1887

Chapter 29 : Physical Methods of Food Preservation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Physical Methods of Food Preservation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818463/9781555816261_Chap29-1.gif /docserver/preview/fulltext/10.1128/9781555818463/9781555816261_Chap29-2.gif

Abstract:

Food preservation methods were originally developed to extend the shelf life of food by protecting the product from microbiological, chemical, and physical changes that could lead to spoilage. The microbiological changes are prevented by eliminating spoilage microorganisms or simply suppressing their metabolic activity. Modern preservation methods are designed not only to extend the shelf life of food, but also to ensure its safety by inactivating pathogenic microorganisms and viruses of concern, or in some cases just preventing their growth in the product. The most commonly used preservation methods are physical in nature. Treatment of food with heat (i.e., thermal processing) inactivates spoilage-initiating microorganisms and enzymes, as well as disease-causing microorganisms. Removal of heat to refrigerate or freeze food suppresses microbial metabolism and multiplication, and the process also may inactivate a fraction of the food microbiota. Decreasing water availability is effectively used in preserving many foods through concentration or drying or by addition of water activity (a) modifiers. Most of the alternative technologies to thermal processing are considered physical preservation methods. These include gamma radiation, which is gradually gaining acceptance as an effective preservation method. Use of ultrahigh pressure to preserve prepackaged value-added food is increasing. Emerging preservation approaches also include using pulsed electric fields, UV light, and ultrasound, with the aim of ensuring food safety while minimizing adverse impacts of processing on product quality. Many of these physical treatments are addressed in this chapter, with emphasis on engineering background, microbiological considerations, and applications in food processing.

Citation: Yousef A, Balasubramaniam V. 2013. Physical Methods of Food Preservation, p 737-763. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch29
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 29.1
Figure 29.1

Microbial cell components that are altered or damaged during heat treatment. doi:10.1128/9781555818463.ch29f1

Citation: Yousef A, Balasubramaniam V. 2013. Physical Methods of Food Preservation, p 737-763. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 29.2
Figure 29.2

Graphic approach for determination of the decimal reduction time ( value) and the thermal resistance constant ( value). doi:10.1128/9781555818463.ch29f2

Citation: Yousef A, Balasubramaniam V. 2013. Physical Methods of Food Preservation, p 737-763. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 29.3
Figure 29.3

Schematic diagram of an aseptic processing system. doi:10.1128/9781555818463.ch29f3

Citation: Yousef A, Balasubramaniam V. 2013. Physical Methods of Food Preservation, p 737-763. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 29.4
Figure 29.4

Schematic diagram showing changes in the temperature of food and water during freezing. doi:10.1128/9781555818463.ch29f4

Citation: Yousef A, Balasubramaniam V. 2013. Physical Methods of Food Preservation, p 737-763. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 29.5
Figure 29.5

Illustration of the water availability concept. a is the ratio between the water vapor pressure on food () and that on pure water ( ), measured at the same temperature and when the system is at equilibrium. doi:10.1128/9781555818463.ch29f5

Citation: Yousef A, Balasubramaniam V. 2013. Physical Methods of Food Preservation, p 737-763. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 29.6
Figure 29.6

Typical pressure-temperature history of a high-pressure process. P, pressure; T, temperature; t, time. (Adapted from reference 135.) doi:10.1128/9781555818463.ch29f6

Citation: Yousef A, Balasubramaniam V. 2013. Physical Methods of Food Preservation, p 737-763. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 29.7
Figure 29.7

Changes in populations that were prepared under similar conditions and processed with high pressure (400 MPa and 24 ± 1°C) (left) or pulsed electric field (30 kV/cm and 22°C) (right). (Adapted from reference .) doi:10.1128/9781555818463.ch29f7

Citation: Yousef A, Balasubramaniam V. 2013. Physical Methods of Food Preservation, p 737-763. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818463.chap29
1. Agar, I. T.,, J. Streif,, and F. Bangerth. 1997. Effect of high CO2 and controlled atmosphere (CA) on the ascorbic and dehydroascorbic acid content of some berry fruits. Postharvest Biol. Technol. 11:4755.
2. Alvarez, I.,, J. Raso,, A. Palop,, and F. J. Sala. 2000. Influence of different factors on the inactivation of Salmonella senftenberg by pulsed electric field. Trends Food Sci. Tech. 55:143146.
3. Anellis, A.,, D. Berkowitz,, and D. Kemper. 1973. Comparative resistance of nonsporogenic bacteria to low-temperature gamma irradiation. Appl. Environ. Microbiol. 25:517523.
4. Annous, B. A.,, L. A. Becker,, D. O. Bayles,, D. P. Labeda,, and B. J. Wilkinson. 1997. Critical role of anteiso-C15:0 fatty acid in the growth of Listeria monocytogenes at low temperatures. Appl. Environ. Microbiol. 63:38873894.
5.Anonymous. 2003. General Standard for Irradiated Foods. CODEX Stan 106-1983, Rev.1-2003. Codex Alimentarius Commission, Rome,Italy. www.codexalimentarius.org/download/standards/16/CXS_106e.pdf.
6.AquaLab. 2011. Water activity for product safety and quality. Decagon Devices, Inc., Pullman, WA. www.aqualab.com/education/water-activity-for-product-safety-and-quality/.
7. Aronsson, K.,, U. Rönner,, and E. Borch. 2005. Inactivation of Escherichia coli, Listeria innocua and Saccharomyces cerevisiae in relation to membrane permeabilization and subsequent leakage of intracellular compounds due to pulsed electric field processing. Int. J. Food Microbiol. 99:1932.
8. Balasubramaniam, V. M.,, and D. Farkas. 2008. High-pressure food processing. Food Sci. Technol. Int. 14:413418.
9. Balasubramaniam, V. M.,, E. Y. Ting,, C. M. Stewart,, and J. A. Robbins. 2004. Recommended laboratory practices for conducting high-pressure microbial inactivation experiments. Innov. Food Sci. Emerg. Technol. 5:299306.
10. Barbosa-Cánovas, G. V.,, A. J. Fontana,, S. J. Schmidt,, and T. P. Labuza (ed.). 2007. Water Activity in Foods: Fundamentals and Applications. Blackwell Publishing, Ames, IA.
11. Barbosa-Cánovas, G. V.,, M. M. Gongora-Nieto,, U. R. Pothkamury,, and B. G. Swanson. 1999. Preservation of Foods with Pulsed Electric Fields. Academic Press, New York, NY.
12. Beeby, M.,, B. D. O’Connor,, C. Ryttersgaard,, D. R. Boutz,, L. J. Perry,, and T. O. Yeates. 2005. The genomics of disulfide bonding and protein stabilization in thermophiles. PLoS Biol. 3:e309.
13.Belgian Nuclear ResearchCentre. 2010. Investigating the molecular mechanisms ofradiation resistance in bacteria. Belgian Nuclear ResarchCentre, Brussels, Belgium. https://www.sckcen.be/en/yop/view/293.
14. Benito, A.,, G. Ventoura,, M. Casadei,, T. Robinson,, and B. Mackey. 1999. Variation in resistance of natural isolates of Escherichia coli O157 to high hydrostatic pressure, mild heat and other stresses. Appl. Environ. Microbiol. 65:15641569.
15. Bereksi, N.,, F. Gavini,, T. Benezech,, and C. Faille. 2002. Growth, morphology and surface properties of Listeria monocytogenes Scott A and LO28 under saline and acid environments. J. Appl. Microbiol. 92:556565.
16. Beuchat, L.R.,, and J. I. Pitt,. 2001. Detection and enumeration of heat-resistant molds, p. 217222. In F. P. Downes, and K. Ito (ed.), Compendium of Methods for the Microbiological Examination of Foods. American Public Health Association, Washington, DC.
17. Bidawid, S.,, J. M. Farber,, and S. A. Sattar. 2000. Inactivation of hepatitis A virus (HAV) in fruits and vegetables by gamma irradiation. Int. J. Food Microbiol. 57:9197.
18. Black, E. P.,, P. Setlow,, A. D. Hocking,, C. M. Stewart,, A.L. Kelly,, and D. G. Hoover. 2007. Response of spores to high-pressure processing. Compr. Rev. Food Sci. Food Safety 6:103119.
19. Braganza, L. F.,, and D. L. Worcester. 1986. Structural changes in lipid bilayers and biological membranes caused by hydrostatic pressure. Biochemistry 25:74847488.
20. Bringert, G. 2004. Thermal sterilizationprocess validation ritical to product safety. September:22–26. www.pharmpro.com/PDFs/pp49gei.pdf.
21. Brown, A. D. 1976. Microbial water stress. Bacteriol. Rev. 40:803846.
22. Casadei, M. A.,, P. Mañas,, G. Niven,, E. Needs,, and B.M. Mackey. 2002. Role of membrane fluidity in pressure resistance of Escherichia coli NCTC 8164. Appl. Environ. Microbiol. 68:59655972.
23. Cheftel, J. C. 1995. Review: high pressure, microbial inactivation and food preservation. Food Sci. Technol. Int. 1:7590.
24. Church, I. J.,, and A. L. Parsons. 1995. Modified atmosphere packaging technology—a review. J. Sci. Food Agric. 67:143152.
25.Code of Federal Regulations. 2011. Poultry Products Inspection Regulations. Title 9, Part 381:66. Office of the Federal Register, Washington, DC.
26.Code of Federal Regulations. 2011. Thermally Processed Low-Acid Foods Packaged in Hermetically Sealed Containers. Title 21, Part 113. Office of the Federal Register, Washington, DC.
27. Condon, S.,, and F. J. Sala. 1992. Heat resistance of Bacillus subtilis in buffer and foods of different pH. J. Food Prot. 55:605608.
28. Daly, M. J.,, E. K. Gaidamakova,, V. Y. Matrosova,, A. Vasilenko,, M. Zhai,, A. Venkateswaran,, M. Hess,, M. V. Omelchenko,, H. M. Kostandarithes,, K. S. Makarova,, L. P. Wackett,, J. K. Fredrickson,, and D. Ghosal. 2004. Accumulation of Mn(II) in Deinococcus radiodurans facilitates gamma-radiation resistance. Science 306:10251028.
29. Doona, C. J.,, and F. E. Freeherry (ed.). 2007. High Pressure Processing of Foods. Wiley-Blackwell, Hoboken, NJ.
30. Drummond, L.,, and D.-W. Sun,. 2010. Effect of chilling and freezing on safety and quality of food products, p. 295322. In E. Ortega-Rivas (ed.), Processing Effects on Safety and Quality of Foods. CRC Press, New York, NY.
31. Earle, R. L.,, and M. D. Earle. 1983. Unit Operations inFood Processing, Web edition. New Zealand Institute of FoodScience and Technology, Palmerston North, NewZealand. www.nzifst.org.nz/unitoperations/.
32. Edgey, M.,, and A. D. Brown. 1978. Response of xerotolerant and nontolerant yeasts to water stress. J. Gen. Microbiol. 104:343345.
33. Eichner, K.,, and M. Karel. 1972. Influence of water content and water activity on the sugar-amino browning reaction in model systems under various conditions. J. Agric. Food Chem. 20:218223.
34. El-Shenawy, M. A.,, A. E. Yousef,, and E. H. Marth. 1989. Radiation sensitivity of Listeria monocytogenes in broth or in raw ground beef. Lebenson. Wiss. Technol. 22:378390.
35. Erichsen, I.,, and G. Molin. 1981. Microbial flora of normal and high pH beef stored at 4°C in different gas environments. J. Food Prot. 44:866.
36. Farkas, D. F.,, and D. G. Hoover. 2000. High pressure processing. J. Food Sci. 65(Suppl.):47S64S.
37. Fellows, P. J. 2002. Food Processing Technology: Principles and Practice, 2nd ed. Woodhead Publishing, Ltd., Boca Raton, FL.
38.Food Safety and InspectionService. 2010. Safe food handling: freezing and foodsafety. Food Safety and Inspection Service, U.S. Department ofAgriculture, Washington, DC. www.fsis.usda.gov/factsheets/focus_on_freezing/index.asp#3.
39. Gamble, H.R. 2011. Trichinae: pork facts—foodquality and safety. Animal and Plant Health Inspection Service, U.S.Department of Agriculture, Washington, DC. www.aphis.usda.gov/vs/trichinae/docs/fact_sheet.htm.
40. Gao, N.,, B.-G. Ma,, Y.-S. Zhang,, Q. Song,, L.-L. Chen,, and H.-Y. Zhang. 2009. Gene expression analysis of four radiation-resistant bacteria. Genomics Insights 2:1122.
41. García, D.,, N. Gómez,, J. Raso,, and R. Pagán. 2005. Bacterial resistance after pulsed electric fields depending on the treatment medium pH. Innov. Food Sci. Emerg. Technol. 6:388395.
42. Gill, C. O.,, and G. Molin,. 1991. Modified atmospheres and vacuum packaging, p. 172199. In N. J. Russell, and G. W. Gould (ed.), Food Preservatives. Blackie, Glasgow, United Kingdom.
43. Goresline, H. E.,, and N. W. Desrosier. 1959. Preservation of foods by food irradiation. Am. J. Public Health 49:488492.
44. Gould, G. W., 1989. Drying, raised osmotic pressure and low water activity, p. 97117. In G. W. Gould (ed.), Mechanisms of Action of Food Preservation Procedures. Elsevier Applied Science, London, United Kingdom.
45. Gould, G. W., 2000. Emergingtechnologies in food preservation and processing in the last 40 years, p. 111. In G. V. Barbosa-Cánovas, and G. W. Gould (ed.), Innovations in Food Processing. Technomic Publishing Co., Inc., Lancaster, PA.
46. Heinz, V.,, I. Álvarez,, A. Angersbach,, and D. Knorr. 2002. Preservation of liquid foods by high intensity pulsed electric fields-basic concepts for process design. Trends Food Sci. Technol. 12:103111.
47. Heldman, D. R.,, and R. W. Hartel. 1998. Principles of Food Processing. Aspen Publishers, Gaitherburg, MD.
48. Hendrickx, M. E. G.,, and D. Knorr. 2001. Ultra High Pressure Treatments of Food. Kluwer Academic/Plenum Publishers, New York, NY.
49. Hengge, R. 2008. The two-component network and the general stress sigma factor RpoS (sigma S) in Escherichia coli. Adv. Exp. Med. Biol. 631:4053.
50. Herbert, R. A.,, and J. P. Sutherland,. 2000. Chill storage, p.101121. In B. M. Lund,, T. C. Baird-Parker,, and G. W. Gould (ed.), The Microbiological Safety and Quality of Food, vol. 1. Aspen Publishers, Gaithersburg, MD.
51. Heremans, K., 1995. High pressure effects on biomolecules, p. 8198. In D. A. Ledward,, D. E. Johnston,, R. G. Earnshaw,, and A. P. M. Hasting (ed.), High Pressure Processing of Foods. Nottingham University Press, Loughborough, United Kingdom.
52. Herendeen, S. L.,, R. A. Vanbogelen,, and F. C. Neidhardt. 1979. Levels of major proteins of Escherichia coli during growth at different temperatures. J. Bacteriol. 139:185194.
53. Hollywood, N. W.,, Y. Varabioff,, and G. E. Mitchell. 1991. The effect of microwave and conventional cooking on the temperature profiles and microbial flora of minced beef. Int. J. Food Microbiol. 14:6776.
54. Holsinger, V. H.,, K. T. Rajkowski,, and J. R. Stabel. 1997. Milk pasteurisation and safety: a brief history and update. Rev. Sci. Tech. 16:441451.
55. Hubalek, Z. 2003. Protectants used in the cryopreservation of microorganisms. Cryobiology 46:205229.
56. Hui, Y. H.,, C. Clary,, M. M. Farid,, O. O. Fasina,, A. Noomhorm,, and J. Welti-Chanes. 2008. Food Drying Science and Technology: Microbiology, Chemistry and Applications. DEStech Publications, Inc., Lancaster, PA.
57. Hülsheger, H.,, J. Potel,, and E. G. Niemann. 1983. Electric field effects on bacteria and yeast cells. Radiat. Environ. Biophys. 22:149162.
58. Ingram, M.,, and B. M. Mackey,. 1976. Inactivation by cold, p. 111151. In F. A. Skinner, and W. B. Hugo (ed.), Inhibition and Inactivation of Vegetative Microbes. Society of Applied Bacteriology Symposia Series, no. 5. Academic Press, New York, NY.
59.Institute of FoodTechnologists. 2000. Kinetics of microbial inactivation foralternative food processing technologies. A report of the Institute of Food Technologists for theFood and Drug Administration of the U.S. Department of Health and Human Services, IFT/FDA ContractNo. 223-98-2333. Food and Drug Administration, Silver Spring, MD. www.fda.gov/Food/ScienceResearch/ResearchAreas/SafePracticesforFoodProcesses/ucm100158.htm.
60.International Commission on Microbiological Specifications for Foods. 1996. Microorganisms in Foods 5. Microbiological Specifications of Food Pathogens. Blackie Academic & Professional, London, United Kingdom.
61. Ishii, A.,, T. Oshima,, T. Sato,, K. Nakasone,, H. Mori,, and C. Kato. 2005. Analysis of hydrostatic pressure effects on transcription in Escherichia coli by DNA microarray procedure. Extremophiles 9:6573.
62. Isom, L. L.,, K. S. Khambatta,, J. L. Moluf,, D. F. Akers,, and S. E. Martin. 1995. Filament formation of Listeria monocytogenes. J. Food Prot. 58:10311033.
63. James, C.,, C. Vincent,, T. I. de Andrade Lima,, and S. J. James. 2006. The primary chilling of poultry carcasses, a review. Int. J. Refrig. 29:847862.
64. Kaplan, M. M.,, M. Abdussalam,, and G. Bijlenga. 1962. Diseases transmitted through milk, p. 1176. In World Health Organization (ed.), Milk Hygiene. World Health Organization monograph series no. 48. World Health Organization, Geneva, Switzerland.
65. Karel, M.,, and D. B. Lund. 2003. Physical Principals of Food Preservation, 2nd ed. Marcel Dekker, New York, NY.
66. Knorr, D.,, M. Geulen,, T. Grahl,, and W. Sitzmann. 1994. Food application of high electric field pulses. Trends Food Sci. Technol. 5:7175.
67. Labuza, T. P.,, A. Kaanane,, and J. Y. Chen. 1985. Effect of temperature on the moisture sorption isotherms and water activity shift of two dehydrated foods. J. Food Sci. 50:385391.
68. Labuza, T. P.,, N. D. Heidelbaugh,, M. Silver,, and M. Karel. 1971. Oxidation at intermediate moisture contents. J. Am. Oil Chem. Soc. 48:8690.
69. Lado, B. H.,, and A. E. Yousef. 2002. Alternative food preservation technologies: efficacy and mechanisms. Microb. Infect. 4:433440.
70. Lado, B. H.,, J. A. Bomser,, C. P. Dunne,, and A. E. Yousef. 2004. Pulsed electric field alters molecular chaperone expression and sensitizes Listeria monocytogenes to heat. Appl. Environ. Microbiol. 70:22892295.
71. Leaper, S.,, and P. Richardson. 1999. Validation of thermal process control for the assurance of food safety. Food Control 10:281283.
72. Lin, C.-C.,, B.-K. Wu,, and D.-K. Lin. 1968. Spoilage bacteria in canned foods: I. Flat sour spoilage bacteria in canned asparagus and the thermal death time. Appl. Microbiol. 16:4547.
73. López-González, V.,, P. S. Murano,, R. E. Brennan,, and E. A. Murano. 1999. Influence of various commercial packaging conditions on survival of Escherichia coli O157:H7 to irradiation by electron beam versus gamma rays. J. Food Prot. 62:1015.
74. Mackey, B. M.,, C. A. Miles,, S. E. Parsons,, and D. A. Seymour. 1991. Thermal denaturation of whole cells and cell components of Escherichia coli examined by differential scanning calorimetry. J. Gen. Microbiol. 137:23612374.
75. Mahmoud, B. S. 2010. The effects of X-ray radiation on Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica and Shigella flexneri inoculated on whole Roma tomatoes. Food Microbiol. 27:10571063.
76. Mahmoud, B. S.,, G. Bachman,, and R. H. Linton. 2010. Inactivation of Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica and Shigella flexneri on spinach leaves by X-ray. Food Microbiol. 27:2428.
77. Malone, A. S.,, Y.-K. Chung,, and A. E. Yousef. 2006. Genes of Escherichia coli O157:H7 that are involved in high-pressure resistance. Appl. Environ. Microbiol. 72:26612671.
78. Marth, E. H. 1998. Extended shelf life refrigerated foods: microbiological quality and safety. Food Technol. 52:5762.
79. Mattick, K. L.,, F. Jorgensen,, J. D. Legan,, M. B. Cole,, J. Porter,, H. M. Lappin-Scott,, and T. J. Humphrey. 2000. Survival and filamentation of Salmonella enterica serovar Enteritidis PT4 and Salmonella enterica serovar Typhimurium DT104 at low water activity. Appl. Environ. Microbiol. 66:12741279.
80. McLean, R. J. C.,, and M. A. C. McLean. 2010. Microbial survival mechanisms and the interplanetary transfer of life through space. J. Cosmol. 7:18021820.
81. Minerich, P. L.,, and T. P. Labuza. 2003. Development of a pressure indicator for high hydrostatic pressure processing of foods. Innov. Food Sci. Emerg. Technol. 4:235243.
82. Mohácsi-Farkas, C.,, J. Farkas,, L. Mészáros,, O. Reichart,, and E. Andrassy. 1999. Thermal denaturation of bacterial cells examined by differential scanning calorimetry. J. Therm. Anal. Calorim. 57:409414.
83. Mohamed, H. M. H.,, B. H. S. Diono,, and A. E. Yousef. Structural changes in Listeria monocytogenes treated with gamma radiation, pulsed electric field and ultra-high pressure. J. Food Safety, in press.
84. Molins, R. A. (ed.). 2001. Food Irradiation: Principles and Applications. John Wiley & Sons, New York, NY.
85. Montville, T. J.,, and K. R. Matthews. 2008. Food Microbiology: an Introduction, 2nd ed. ASM Press, Washington, DC.
86. Morales-Castro, J.,, and L. A. Ochoa-Martinez,. 2010. Safety and quality effects in food stored under modified atmosphere conditions, p. 253294. In E. Ortega-Rivas (ed.), Processing Effects on Safety and Quality of Foods. CRC Press, New York, NY.
87. Mudgett, R. E., 1985. Dielectrical properties of foods, p. 1537. In R. V. Decareau (ed.), Microwaves in the Food Processing Industry. Academic Press, Orlando, FL.
88. Multon, J. L.,, and H. Bizot. 1978. Intermediate moisture foods and water activity determination. Ann. Nutr. Aliment. 32:631654. (In French.)
89. Nakayama, A., Y. Yano,, S. Kobayashi,, M. Ishikawa,, and K. Sakai. 1996. Comparison of pressure resistances of spores of six Bacillus strains with their heat resistances. Appl. Environ. Microbiol. 62:38973900.
90.National Advisory Committee onMicrobiological Criteria for Foods. 2006. Requisite scientificparameters for establishing the equivalence of alternative methods of pasteurization. J. Food Prot. 69:11901216.v
91.National Food Processors Association. 1982. Thermal processes for low-acid foods in metal food containers. Bulletin 26-L, 12th ed. National Food Processors Association, Washington, DC.
92. Nguyen, L.T.,, and V. M. Balasubramaniam,. 2011. Fundamentals offood processing using high pressure, p.319. In H. Q. Zhang,, G. V. Barbosa-Cánovas,, V. M. Balasubramaniam,, C. P. Dunne,, D. F. Farkas,, and J. T. C. Yuan (ed.), Nonthermal Processing Technologies for Food. IFT Press, Wiley-Blackwell, West Sussex, United Kingdom.
93. Noma, S.,, D. Kajiyama,, N. Igura,, M. Shimoda,, and I. Hayakawa. 2006. Mechanisms behind tailing in the pressure inactivation curve of a clinical isolate of Escherichia coli O157:H7. Int. J. Food Microbiol. 109:103108.
94. Oliveira, M. E. C.,, and A. S. Franca. 2002. Microwave heating of foodstuffs. J. Food Eng. 53:347349.
95. Ortega-Rivas, E. 2011. Critical issues pertaining to application of pulsed electric fields in microbial control and quality of processed fruit juices. Food Bioprocess. Technol. 4:631645.
96. Pagán, R.,, and B. Mackey. 2000. Relationship between membrane damage and cell death in pressure-treated Escherichia coli cells: differences between exponential- and stationary-phase cells and variation among strains. Appl. Environ. Microbiol. 66:28292834.
97. Pagán, R.,, S. Condon,, and J. Raso,. 2005. Microbial inactivation bypulsed electric fields, p. 4568. In G. V. Barbosa-Cánovas,, M. S. Tapia,, and M. P. Cano (ed.), Novel Food Processing Technologies. CRC Press, Boca Raton, FL.
98. Palaniappan, S.,, S. K. Sastry,, and E. R. Richter. 1992. Effects of electroconductive heat treatment and electrical pretreatment on thermal death kinetics of selected microorganisms. Biotechnol. Bioeng. 39:225232.
99. Patterson, M. F. 2005. A review: microbiology of pressure-treated foods. J. Appl. Microbiol. 98:14001409.
100. Patterson, M. F.,, M. Quinn,, R. Simpson,, and A. Gilmour. 1995. Sensitivity of vegetative pathogens to high hydrostatic pressure treatment in phosphate-buffered saline and foods. J. Food Prot. 58:524529.
101. Pflug, I. J. 1998. Microbiology and Engineering of Sterilization Processes, 9th ed. Environmental Sterilization Laboratory, Minneapolis, MN.
102. Pitt, J. I., 1975. Xerophilic fungi and the spoilage of food of plant origin, p. 273307. In R. B. Duckworth (ed.), Water Relations of Foods. Academic Press, London, United Kingdom.
103. Pitt, J. I.,, and B. F. Miscamble. 1995. Water relations of Aspergillus flavus and closely related species. J. Food Prot. 58:8690.
104. Pitt, J. I.,, and A. D. Hocking. 2009. Fungi and Food Spoilage. Springer, New York, NY.
105. Qi, Y.,, and K. J. Miller. 2000. Effect of low water activity on staphylococcal enterotoxin A and B biosynthesis. J. Food Prot. 63:473478.
106. Rainey, F. A.,, K. Ray,, M. Ferreira,, B. Z. Gatz,, M. F. Nobre,, D. Bagaley,, B. A. Rash,, M.-J. Park,, A. M. Earl,, N. C. Shank,, A. M. Small,, M. C. Henk,, J. R. Battista,, P. Kämpfer,, and M. S. da Costa. 2005. Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample. Appl. Environ. Microbiol. 71:52255235.
107. Rasanayagam, V.,, V. M. Balasubramaniam,, E. Ting,, C. E. Sizer,, C. Bush,, and C. Anderson. 2003. Compression heating of selected fatty food materials during high-pressure processing. J. Food Sci. 68:254259.
108. Roberts, T. A.,, G. Hobbs,, J. H. B. Christian,, and N. Skovgaard. 1981. Psychrotrophic Microorganisms in Spoilage and Pathogenicity. Academic Press, London, United Kingdom.
109. Rose, D., 1995. Advances and potential for aseptic processing, p. 283303. In G. W. Gould (ed.), New Methods of Food Preservation. Blackie Academic and Professional, Glasgow, United Kingdom.
110. Ryser, E. T., 2001. Public health concerns, p. 397545. In E. H. Marth, and J. L. Steele (ed.), Applied Dairy Microbiology, 2nd ed. Marcel Dekker, New York, NY.
111. Saleh, Y. G.,, M. S. Mayo,, and D. G. Ahearn. 1988. Resistance of some common fungi to gamma irradiation. Appl. Environ. Microbiol. 54:21342135.
112. Saravacos, G. D.,, and A. E. Kostaropoulos. 2002. Handbook of Food Processing Equipment. Kluwer Academic/Plenum Publishers, New York, NY.
113. Sastry, S. K. 2008. Ohmic heating and moderate electric field processing. Food Sci. Technol. Int. 14:419422.
114. Sastry, S. K.,, and B. D. Cornelius. 2002. Aseptic Processing of Foods Containing Solid Particulates. John Wiley & Sons, New York, NY.V
115. Sastry, S.K.,, A. Yousef,, H. Y. Cho,, S. R. Unal,, S. Salenghe,, W. C. Wang,, M. Lima,, S. Kulshrstha,, P. Wongsa-Ngasri,, and I. Senoy,. 2002. Ohmic heating and moderate electric field (MEF) processing, p. 785793. In J. Welti-Chanes,, G. V. Barbosa-Cánovas,, and J. M. Aguilera (ed.), Engineering and Food for the 21st Century. CRC Press, Boca Raton, FL.
116. Scott, W. J. 1953. Water relations of Staphylococcus aureus at 30°C. Aust. J. Biol. Sci. 6:549564.
117. Scott, W. J. 1957. Water relations of food spoilage microorganisms. Adv. Food Res. 7:83127.
118. Setlow, B.,, and P. Setlow. 1995. Small, acid-soluble proteins bound to DNA protect Bacillus subtilis spores from killing by dry heat. Appl. Environ. Microbiol. 61:27872790.
119. Sharma, S. K.,, P. Christen,, and P. Goloubinoff. 2009. Disaggregating chaperones: an unfolding story. Curr. Protein Peptide Sci. 10:432446.
120. Singh, R. P.,, and D. R. Heldman. 2009. Introduction to Food Engineering, 4th ed. Academic Press, Burlington, MA.
121. Smelt, J. P. 1998. Recent advances in the microbiology of high pressure processing. Trends Food Sci. Technol. 9:152158.
122. Smelt, J. P.,, A. G. Rijke,, and A. Hayhurst. 1994. Possible mechanisms of high-pressure inactivation of microorganisms. High Pressure Res. 12:199203.
123. Sober, J. 2005. Botulism. Clin. Infect. Dis. 41:11671173.
124. Sobrino-López, A.,, and O. Martín-Belloso. 2010. Potential of high-intensity pulsed electric field technology for milk processing. Food Eng. Rev. 2:1727.
125. Sommers, C.,, and X. Fan,. 2011. Irradiation of ground beefand fresh produce, p. 236248. In H. Q. Zhang,, G. V. Barbosa-Cánovas,, V. M. Balasubramaniam,, C. P. Dunne,, D. F. Farkas,, and J. T. C. Yuan (ed.), Nonthermal Processing Technologies for Food. IFT Press, Wiley-Blackwell, West Sussex, United Kingdom.
126. Somolinos, M.,, D. García,, R. Pagán,, and B. Mackey. 2008. Relationship between sublethal injury and microbial inactivation by the combination of high hydrostatic pressure and citral or tert-butyl hydroquinone. Appl. Environ. Microbiol. 74:75707577.
127. Splittstoesser, D. F.,, and C. M. Splittstoesser. 1977. Ascospores of Byssochlamys fulva compared with those of a heat resistant Aspergillus. J. Food Sci. 42:685688.
128. Splittstoesser, D. F.,, S. B. Leasor,, and K. M. J. Swanson. 1986. Effect of food composition on the heat resistance of yeast ascospores. J. Food Sci. 51:12651267.
129. Stumbo, C. R. 1965. Thermobacteriology in Food Processing. Academic Press, New York, NY.
130. Teixeira, A. A., 1992. Thermal process calculations, p. 563619. In D. R. Heldman, and D. B. Lund (ed.), Handbook of Food Engineering. Marcel Dekker, New York, NY.
131. Thayer, D. W., 2003. Ionizing irradiation, treatment of food. In D. R. Heldam (ed.), Encyclopedia of Agricultural, Food, and Biological Engineering. Marcel Dekker, New York, NY.
132. Thayer, D. W.,, and G. Boyd. 1999. Irradiation and modified atmosphere packaging for the control of Listeria monocytogenes on turkey meat. J. Food Prot. 62:11361142.
133. Thayer, D. W.,, G. Boyd,, L. Lakritz,, and J. W. Hampson. 1995. Variations in radiation sensitivity of foodborne pathogens associated with the suspending meat. J. Food Sci. 60:6367.
134. Ting, E., 2011. High pressureprocessing equipment fundamentals, p. 2027. In H. Q. Zhang,, G. V. Barbosa-Cánovas,, V. M. Balasubramaniam,, C. P. Dunne,, D. F. Farkas,, and J. T. C. Yuan (ed.), Nonthermal Processing Technologies for Food. IFT Press, Wiley-Blackwell, West Sussex, United Kingdom.
135. Ting, E.,, V. M. Balasubramaniam,, and E. Raghubeer. 2002. Determining thermal effects in high-pressure processing. Food Technol. 56:3135.
136. Tsong, T. Y. 1990. Review on electroporation of cell membranes and some related phenomena. Bioelectrochem. Bioenerg. 24:271295.
137. Tsuchido, T.,, N. Katsui,, A. Takeuchi,, M. Takano,, and I. Shibasaki. 1985. Destruction of the outer membrane permeability barrier of Escherichia coli by heat treatment. Appl. Environ. Microbiol. 50:298303.
138. Tucker, G. S., 2001. Validation of heat processes, p .7590. In P. Richardson (ed.), Thermal Processing Technologies in Food Processing. Woodhead Publications, New York, NY.
139. Urbain, W. M. 1986. Food Irradiation. Academic Press, Orlando, FL.
140.U.S. Food and DrugAdministration. 2000. Kinetics of microbial inactivation foralternative food processing technologies—glossary. Food andDrug Administration, Silver Spring, MD. www.fda.gov/food/scienceresearch/researchareas/safepracticesforfoodprocesses/ucm105794.htm.
141.U.S. Food and DrugAdministration. 2009. Process validation. Food and Drug Administration, Silver Spring,MD. www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/PostmarketRequirements/QualitySystemsRegulations/MedicalDeviceQualitySystemsManual/ucm122439.htm.
142.U.S. Food and DrugAdministration. 2010. Draft guidance for industry: acidifiedfoods. Food and Drug Administration, Silver Spring, MD. www.fda.gov/Food/GuidanceComplianceRegulatoryInformation/GuidanceDocuments/AcidifiedandLow-AcidCannedFoods/ucm222618.htm#III-A.
143.U.S. Pharmacopeia. 2011. Biological indicators for sterilization. U.S. Pharmacopeia, Rockville, MD. www.pharmacopeia.cn/v29240/usp29nf24s0_c1035.html.
144. Vega-Mercado, H.,, U. R. Pothakamury,, F.-J. Chang,, G. V. Barbosa-Cánovas,, and B. G. Swanson. 1996. Inactivation of Escherichia coli by combining pH, ionic strength and pulsed electric fields hurdles. Food Res. Int. 29:117121.
145. Waite-Cusic, J. G.,, B. H. Diono,, and A. E. Yousef. 2011. Screening for Listeria monocytogenes surrogate strains applicable to food processing by ultrahigh pressure and pulsed electric field. J. Food Prot. 74:16551661.
146. Warth, A. D. 1978. Relationship between the heat-resistance of spores and the optimum and maximum growth temperatures of Bacillus species. J. Bacteriol. 134:699705.
147. White, H. 1953. The heat resistance of Streptococcus faecalis. J. Gen. Microbiol. 8:2737.
148. Wouters, P. C.,, A. P. Bos,, and J. Ueckert. 2001. Membrane permeabilization in relation to inactivation kinetics of Lactobacillus species due to pulsed electric fields. Appl. Environ. Microbiol. 67:30923101.
149. Wouters, P. C.,, N. Dutreux,, J. P. Smelt,, and H. L. Lelieveld. 1999. Effects of pulsed electric fields on inactivation kinetics of Listeria innocua. Appl. Environ. Microbiol. 65:53645371.
150. Yamamori, T.,, and T. Yura. 1982. Genetic control of heat-shock protein synthesis and its bearing on growth and thermal resistance in Escherichia coli K-12. Proc. Natl. Acad. Sci. USA 79:860864.
151. Yano, Y.,, A. Nakayama,, K. Ishihara,, and H. Satio. 1998. Adaptive changes in membrane lipids of barophilic bacteria in response to changes in growth pressure. Appl. Environ. Microbiol. 64:479485.
152. Yousef, A. E.,, and Q. H. Zhang,. 2006. Microbiological and safety aspects of pulsed electric field technology, p. 152166. In V. K. Juneja,, J. P. Cherry,, and M. H. Tunick (ed.), Advances in Microbiological Food Safety. American Chemical Society, Washington, DC.
153. Zhang, Q.,, G. V. Barbosa-Cánovas,, and B. G. Swanson. 1995. Engineering aspects of pulsed electric fields pasteurization. J. Food Eng. 25:261281.
154. Zhang, H. Q.,, G. V. Barbosa-Cánovas,, V. M. Balasubramaniam,, C. P. Dunne,, D. F. Farkas,, and J. T. C. Yuan (ed.). 2011. Nonthermal Processing Technologies for Food. IFT Press, Wiley-Blackwell, West Sussex, United Kingdom.
155. Zhang, H.,, M. M. Barth,, and T. R. Hankinson,. 2003. Microbial safety, quality, and sensory aspects of fresh-cut fruits and vegetables, p. 255278. In J. S. Novak,, G. M. Sapers,, and V. K. Juneja (ed.), Microbial Safety of Minimally Processed Foods. CRC Press, Boca Raton, FL.

Tables

Generic image for table
Table 29.1

Comparison of heat resistance of selected bacterial spores in thermally processed foods

Citation: Yousef A, Balasubramaniam V. 2013. Physical Methods of Food Preservation, p 737-763. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch29
Generic image for table
Table 29.2

Approximate values needed to commercially sterilize selected canned foods

Citation: Yousef A, Balasubramaniam V. 2013. Physical Methods of Food Preservation, p 737-763. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch29
Generic image for table
Table 29.3

Approximate a minima for growth of foodborne microorganisms and examples of relevant foods

Citation: Yousef A, Balasubramaniam V. 2013. Physical Methods of Food Preservation, p 737-763. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch29
Generic image for table
Table 29.4

Comparison between NaCl and glycerol, when used as humectants to decrease water availability, on the minimum a that supports the growth of pathogenic bacteria

Citation: Yousef A, Balasubramaniam V. 2013. Physical Methods of Food Preservation, p 737-763. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch29

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error