1887

Chapter 3 : Spores and Their Significance

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Spores and Their Significance, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818463/9781555816261_Chap03-1.gif /docserver/preview/fulltext/10.1128/9781555818463/9781555816261_Chap03-2.gif

Abstract:

This chapter describes the fundamental basis of sporulation and the problems that spores present to the food industry. Throughout sporulation, gene expression is ordered not only temporally but also spatially, as some genes are expressed only in the mother cell or the forespore. This chapter highlights the state of knowledge of molecular mechanisms of sporulation, spore dormancy, germination, and outgrowth. The sporulating bacteria discussed in this chapter form heat-resistant endospores that contain dipicolinic acid (DPA) and are refractile or phase bright under phase-contrast microscopy. Spores are metabolically dormant, catalyzing no metabolism of endogenous or exogenous compounds. The major cause of this dormancy is undoubtedly the low water content of the spore core, which precludes protein mobility and enzyme action. Three species of sporeformers, , , and , are well known to produce toxins that can cause illness in humans and animals, and many species of sporeformers cause spoilage of food. Certain other species of such as , , and have also been reported to sporadically cause foodborne diseases through production of toxins, and rare strains of and produce type E and F botulinal toxins, respectively. With the global increase in population and food consumption, technologies to prevent spoilage would help to alleviate food shortages and spoilage and contribute to food security.

Citation: Setlow P, Johnson E. 2013. Spores and Their Significance, p 45-79. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch3
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 3.1
Figure 3.1

Structure of DPA. Note that at physiological pH both carboxyl groups will be ionized. doi:10.1128/9781555818463.ch3f1

Citation: Setlow P, Johnson E. 2013. Spores and Their Significance, p 45-79. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.2
Figure 3.2

Morphological, biochemical, and physiological changes during sporulation of a rod-shaped cell. In stage 0, a cell with two nucleoids (N) is shown; in stage IIi, the mother cell and forespore are designated MC and FS, respectively. Note that the forespore nucleoid is more condensed than that in the mother cell. Stage IIii is not shown in this scheme, and the forespore nucleoid is not shown after stage III for clarity. The time of some biochemical and physiological events, such as forespore dehydration and acquisition of types of resistance to different chemicals (all lumped together as “chemical resistance”), stretches over a number of stages. The data for this figure are taken from reference . doi:10.1128/9781555818463.ch3f2

Citation: Setlow P, Johnson E. 2013. Spores and Their Significance, p 45-79. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.3
Figure 3.3

Some gene products and reactions that affect levels of Spo0A∼P. Spo0E is a phosphatase that acts on Spo0A∼P; RapA and RapB are phosphatases that act on Spo0F∼P ( ). doi:10.1128/9781555818463.ch3f3

Citation: Setlow P, Johnson E. 2013. Spores and Their Significance, p 45-79. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.4
Figure 3.4

Regulation of gene expression during sporulation. The effect of Spo0A∼P on repressors is negative; other effects of regulatory molecules on reactions are generally positive, although the effect of signals may be positive or negative. The enclosure of the pro-σ factors and σ factors denotes that at this time these factors are inactive. This figure is adapted from that in reference . doi:10.1128/9781555818463.ch3f4

Citation: Setlow P, Johnson E. 2013. Spores and Their Significance, p 45-79. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.5
Figure 3.5

Structure of a dormant spore. The various structures are not drawn precisely to scale, especially the exosporium, whose size varies tremendously between spores of different species. The relative size of the germ cell wall is also generally smaller than shown. The positions of the inner and outer forespore membranes, between the core and the germ cell wall and between the cortex and coats, respectively, are also noted. doi:10.1128/9781555818463.ch3f5

Citation: Setlow P, Johnson E. 2013. Spores and Their Significance, p 45-79. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.6
Figure 3.6

Structures of (A) cyclobutane-type TT dimer and (B) 5-thyminyl-5,6-dihydrothymine adduct (spore photoproduct). The positions of the hydrogens noted by the asterisks are the locations of the glycosylic bond in DNA. doi:10.1128/9781555818463.ch3f6

Citation: Setlow P, Johnson E. 2013. Spores and Their Significance, p 45-79. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.7
Figure 3.7

Correlation of spore heat resistance and protoplast (core) water content of lysozyme-sensitive spore types from seven species that vary in thermal adaptation and mineralization. The figure is from the work of Gerhardt and Marquis ( ) with permission. The numbers refer to spores of various species: 1, ; 2, “”; 3, ; 4, ; 5, ; 6, ; and 7, . The letters denote the sporulation temperature or the mineralization of the spores of various species as described in the original publication. doi:10.1128/9781555818463.ch3f7

Citation: Setlow P, Johnson E. 2013. Spores and Their Significance, p 45-79. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.8
Figure 3.8

Spore activation, germination, and outgrowth. The events in activation are not known, hence the question mark. The loss of the spore cortex and the hydration and swelling of the core are shown in the germinated spore. The figure is adapted from Fig. 3 in reference . doi:10.1128/9781555818463.ch3f8

Citation: Setlow P, Johnson E. 2013. Spores and Their Significance, p 45-79. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.9
Figure 3.9

Transmission electron micrograph (×50,000) of a longitudinal section through a spore and sporangium of type A, showing the characteristic club-shaped morphology. doi:10.1128/9781555818463.ch3f9

Citation: Setlow P, Johnson E. 2013. Spores and Their Significance, p 45-79. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.10
Figure 3.10

Electron micrographs of type B (A) and E (B) showing characteristic exosporium in types B and E and appendages in type E. Micrographs courtesy of Philipp Gerhardt from spores produced in E.A.J.'s laboratory. doi:10.1128/9781555818463.ch3f10

Citation: Setlow P, Johnson E. 2013. Spores and Their Significance, p 45-79. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818463.chap3
1. Ablett, A. H.,, P. J. Lillford,, and D. R. Martin. 1999. Glass formation and dormancy in bacterial spores. Int. J. Food Sci. Technol. 34:5969.
2. Adam, K. H.,, S. H. Flint,, and G. Brightwell. 2010. Psychrophilic and psychrotrophic clostridia: sporulation and germination processes and their role in the spoilage of chilled, vacuum-packaged beef, lamb, and venison. Int. J. Food Sci. Technol. 45:15391544.
3.Reference deleted.
4.Reference deleted.
5. Appert, N., 1810. L’Art de conserver pendant plusieurs annees toutes les substances animales et vegetales. (Translated by K. G. Bitting, Chicago, IL, 1920.) In S. A. Goldblith,, M. A. Joslyn,, and J. T. R. Nickerson (ed.), Introduction to the Thermal Processing of Foods. 1961. AVI Publishing Co., Westport, CT.
6. Aronson, A. I., 1993. Insecticidal toxins, p. 953964. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. American Society for Microbiology, Washington, DC.
7. Atluri, S.,, K. Ragkousi,, D. E. Cortezzo,, and P. Setlow. 2006. Co-operativity between different nutrient receptors in germination of spores of Bacillus subtilis and reduction of this co-operativity by alterations in the GerB receptor. J. Bacteriol. 188:2836.
8. Barak, I.,, and A. J. Wilkinson. 2005. Where asymmetry in gene expression originates. Mol. Microbiol. 57:611620.
9. Beaman, T. C.,, and P. Gerhardt. 1986. Heat resistance of bacterial spores correlated with protoplast dehydration, mineralization, and thermal adaptation. Appl. Environ. Microbiol. 52:12421246.
10. Bettegowda, C.,, X. Huang,, J. Lin,, I. Cheong,, M. Kohli,, S. A. Szabo,, X. Zhang,, L. A. Diaz, Jr.,, V. E. Velculescu,, G. Parmigiani,, K. W. Kinzler,, B. Vogelstein,, and S. Zhou. 2006. The genome and transcriptomes of the anti-tumor agent Clostridium novyi-NT. Nat. Biotechnol. 24:15731580.
11. Blakistone, B.,, R. Chuyate,, D. Kautter, Jr., J. Charbonneau, and K. Suit. 1999. Efficacy of oxonia active against selective spore formers. J. Food Prot. 62:262267.
12. Broda, D. M.,, J. A. Boerma,, and T. Brightwell. 2009. Sources of psychrophilic and psychrotolerant clostridia causing spoilage of vacuum-packaged chilled meats, as determined by PCR amplification procedure. J. Appl. Microbiol. 107:178186.
13. Brown, K. L. 2000. Control of bacterial spores. Br. Med. Bull. 56:158171.
14. Bulloch, W. 1938. The History of Bacteriology. Oxford University Press, Oxford, England.
15. Burgess, S. A.,, D. Lindsay,, and S. H. Flint. 2010. Thermophilic bacilli and their importance in dairy processing. Int. J. Food Microbiol. 144:215225.
16. Camp, A. H.,, and R. Losick. 2009. A feeding tube model for activation of a cell-type specific transcription factor during sporulation in Bacillus subtilis. Genes Dev. 23:10141024.
17. Cangiano, C. G.,, A. Mazzone,, L. Baccigalupi,, R. Isticato,, P. Eichenberger,, M. De Felice,, and E. Ricca. 2010. Direct and indirect control of late sporulation genes by GerR of Bacillus subtilis. J. Bacteriol. 192:34063413.
18. Cartman, S. T.,, and R. M. La Ragione,. 2004. Spore probiotics as animal feed supplements, p. 155161. In E. Ricca,, A. O. Henriques,, and S. M. Cutting (ed.), Bacterial Spore Formers. Probiotics and Emerging Applications. Horizon Bioscience, Norfolk, United Kingdom.
19. Cato, E. P.,, W. L. George,, and S. M. Finegold,. 1986. The genus Clostridium, p. 11411200. In H. A. Sneath,, N. S. Mair,, and M. E. Sharpe (ed.), Bergey’s Manual of Systematic Bacteriology, vol. 2. Williams & Wilkins, Baltimore, MD.
20. Champagne, C. P.,, R. R. Laing,, D. Roy,, A. A. Mafu,, and M. W. Griffiths. 1994. Psychrotrophs in dairy products: their effects and their control. Crit. Rev. Food Sci. Nutr. 34:130.
21. Chary, V. K.,, P. Xenopoulos,, and P. J. Piggot. 2007. Expression of the σF-directed csfB locus prevents premature appearance of σG activity during sporulation of Bacillus subtilis. J. Bacteriol. 189:87548757.
22. Chastanet, A.,, D. Vitkup,, G. C. Norman,, J. S. Liu,, and R. M. Losick. 2010. Broadly heterogeneous activation of the master regulator for sporulation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 107:84868491.
23. Chenokova, O. N.,, S. A. McPherson,, C. T. Steichen,, and C. L. Turnbough, Jr. 2009. The spore-specific alanine racemase of Bacillus anthracis and its role in suppressing germination during spore development. J. Bacteriol. 191:13031310.
24. Chotyakul, N.,, G. Velazquez,, and J. A. Torres. 2011. Assessment of the uncertainty in thermal food processing decisions based on microbial safety objectives. J. Food Eng. 102:247256.
25. Clarkson, J.,, I. D. Campbell,, and M. D. Yudkin. 2004. Efficient regulation of σF, the first sporulation-specific sigma factor in B. subtilis. J. Mol. Biol. 342:11871195.
26. Claverys, J. P.,, and L. S. Hålvarstein. 2007. Cannibalism and fratricide: mechanisms and raison d’être. Nat. Rev. Microbiol. 5:219229.
27. Coleman, W. H.,, and P. Setlow. 2009. Analysis of damage due to moist heat treatment of spores of Bacillus subtilis. J. Appl. Microbiol. 106:16001607.
28. Coleman, W. H.,, D. Chen,, Y.-q. Li,, A. E. Cowan,, and P. Setlow. 2007. How moist heat kills spores of Bacillus subtilis. J. Bacteriol. 189:84588466.
29. Coleman, W. H.,, P. Zhang,, Y.-q. Li,, and P. Setlow. 2010. Mechanism of killing of spores of Bacillus cereus and Bacillus megaterium by wet heat. Lett. Appl. Microbiol. 50:507514.
30. Cowan, A. E.,, D. E. Koppel,, B. Setlow,, and P. Setlow. 2003. A soluble protein is immobile in dormant spores of Bacillus subtilis but is mobile in germinated spores: implications for spore dormancy. Proc. Natl. Acad. Sci. USA 100:42094214.
31. Cowan, A. E.,, E. M. Olivastro,, D. E. Koppel,, C. A. Loshon,, B. Setlow,, and P. Setlow. 2004. Lipids in the inner membrane of dormant spores of Bacillus species are immobile. Proc. Natl. Acad. Sci. USA 101:77337738.
32. Dawes, I. W.,, and J. Mandelstam. 1970. Sporulation of Bacillus subtilis in continuous culture. J. Bacteriol. 103:529535.
33. de Hoon, M. J. L.,, P. Eichenberger,, and D. Vitkup. 2010. Hierarchical evolution of the bacterial sporulation network. Curr. Biol. 20:R735R745.
34. de Jong, I. G.,, J. W. Veening,, and O. P. Kuipers. 2010. Heterochronic phosphorelay gene expression as a source of heterogeneity in Bacillus subtilis spore formation. J. Bacteriol. 192:20532067.
35. De Vos, P., et al. (ed.). 2009. Bergey’s Manual of Systematic Bacteriology, 2nd ed., vol. 3. The Firmicutes. Springer, Dordrecht, The Netherlands.
36. Do, J. H.,, M. Nagasaki,, and S. Miyano. 2010. The systems approach to the prespore-specific activation of sigma factor SigF in Bacillus subtilis. Biosystems 100:178S184S.
36a. Dodatko, T.,, M. Akoachere,, S. M. Muehlbauer,, F. Helfrich,, A. Howerton,, C. Ross,, V. Wysocki,, J. Brojatsch,, and E. Abel-Santos. 2009. Bacillus cereus spores release alanine that synergizes with inosine to promote germination. PLoS One 4:e6398.
37. Doyle, M. P. 1991. Evaluating the potential risk from extended shelf-life refrigerated foods by Clostridium botulinum inoculation studies. Food Technol. 45:154156.
38. Eichenberger, P.,, M. Fujita,, S. T. Jensen,, E. M. Conlon,, D. Z. Rudner,, S. T. Wang,, C. Ferguson,, T. Sato,, J. S. Liu,, and R. Losick. 2005. The program of gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis. PLoS Biol. 2:e328.
39. Eijlander, R. T.,, T. Abee,, and O. P. Kuipers. 2011. Bacterial spores in food: how phenotypic variability complicates prediction of spore properties and bacterial behavior. Curr. Opin. Biotechnol. 22:180186.
40. Erickson, M. C.,, and J. L. Kornacki. 2003. Bacillus anthracis: current knowledge in relation to contamination of food. J. Food Prot. 66:691699.
41. Esty, J. R.,, and K. F. Meyer. 1922. The heat resistance of the spores of Bacillus botulinus and allied anaerobes. XI. J. Infect. Dis. 31:650663.
42. Eswaramoorthy, P.,, D. Duan,, J. Dinh,, A. Dravis,, S. N. Devi,, and M. Fujita. 2010. The threshold level of the sensor histidine kinase KinA governs entry into sporulation in Bacillus subtilis. J. Bacteriol. 192:38703882.
43. Fairhead, H.,, B. Setlow,, and P. Setlow. 1993. Prevention of DNA damage in spores and in vitro by small, acid-soluble proteins from Bacillus species. J. Bacteriol. 175:13671374.
44. Franciosa, G.,, P. Aureli,, and R. Schechter,. 2003. Clostridium botulinum, p. 6189. In M. D. Bier, and J. W. Miliotis (ed.), International Handbook of Foodborne Pathogens. Marcel Dekker, New York, NY.
45. Fujita, M.,, J. E. Gonzalez-Pastor,, and R. Losick. 2005. High- and low-threshold genes in the Spo0A regulon of Bacillus subtilis. J. Bacteriol. 187:13571368.
46. Fujita, M.,, and R. Losick. 2005. Evidence that entry into sporulation in Bacillus subtilis is governed by a gradual increase in the level and activity of the master regulator Spo0A. Genes Dev. 19:22362244.
47. Gerhardt, P.,, and R. E. Marquis,. 1989. Spore thermoresistance mechanisms, p. 1763. In I. Smith,, R. Slepecky,, and P. Setlow (ed.), Regulation of Procaryotic Development. American Society for Microbiology, Washington, DC.
48. Ghosh, S.,, and P. Setlow. 2009. Isolation and characterization of superdormant spores of Bacillus species. J. Bacteriol. 191:17871797.
49. Ghosh, S.,, P. Zhang,, Y.-q. Li,, and P. Setlow. 2009. Superdormant spores of Bacillus species have elevated wet heat resistance and temperature requirements for heat activation. J. Bacteriol. 191:55845591.
50. Gilmore, M. E.,, D. Bandyopadhyay,, A. M. Dean,, S. D. Linnstaedt,, and D. L. Popham. 2004. Production of muramic δ-lactam in Bacillus subtilis spore peptidoglycan. J. Bacteriol. 186:8089.
51. Glass, K. G.,, and E. A. Johnson,. 2001. Formulating low-acid foods for botulinal safety, p. 323350. In V. K. Juneja, and J. N. Sofos (ed.), Control of Foodborne Organisms. Marcel Dekker, New York, NY.
52. Goldblith, S. A.,, M. A. Joslyn,, and J. T. R. Nickerson. 1961. An Anthology of Food Science, vol. 1. Introduction to the Thermal Processing of Foods. AVI Publishing, Westport, CT.
53. Granum, P. E.,, and T. C. Baird-Parker,. 2000. Bacillus species, p. 10291039. In B. M. Lund,, T. C. Baird-Parker,, and G. W. Gould (ed.), The Microbiological Safety and Quality of Food, vol. II. Aspen Publishers, Gaithersburg, MD.
54. Greenberg, R. A.,, R. B. Tompkin,, B. O. Blade,, R. S. Kittaka,, and A. Anelis. 1966. Incidence of mesophilic spores in raw pork, beef, and chicken in processing plants in the United States and Canada. Appl. Microbiol. 14:789793.
55. Griffiths, K.,, and P. Setlow. 2009. Effects of modification of membrane lipid composition on Bacillus subtilis sporulation and spore properties. J. Appl. Microbiol. 106:20642078.
56. Guillemin, J. 1999. Anthrax. The Investigation of a Deadly Outbreak. University of California Press, Berkeley, CA.
57. Harry, K. H.,, R. Zhou,,, L. Kroos,, and S. B. Melville. 2009. Sporulation and enterotoxin synthesis are controlled by the sporulation-specific sigma factors SigE and SigK in Clostridium perfringens. J. Bacteriol. 191:27282742.
58. Hatheway, C. L.,, and E. A. Johnson,. 1998. Clostridium: the spore-bearing anaerobes, p. 732782. In W. J. Hausler, and M. Sussman (ed.), Topley and Wilson’s Microbiology and Microbial Infections, 9th ed., vol. 3. Edward Arnold, London, England.
59. Henriques, A. O.,, and C. P. Moran, Jr. 2007. Structure, assembly, and function of the spore surface layers. Annu. Rev. Microbiol. 61:555588.
60. Hilbert, D. W.,, and P. J. Piggot. 2004. Compartmentalization of gene expression during Bacillus subtilis spore formation. Microbiol. Mol. Biol. Rev. 68:234262.
61. Hornstra, L. M.,, A. Ter Beek,, J. P. Smelt,, W. W. Kallemeijn,, and S. Brul. 2009. On the origin in (preservation) resistance of Bacillus spores: input for a “systems” analysis approach of bacterial spore outgrowth. Int. J. Food Microbiol. 134:915.
62. Hurst, A., 1983. Injury, p. 255274. In A. Hurst, and G. W. Gould (ed.), The Bacterial Spore, vol. 2. Academic Press, London, England.
63. Husmark, U.,, and U. Ronner. 1992. The influence of hydrophobic, electrostatic and morphologic properties on the adhesion of Bacillus spores. Biofouling 5:335344.
64. Inglesby, T. V.,, D. A. Henderson,, J. G. Bartlett,, M. S. Ascher,, E. Eitzen,, A. M. Friedlander,, J. Hauer,, J. McDade,, M. T. Osterholm,, T. O’Toole,, G. Parker,, T. M. Perl,, P. K. Russell,, and K. Tonat for the Working Group on Civilian Biodefense. 1999. Anthrax as a biological weapon. Medical and public health management. JAMA 281:17351745.
65. Ingram, M., 1969. Sporeformers as food spoilage organisms, p. 549610. In G. W. Gould, and A. Hurst (ed.), The Bacterial Spore. Academic Press, London, England.
66.InternationalCommissiononMicrobiologicalSpecificationsforFoods. 1996. Microorganisms in Foods 5. Characteristics of Microbial Pathogens. Blackie Academic & Professional, London, England.
67. Johnson, E. A., 1991. Microbiological safety of fermented foods, p. 135169. In J. G. Zeikus, and E. A. Johnson (ed.), Mixed Cultures in Biotechnology. McGraw Hill, New York, NY.
68. Johnson, E. A.,, and M. C. Goodnough,. 1998. Botulism, p. 724741. In W. J. Hausler, and M. Sussman (ed.), Topley and Wilson’s Microbiology and Microbial Infections, 9th ed., vol. 3. Edward Arnold, London, England.
69. Johnson, E. A., 2006. Clostridium botulinum and Clostridium tetani, p. 10351088. In S. P. Borriello,, P. R. Murray,, and G. Funke (ed.), Topley and Wilson’s Microbiology and Microbial Infections, 8th ed. Hodder Arnold, London, England.
70. Jones, S. W.,, C. J. Paredes,, B. Tracy,, N. Cheng,, R. Sillers,, R. S. Senger,, and E. T. Papoutsakis. 2008. The transcriptional program underlying the physiology of clostridial sporulation. Genome Biol. 9:R14.
71. Juneja, V. K.,, and H. M. Marks. 1999. Proteolytic Clostridium botulinum growth at 12–48°C simulating the cooling of cooked meat: development of a predictive model. Food Microbiol. 16:583592.
72. Juneja, V. K.,, B. S. Marmer,, J. G. Phillips,, and A. J. Miller. 1995. Influence of the intrinsic properties of food on thermal inactivation of spores of nonproteolytic Clostridium botulinum: development of a predictive model. J. Food Saf. 15:349364.
73. Kalinowski, R. M.,, and R. B. Tompkin. 1999. Psychrotrophic clostridia causing spoilage in cooked meat and poultry products. J. Food Prot. 62:766772.
74. Karmazyn-Campelli, C.,, L. Rhayat,, R. Carballido-López,, S. Duperrier,, N. Frandsen,, and P. Stragier. 2008. How the early sporulation sigma factor sigmaF delays the switch to late development in Bacillus subtilis. Mol. Microbiol. 67:11691180.
75. Keijser, B. J.,, A. Ter Beek,, H. Rauwerda,, F. Schuren,, R. Montijn,, H. van der Spek,, and S. Brul. 2007. Analysis of temporal gene expression during Bacillus subtilis spore germination and outgrowth. J. Bacteriol. 189:36243634.
76. Keynan, A.,, and Z. Evenchik,. 1969. Activation, p. 359396. In G. W. Gould, and A. Hurst (ed.), The Bacterial Spore. Academic Press, New York, NY.
77. Keynan, A.,, and N. Sandler,. 1984. Spore research in historical perspective, p. 148. In A. Hurst, and G. W. Gould (ed.), The Bacterial Spore, vol. 2. Academic Press, London, England.
78. Kihm, D. J.,, M. T. Hutton,, J. H. Hanlin,, and E. A. Johnson. 1988. Zinc stimulates sporulation in Clostridium botulinum 113B. Curr. Microbiol. 17:193198.
79. Kihm, D. J.,, M. T. Hutton,, J. H. Hanlin,, and E. A. Johnson. 1990. Influence of transition metals added during sporulation on heat resistance of Clostridium botulinum 113B spores. Appl. Environ. Microbiol. 56:681685.
80. Kihm, D. J.,, and E. A. Johnson. 1990. Hydrogen gas accelerates thermal inactivation of Clostridium botulinum spores. Appl. Microbiol. Biotechnol. 33:705708.
81. Kim, J.,, and P. M. Foegeding,. 1993. Principles of control, p. 121176. In A. H. W. Hauschild, and K. L. Dodds (ed.), Clostridium botulinum. Ecology and Control in Foods. Marcel Dekker, New York, NY.
82. Kong, L.,, P. Zhang,, P. Setlow,, and Y.-Q. Li. 2010. Characterization of bacterial spore germination using integrated phase contrast microscopy, Raman spectroscopy and optical tweezers. Anal. Chem. 82:38403847.
83. Kroos, L. 2007. The Bacillus and Myxococcus developmental networks and their transcriptional regulators. Annu. Rev. Genet. 41:1339.
84. Laaberki, M. H.,, and J. Dworkin. 2008. Role of spore coat proteins in the resistance of Bacillus subtilis spores to Caenorhabditis elegans predation. J. Bacteriol. 190:61976203.
85. Lawson, P.,, R. H. Dainty,, N. Kristiansen,, J. Berg,, and M. D. Collins. 1994. Characterization of a psychrotrophic Clostridium causing spoilage in vacuum-packed cooked pork: description of Clostridium algidicarnis sp. nov. Lett. Appl. Microbiol. 19:153157.
86. Lee, K. S.,, D. Bumbaca,, J. Kosman,, P. Setlow,, and M. J. Jedrzejas. 2008. Structure of a protein-DNA complex essential for DNA protection in spores of Bacillus species. Proc. Natl. Acad. Sci. USA 105:28062811.
87. Leisner, M.,, K. Stingl,, E. Frey,, and B. Maier. 2008. Stochastic switching to genetic competence. Curr. Opinion Microbiol. 11:553559.
88. Leuschner, R. G. K.,, and P. J. Lillford. 2003. Thermal properties of bacterial spores and biopolymers. Int. J. Food Microbiol. 87:814.
89. Li, J.,, D. Paredes-Sabja,, M. R. Sarker,, and B. A. McClane. 2009. Further characterization of Clostridiuum perfringens small, acid-soluble protein-4 (Ssp4) properties and expression. PLoS One 7:e6249.
90. Li, J.,, and B. A. McClane. 2010. Evaluating the involvement of alternative sigma factors SigF and SigG in Clostridium perfringens sporulation and enterotoxin synthesis. Infect. Immun. 78:42864293.
91. Loeb, L. A.,, E. A. James,, A. M. Waltersdorph,, and S. J. Klebanoff. 1988. Mutagenesis by the autoxidation of iron with isolated DNA. Proc. Natl. Acad. Sci. USA 85:39183922.
92. Logan, N. A., 2004. Safety of aerobic endospore-forming bacteria, p. 93105. In E. Ricca,, A. O. Henriques,, and S. M. Cutting (ed.), Bacterial Spore Formers. Probiotics and Emerging Applications. Horizon Bioscience, Norfolk, United Kingdom.
93. López, D.,, and R. Kolter. 2009. Extracellular signals that define distinct and coexisting cell fates in Bacillus subtilis. FEMS Microbiol. Rev. 34:134149.
94. Lund, B. M.,, and M. W. Peck. 1994. Heat resistance and recovery of spores of nonproteolytic Clostridium botulinum in relation to refrigerated, processed foods with extended shelf-life. J. Appl. Bacteriol. Symp. 76:115S128S.
95. Lund, D., 1975. Thermal processing, p. 3192. In M. Karel,, O. R. Fennema,, and D. B. Lund (ed.), Principles of Food Science. Part II. Physical Principles of Food Preservation. Marcel Dekker, New York, NY.
96. Lynt, R. K.,, D. A. Kautter,, and R. B. Read, Jr. 1975. Botulism in commercially canned foods. J. Milk Food Technol. 38:546550.
97. Lynt, R. K.,, D. A. Kautter,, and H. M. Solomon. 1982. Differences and similarities among proteolytic strains of Clostridium botulinum types A, B, E and F: a review. J. Food Prot. 45:466474.
98. Maughan, H. 2007. Rates of molecular evolution in bacteria are relatively constant despite spore dormancy. Evolution 61:280288.
99. McDonnell, G.,, and A. D. Russell. 1999. Antiseptics and disinfectants: activity, action and resistance. Clin. Microbiol. Rev. 12:147179.
100. McKee, L. H. 1995. Microbial contamination of spices and herbs: a review. Lebensm. Wiss. Technol. 28:111.
101. McKevitt, M. T.,, K. M. Bryant,, S. M. Shakir,, J. L. Larabee,, S. R. Blanke,, J. Lovchik,, C. R. Lyons,, and J. D. Ballard. 2007. Effects of endogenous D-alanine synthesis and autoinhibition of Bacillus anthracis germination on in vitro and in vivo infections. Infect. Immun. 75:57265734.
102. Meisner, J.,, X. Wang,, M. Serrano,, A. O. Henriques,, and C. P. Moran, Jr. 2008. A channel connecting the mother cell and forespore during bacterial endospore formation. Proc. Natl. Acad. Sci. USA 105:1510015105.
103. Moeller, R.,, P. Setlow,, G. Horneck,, T. Berger,, G. Reitz,, P. Rutberg,, A. J. Doherty,, R. Okayasu,, and W. L. Nicholson. 2008. Role of major small, acid-soluble spore proteins, spore specific and universal DNA repair mechanisms in the resistance of Bacillus subtilis spores to ionizing radiation from X-rays and high energy charged (HZE) particle bombardment. J. Bacteriol. 190:11341140.
104. Moir, C. J. (ed.). 2001. Spoilage of Processed Foods: Cause and Diagnosis. Australian Institute of Food Science and Technology (NSW Branch), Waterloo DC, New South Wales, Australia.
105. Molle, V.,, Y. Nakaura,, R. P. Shivers,, H. Yamaguchi,, R. Losick,, Y. Fujita,, and A. L. Sonenshein. 2003. Additional targets of the Bacillus subtilis global regulator CodY identified by chromatin immunoprecipitation and genome-wide transcript analysis. J. Bacteriol. 185:19111922.
106. Moorhead, S. M.,, and R. G. Bell. 1999. Psychrotrophic clostridia mediated gas and botulinal toxin production in vacuum-packed chilled meat. Lett. Appl. Microbiol. 28:108112.
107. Morris, C.,, A. L. Brody,, and L. Wicker. 2007. Non-thermal food processing/preservation technologies: a review with packaging implications. Packaging Technol. Sci. 20:275286.
108. Moschonas, G.,, D. J. Bolton,, J. J. Sheridan,, and D. A. McDowell. 2009. Isolation and sources of ‘blown pack’ spoilage clostridia in beef abattoirs. J. Appl. Microbiol. 107:616624.
109.NFPA/CMI Container Integrity Task Force, Microbiological Assessment Group Report. 1984. Botulism risk from post-processing contamination of commercially canned foods in metal containers. J. Food Prot. 47:801816.
110. Nicholson, W. L.,, N. Munakata,, G. Horneck,, H. J. Melosh,, and P. Setlow. 2000. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 64:548572.
111. Nicholson, W. L.,, A. C. Schuerger,, and P. Setlow. 2005. The solar UV environment and bacterial spore UV resistance: considerations for Earth-to Mars transport by natural processes and human spaceflight. Mutat. Res. 571:248264.
112. Notermans, S.,, P. in’t Veld,, T. Wijtzes,, and G. C. Mead. 1993. A user’s guide to microbial challenge testing for ensuring the safety and stability of food products. Food Microbiol. 10:145157.
113. Nulens, E.,, and A. Voss. 2002. Laboratory diagnosis and biosafety issues of biological warfare agents. Clin. Microbiol. Infect. 8:455466.
114. Ohye, D. F.,, and W. J. Scott. 1957. Studies in the physiology of Clostridium botulinum type E. Aust. J. Biol. Sci. 10:8594.
115. Ordal, G. W.,, L. Marquez-Magana,, and M. J. Chamberlin,. 1993. Motility and chemotaxis, p. 765784. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology and Molecular Genetics. American Society for Microbiology, Washington, DC.
116. Orr, R. V.,, and L. R. Beuchat. 2000. Efficacy of disinfectants in killing of spores of Alicyclobacillus acidoterrestris and performance of media supporting colony development by survivors. J. Food Prot. 63:11171122.
117. Paidhungat, M.,, and P. Setlow,. 2002. Spore germination and outgrowth, p. 537548. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Its Closest Relatives: from Genes to Cells. ASM Press, Washington, DC.
118. Paredes, C. J.,, K. V. Alasker,, and E. T. Papoutskis. 2005. A comparative genomic view of clostridial sporulation and physiology. Nat. Rev. Microbiol. 3:969978.
119. Paredes-Sabja, D.,, P. Setlow,, and M. R. Sarker. 2011. Germination of spores of Bacillales and Clostridiales species: mechanisms and proteins involved. Trends Microbiol. 19:3594.
120. Peck, M. W. 2009. Biology and genomic analysis of Clostridium botulinum. Adv. Microb. Physiol. 55:183265.
121. Peleg, M.,, and M. B. Cole. 1998. Reinterpretation of microbial survival curves. Crit. Rev. Food Sci. 38:353380.
122. Peleg, M.,, and M. B. Cole. 2000. Estimating the survival of Clostridium botulinum spores during heat treatments. J. Food Prot. 63:190195.
123. Peng, L.,, D. Chen,, P. Setlow,, and Y.-Q. Li. 2009. Elastic and inelastic light scattering from single bacterial spores in an optical trap allows monitoring of spore germination dynamics. Anal. Chem. 81:40354042.
124. Perni, S.,, R. R. Beumer,, and M. H. Zwietering. 2009. Multi-Tools for food safety risk management of steam meals. J. Food Prot. 72:26382645.
125. Pflug, I. J. 1987. Endpoint of a preservation process. J. Food Prot. 50:347351.
126. Pflug, I. J. 1987. Factors important in determining the heat process value, FT, for low acid canned foods. J. Food Prot. 50:528533.
127. Pflug, I. J. 1987. Calculating FT-values for heat preservation of shelf-stable, low acid canned foods using the straight-line semilogarithmic model. J. Food Prot. 50:608615.
128. Phillips, Z. E.,, and M. A. Strauch. 2002. Bacillus subtilis sporulation and stationary phase gene expression. Cell. Mol. Life Sci. 59:392402.
129. Piggot, P. J.,, and D. W. Hilbert. 2004. Sporulation of Bacillus subtilis. Curr. Opin. Microbiol. 7:579586.
130. Piggot, P. J.,, and R. Losick,. 2002. Sporulation genes and intercompartmental regulation, p. 483518. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Its Closest Relatives: from Genes to Cells. ASM Press, Washington, DC.
131. Pitt, J. I.,, and A. D. Hocking (ed.). 1997. Fungi and Food Spoilage, 2nd ed. Blackie Academic & Professional, London, England.
132. Popham, D. L. 2002. Specialized peptidoglycan of the bacterial endospore: the inner wall of the lockbox. Cell. Mol. Life Sci. 59:426433.
133. Prescott, S. C.,, and W. L. Underwood. 1897. Micro-organisms and sterilizing processes in the canning industries. Technol. Q. 10:183199.
134. Rahman, M. S. (ed.). 2007. Handbook of Food Preservation. Marcel-Dekker, New York, NY.
135. Rajkovic, A.,, N. Smigic,, and F. Devlieghere. 2010. Contemporary strategies in combating microbial contamination in the food chain. Int. J. Food Microbiol. 141:S29S42.
136. Ramirez, N.,, M. Liggins,, and E. Abel-Santos. 2010. Kinetic evidence for the presence of putative germination receptors in C. difficile spores. J. Bacteriol. 192:42154222.
137. Ricca, E.,, A. O. Henriques,, and S. M. Cutting (ed.). 2004. Bacterial Spore Formers. Probiotics and Emerging Applications. Horizon Bioscience, Norfolk, U.K.
138. Rice, E. W.,, N. J. Adcock,, M. Sivaganesan,, and L. J. Rose. 2005. Inactivation of spores of Bacillus anthracis Sterne, Bacillus cereus, and Bacillus thuringiensis by chlorination. Appl. Environ. Microbiol. 71:55875589.
139. Ross, C.,, and E. Abel-Santos. 2010. The Ger receptor family from sporulating bacteria. Curr. Issues Mol. Biol. 12:147158.
140. Russell, A. D. 1998. Assessment of sporicidal efficacy. Int. Biodeterior. Biodegr. 41:281287.
141. Russell, H. L. 1896. Gaseous fermentations in the canning industry, p. 227231. In Twelth Annual Report of the Agricultural Experiment Station of the University of Wisconsin. University of Wisconsin, Madison, WI.
142. Schmitt, H. P. 1966. Commercial sterility in canned foods, its meaning and determination. Assoc. Food Drug Off. U. S. Q. Bull. 30:141151.
143. Scott, V. N.,, and D. T. Bernard. 1982. Heat resistance of spores of non-proteolytic type B Clostridium botulinum. J. Food Prot. 45:909912.
144. Senesi, S., 2004. Bacillus spores as probiotic products for human use, p. 131141. In E. Ricca,, A. O. Henriques,, and S. M. Cutting (ed.), Bacterial Spore Formers. Probiotics and Emerging Applications. Horizon Bioscience, Norfolk, United Kingdom.
145. Serrano, M.,, A. Neves,, C. M. Soares,, C. P. Moran, Jr.,, and A. O. Henriques. 2004. Role of the anti-sigma factor SpoIIAB in regulation of σG during Bacillus subtilis sporulation. J. Bacteriol. 186:40004013.
146. Setlow, B.,, S. Atluri,, R. Kitchel,, K. Koziol-Dube,, and P. Setlow. 2006. Role of dipicolinic acid in resistance and stability of spores of Bacillus subtilis with or without DNA-protective α/β-type small acid-soluble proteins. J. Bacteriol. 188:37403747.
147. Setlow, B.,, L. Peng,, C. A. Loshon,, Y. Q. Li,, G. Christie,, and P. Setlow. 2009. Characterization of the germination of Bacillus megaterium spores lacking enzymes that degrade the spore cortex. J. Appl. Microbiol. 107:318328.
148. Setlow, P., 1993. DNA structure, spore formation and spore properties, p. 181194. In P. J. Piggot,, P. Youngman,, and C. P. Moran, Jr. (ed.), Regulation of Bacterial Differentiation. American Society for Microbiology, Washington, DC.
149. Setlow, P. 1994. Mechanisms which contribute to the long-term survival of spores of Bacillus species. J. Appl. Bacteriol. 176:49S60S.
150. Setlow, P. 1995. Mechanisms for the prevention of damage to the DNA in spores of Bacillus species. Annu. Rev. Microbiol. 49:2954.
151. Setlow, P. 2003. Spore germination. Curr. Opin. Microbiol. 6:550556.
152. Setlow, P. 2006. Spores of Bacillus subtilis: their resistance to radiation, heat and chemicals. J. Appl. Microbiol. 101:514525.
153. Setlow, P. 2007. I will survive: DNA protection in bacterial spores. Trends Microbiol. 15:172180.
154. Setlow, P., 2008. Effects of high pressure on spores, p. 3552. In C. Michiels,, D. H. Bartlett,, and A. Aertsen (ed.), High-Pressure Microbiology. ASM Press, Washington, DC.
155. Setlow, P.,, and E. A. Johnson,. 2007. Spores and their significance, p. 3567. In M. P. Doyle, and L. R. Beuchat (ed.), Food Microbiology: Fundamentals and Frontiers, 3rd ed. ASM Press, Washington, DC.
156. Shah, I. M.,, M. H. Laaberki,, D. L. Popham,, and J. Dworkin. 2008. A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell 135:486496.
157. Shimizu, T.,, K. Ohtani,, H. Hirakawa,, K. Ohshima,, A. Yamashita,, T. Shiba,, N. Ogasawara,, M. Hattori,, S. Kuhara,, and H. Hayashi. 2002. Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proc. Natl. Acad. Sci. USA 99:9962001.
158. Smith, L. D. S.,, and H. Sugiyama,. 1988. Botulism. The Organism, Its Toxins, the Disease, 2nd ed. Charles C. Thomas, Springfield, IL.
159. Sonenshein, A. L. 2007. Control of key metabolic intersections in Bacillus subtilis. Nat. Rev. Microbiol. 5:917927.
160. Songer, J. G. 1996. Clostridial enteric diseases of domestic animals. Clin. Microbiol. Rev. 9:216234.
161. Sperber, W. H.,, and M. P. Doyle (ed.). 2009. Compendium of the Microbiological Spoilage of Foods and Beverages. Springer, New York, NY.
162. Spotts Whitney, E. A.,, M. E. Beatty,, T. H. Taylor, Jr.,, R. Weyant,, J. Sobel,, M. J. Arduino,, and D. A. Ashford. 2003. Inactivation of Bacillus anthracis spores. Emerg. Infect. Dis. 9:623627.
163. Steil, L.,, M. Serrano,, A. O. Henriques,, and U. Volker. 2005. Genome-wide analysis of temporally regulated and compartment-specific gene expression in sporulating cells of Bacillus subtilis. Microbiology 151:399420.
164. Stephenson, K.,, and J. A. Hoch. 2009. Evolution of signalling in the sporulation phosphorelay. J. Bacteriol. 191:72967305.
165. Stevenson, K. E.,, and R. H. Vaughn. 1972. Exosporium formation in sporulating cells of Clostridium botulinum 78A. J. Bacteriol. 112:618621.
166. Stringer, M. 2005. Summary report. Food safety objectives—role in microbiological food safety management. Food Control 16:775794.
167. Stumbo, C. R. 1973. Thermobacteriology in Food Processing, 2nd ed. Academic Press, New York, NY.
168. Sugiyama, H. 1951. Studies on factors affecting the heat resistance of spores of Clostridium botulinum. J. Bacteriol. 62:8196.
169. Sugiyama, H. 1952. Effect of fatty acids on the heat resistance of Clostridium botulinum spores. Bacteriol. Rev. 16:125126.
170. Sugiyama, H., 1986. Mouse models for infant botulism, p. 7391. In O. Zak, and M. A. Sande (ed.), Experimental Models in Antimicrobial Chemotherapy, vol. 2. Academic Press, New York, NY.
171. Sugiyama, H. 1980. Clostridium botulinum neurotoxin. Microbiol. Rev. 44:419448.
172. Sugiyama, H.,, M. Woodburn,, K. H. Yang,, and C. Movroydis. 1981. Production of botulinum toxin in inoculated pack studies of foil-wrapped potatoes. J. Food Prot. 44:896.
173. Sun, D.-W. 2005. Emerging Technologies for Food Processing. Academic Press, New York, NY.
174. Sunde, E. P.,, P. Setlow,, L. Hederstedt,, and B. Halle. 2009 The physical state of water in bacterial spores. Proc. Natl. Acad. Sci. USA 106:1933419339.
175. Tanaka, N.,, E. Traisman,, P. Plantinga,, L. Finn,, W. Flom,, L. Meske,, and J. Guffisberg. 1986. Evaluation of factors involved in antibotulinal properties of pasteurized process cheese spreads. J. Food Prot. 49:526531.
176. Tewari, G.,, and V. J. Juneja. 2007. Advances in Thermal and Non-Thermal Food Preservation. Blackwell, Ames, IA.
177. Tournas, V. 1994. Heat-resistant fungi of importance to the food and beverage industry. Crit. Rev. Microbiol. 20:243263.
178. Townsend, C. T.,, J. R. Esty,, and F. C. Baselt. 1938. Heat-resistance studies on spores of putrefactive anaerobes in relation to the determination of safe processes for canned foods. Food Res. 3:323346.
179. Trent, J. D.,, M. Gabrielson,, B. Jensen,, J. Neuhard,, and J. Olsen. 1994. Acquired thermotolerance and heat shock proteins in thermophiles from the three phylogenetic domains. J. Bacteriol. 176:61486152.
180. Tribst, A. A. L.,, A. de Souza Sant’ Ana,, and P. Rodriguez de Massauger. 2009. Microbiological quality and safety of fruit juices—past, present, and future perspectives. Crit. Rev. Microbiol. 35:310339.
181. Underwood, S.,, S. Guan,, V. Vijayasubhash,, S. D. Baines,, L. Graham,, R. J. Lewis,, M. H. Wilcox,, and K. Stephenson. 2006. Characterization of the sporulation initiation pathway of Clostridium difficile and its role in toxin production. Mol. Microbiol. 59:10001012.
182. Van Netton, P.,, A. Van de Moosdijk,, P. Van de Hoensel,, D. A. A. Mossel,, and I. Perales. 1990. Psychrotrophic strains of Bacillus cereus producing enterotoxin. J. Appl. Bacteriol. 69:7379.
183. Veening, J. W.,, L. W. Hamoen,, and O. P. Kuipers. 2005. Phosphatases modulate bistable sporulation gene expression pattern in Bacillus subtilis. Mol. Microbiol. 56:14811494.
184. Wang, S.,, B. Setlow,, E. M. Conlon,, J. L. Lyon,, D. Imamura,, T. Sato,, P. Setlow,, R. Losick,, and P. Eichenberger. 2006. The forespore line of gene expression in Bacillus subtilis. J. Mol. Biol. 358:1637.
185. Westphal, A. J.,, P. B. Price,, T. J. Leighton,, and K. E Wheeler. 2003. Kinetics of size changes of individual Bacillus thuringiensis spores in response to changes in relative humidity. Proc. Natl. Acad. Sci. USA 100:34613466.
186. Willis, A. T. 1969. Clostridia of Wound Infections. Butterworths, London, England.
187. Wörner, K.,, H. Szurmant,, C. Chiang,, and J. A. Hoch. 2006. Phosphorylation and functional analysis of the sporulation initiation factor Spo0A from Clostridium botulinum. Mol. Microbiol. 59:10001012.
188. Yang, X.,, S. Balamurugan,, and C. O. Gill. 2011. Effects on the development of blown pack spoilage of initial numbers of Clostridium estertheticum spores and Leuconostoc mesenteroides on vacuum packaged beef. Meat Sci. 88:361367.
189. Yardimci, O.,, and P. Setlow. 2010. Plasma sterilization: opportunities and microbial assessment strategies in medical device manufacturing. IEEE Trans. Plasma Sci. 38:973981.
190. Yudkin, M. D.,, and J. Clarkson. 2005. Differential gene expression in genetically identical sister cells: the initiation of sporulation in Bacillus subtilis. Mol. Microbiol. 56:578589.
191. Zeki, B. 2009. Food Process Engineering and Technology. Academic Press, Boston, MA.
192. Zeuthen, P.,, and L. Bogh-Sorensen (ed.). 2003. Food Preservation Techniques. CRC Press, Boca Raton, FL.
193. Zhang, H.,, and G. S. Mitttal. 2008. Effects of high-pressure processing (HPP) on bacterial spores: an overview. Food Rev. Int. 24:330351.
194. Zhang, L.,, M. L. Higgins,, and P. J. Piggot. 1997. The division during bacterial sporulation is symmetrically located in Sporosarcina ureae. Mol. Microbiol. 25:10911098.
195. Zhang, P.,, W. Garner,, X. Yi,, J. Yu,, Y-q. Li,, and P. Setlow. 2010. Factors affecting the variability in the time between addition of nutrient germinants and rapid DPA release during germination of spores of Bacillus species. J. Bacteriol. 392:36083619.
196. Zhang, P.,, L. Kong,, P. Setlow,, and Y. Q. Li. 2010. Characterization of wet heat inactivation of single spores of Bacillus species by dual-trap Raman spectroscopy and elastic light scattering. Appl. Environ. Microbiol. 76:17961805.
197. Zhang, P.,, P. Setlow,, and Y.-q. Li. 2009. Characterization of single heat-activated Bacillus spores using laser tweezers Raman spectroscopy. Optics Express 17:1648016491.

Tables

Generic image for table
Table 3.1

Small molecules in cells and spores of species

Citation: Setlow P, Johnson E. 2013. Spores and Their Significance, p 45-79. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch3
Generic image for table
Table 3.2

Killing and mutagenesis of spores and cells of by various treatments

Citation: Setlow P, Johnson E. 2013. Spores and Their Significance, p 45-79. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch3
Generic image for table
Table 3.3

Heat resistance of spores prepared at different temperatures with different ions and with or without α/β-type SASP

Citation: Setlow P, Johnson E. 2013. Spores and Their Significance, p 45-79. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch3
Generic image for table
Table 3.4

Heat resistance of sporeformers of importance in foods

Citation: Setlow P, Johnson E. 2013. Spores and Their Significance, p 45-79. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch3
Generic image for table
Table 3.5

Growth requirements of sporeformers of public health significance

Citation: Setlow P, Johnson E. 2013. Spores and Their Significance, p 45-79. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch3
Generic image for table
Table 3.6

Spoilage of canned foods by sporeformers

Citation: Setlow P, Johnson E. 2013. Spores and Their Significance, p 45-79. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch3

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error