B.,, V. Kapur,, J. A. Mollick,, J. G. Lamphear,, J. M. Musser,, and R. R. Rich. 1994. Molecular characterization and phylogenetic distribution of the streptococcal superantigen gene (ssa) from Streptococcus pyogenes. Infect. Immun. 62:18671874.
114. Regassa, L. B.,, J. L. Couch,, and M. J. Betley. 1991. Steady-state staphylococcal enterotoxin type C mRNA is affected by a product of the accessory gene regulator (agr) and by glucose. Infect. Immun. 59:955962.
115. Ren, K.,, J. D. Bannan,, V. Pancholi,, A. L. Cheung,, J. C. Robbins,, V. A. Fischetti,, and J. B. Zabriskie. 1994. Characterization and biological properties of a new staphylococcal exotoxin. J. Exp. Med. 180:16751683.
116. Said-Salim, B.,, P. M. Dunman,, F. M. McAleese,, D. Macapagal,, E. Murphy,, P. J. McNamara,, S. Arvidson,, T. J. Foster,, S. J. Projan,, and B. N. Kreiswirth. 2003. Global regulation of Staphylococcus aureus genes by Rot. J. Bacteriol. 185:610619.
117. Schad, E. M.,, A. C. Papageorgiou,, L. A. Svensson,, and K. R. Acharya. 1997. A structural and functional comparison of staphylococcal enterotoxins A and C2 reveals remarkable similarity and dissimilarity. J. Mol. Biol. 269:270280.
118. Schad, E. M.,, I. Zaitseva,, V. N. Zaitsev,, M. Dohlsten,, T. Kalland,, P. M. Schlievert,, D. H. Ohlendorf,, and L. A. Svensson. 1995. Crystal structure of the superantigen staphylococcal enterotoxin type A. EMBO J. 14:32923301.
119. Scheuber, P. H.,, C. Denzlinger,, D. Wilker,, G. Beck,, D. Keppler,, and D. K. Hammer. 1987. Staphylococcal enterotoxin B as a nonimmunological mast cell stimulus in primates: the role of endogenous cysteinyl leukotrienes. Int. Arch. Allergy Appl. Immunol. 82:289291.
120. Schleifer, K. H., 1986. Gram positive cocci, p. 9991100. In P. A. Sneath (ed.), Bergey’s Manual of Systematic Bacteriology, 1st ed., vol. 2. Williams & Wilkins Co., Baltimore, MD.
121. Schlievert, P. M.,, L. M. Jablonski,, M. Roggiani,, I. Sadler,, S. Callantine,, D. T. Mitchell,, D. H. Ohlendorf,, and G. A. Bohach. 2000. Pyrogenic toxin superantigen site specificity in toxic shock syndrome and food poisoning in animals. Infect. Immun. 68:36303634.
122. Schmidt, J. J.,, and L. Spero. 1983. The complete amino acid sequence of staphylococcal enterotoxin C1. J. Biol. Chem. 258:63006306.
123. Schmidt, K. A.,, N. P. Donegan,, W. A. Kwan, Jr., and A. Cheung. 2004. Influences of sigmaB and agr on expression of staphylococcal enterotoxin B (seb) in Staphylococcus aureus. Can. J. Microbiol. 50:351360.
124. Smeltzer, M. S.,, M. E. Hart,, and J. J. Iandolo. 1993. Phenotypic characterization of xpr, a global regulator of extracellular virulence factors in Staphylococcus aureus. Infect. Immun. 61:919925.
125. Smyth, D. S.,, P. J. Hartigan,, W. J. Meaney,, J. R. Fitzgerald,, C. F. Deobald,, G. A. Bohach,, and C. J. Smyth. 2005. Superantigen genes encoded by the egc cluster and SaPIbov are predominant among Staphylococcus aureus isolates from cows, goats, sheep, rabbits and poultry. J. Med. Microbiol. 54:401411.
126. Spero, L.,, B. Y. Griffin,, J. L. Middlebrook,, and J. F. Metzger. 1976. Effect of single and double peptide bond scission by trypsin on the structure and activity of staphylococcal enterotoxin C. J. Biol. Chem. 251:55805588.
127. Stefani, S.,, and P. E. Varaldo. 2003. Epidemiology of methicillin-resistant staphylococci in Europe. Clin. Microbiol. Infect. 9:11791186.
128. Stock, J. B.,, A. J. Ninfa,, and A. M. Stock. 1989. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol. Rev. 53:450490.
129. Su, Y. C.,, and A. C. Wong. 1995. Identification and purification of a new staphylococcal enterotoxin, H. Appl. Environ. Microbiol. 61:14381443.
130. Sugiyama, H.,, and T. Hayama. 1965. Abdominal viscera as site of emetic action for staphylococcal enterotoxin in the monkey. J. Infect. Dis. 115:330336.
131. Sundberg, E. J.,, M. W. Sawicki,, S. Southwood,, P. S. Andersen,, A. Sette,, and R. A. Mariuzza. 2002. Minor structural changes in a mutated human melanoma antigen correspond to dramatically enhanced stimulation of a CD4+ tumor-infiltrating lymphocyte line. J. Mol. Biol. 319:449461.
132. Sundstrom, M.,, L. Abrahmsen,, P. Antonsson,, K. Mehindate,, W. Mourad,, and M. Dohlsten. 1996. The crystal structure of staphylococcal enterotoxin type D reveals Zn2+-mediated homodimerization. EMBO J. 15:68326840.
133. Swaminathan, S.,, W. Furey,, J. Pletcher,, and M. Sax. 1992. Crystal structure of staphylococcal enterotoxin B, a superantigen. Nature 359:801806.
134. Taylor, S. L.,, L. R. Schlunz,, J. T. Beery,, D. O. Cliver,, and M. S. Bergdoll. 1982. Emetic action of staphylococcal enterotoxin A on weanling pigs. Infect. Immun. 36:12631266.
135. Thomas, D. Y.,, S. Jarraud,, B. Lemercier,, G. Cozon,, K. Echasserieau,, J. Etienne,, M. L. Gougeon,, G. Lina,, and F. Vandenesch. 2006. Staphylococcal enterotoxin-like toxins U2 and V, two new staphylococcal superantigens arising from recombination within the enterotoxin gene cluster. Infect. Immun. 74:47244734.
136. Thompson, J. D.,, D. G. Higgins,, and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:46734680.
137. Tiedemann, R. E.,, and J. D. Fraser. 1996. Cross-linking of MHC class II molecules by staphylococcal enterotoxin A is essential for antigen-presenting cell and T cell activation. J. Immunol. 157:39583966.
138. Townsend, D. E.,, and B. J. Wilkinson. 1992. Proline transport in Staphylococcus aureus: a high-affinity system and a low-affinity system involved in osmoregulation. J. Bacteriol. 174:27022710.
139. Tremaine, M. T.,, D. K. Brockman,, and M. J. Betley. 1993. Staphylococcal enterotoxin A gene (sea) expression is not affected by the accessory gene regulator (agr). Infect. Immun. 61:356359.
140. seng, C. W.,, and G. C. Stewart. 2005. Rot repression of enterotoxin B expression in Staphylococcus aureus. J. Bacteriol. 187:53015309.
141. Warren, J. R. 1977. Comparative kinetic stabilities of staphylococcal enterotoxin types A, B, and C1. J. Biol. Chem. 252:68316834.
142. Warren, J. R.,, L. Spero,, and J. F. Metzger. 1974. Stabilization of native structure by the closed disulfide loop of staphylococcal enterotoxin B. Biochim. Biophys. Acta 359:351363.
143. Wengender, P. A.,, and K. J. Miller. 1995. Identification of a PutP proline permease gene homolog from Staphylococcus aureus by expression cloning of the high-affinity proline transport system in Escherichia coli. Appl. Environ. Microbiol. 61:252259.
144. Wikstrom, M.,, T. Drakenberg,, S. Forsen,, U. Sjobring,, and L. Bjorck. 1994. Three-dimensional solution structure of an immunoglobulin light chain-binding domain of protein L. Comparison with the IgG-binding domains of protein G. Biochemistry 33:1401114017.
145. Wilson, G. J.,, K. S. Seo,, T. Connelley,, O. N. Chuang-Smith,, J. A. Merriman,, C. M. Guinane,, R. A. Cartwright,, J. Y. Park,, G. A. Bohach,, P. M. Schlievert,, W. I. Morrison,, and J. R. Fitzgerald. 2011. A novel core genome-encoded superantigen contributes to lethality of community-associated MRSA necrotizing pneumonia. PLoS Pathog. 7(10):e1002271.
146. Zhang, L.,, L. Gray,, R. P. Novick,, and G. Ji. 2002. Transmembrane topology of AgrB, the protein involved in the post-translational modification of AgrD in Staphylococcus aureus. J. Biol. Chem. 277:3473634742.
147. Zhang, S.,, J. J. Iandolo,, and G. C. Stewart. 1998. The enterotoxin D plasmid of Staphylococcus aureus encodes a second enterotoxin determinant (sej). FEMS Microbiol. Lett. 168:227233.


Generic image for table
Table 21.1

General characteristics of selected species

Citation: Seo K, Bohach G. 2013. , p 547-573. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch21
Generic image for table
Table 21.2

Biochemical and functional properties of SEs

Citation: Seo K, Bohach G. 2013. , p 547-573. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch21
Generic image for table
Table 21.3

Prevalence of in several foods

Citation: Seo K, Bohach G. 2013. , p 547-573. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch21

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error