1887

Chapter 30 : Chemical Preservatives and Natural Antimicrobial Compounds

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Chemical Preservatives and Natural Antimicrobial Compounds, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818463/9781555816261_Chap30-1.gif /docserver/preview/fulltext/10.1128/9781555818463/9781555816261_Chap30-2.gif

Abstract:

This chapter talks about antimicrobial compounds that are divided into two classes: traditional and naturally occurring. Antimicrobials are classified as traditional when they (i) have been used for many years, (ii) are approved by many countries for inclusion as antimicrobials in foods, or (iii) are produced by synthetic processes. Next, the chapter discusses the factors affecting activity and traditional antimicrobials and ester derivatives of some weak organic acids. Many fatty acid esters exhibit antimicrobial activity in foods, with glycerol monolaurate being one of the most effective. Traditional antimicrobials and natural food antimicrobials are important tools for preserving food from microbiological spoilage and the growth of pathogens. Despite the extensive research already completed on the sources of antimicrobials, their spectra of activity, and the levels required for successful inhibition of foodborne bacteria and fungi, more research is still needed to better elucidate the mechanisms of antimicrobial activity of many of the chemicals discussed in the chapter. In addition to validating the activity and elucidating the mechanistic features of antimicrobials, they will have to be proven toxicologically safe. Demonstrating the efficacy of antimicrobial compounds in food products at concentrations that do not have adverse sensory effects, as well as controlling the cost of these interventions, are likely the greatest hurdles to their future application.

Citation: Davidson P, Taylor T, Schmidt S. 2013. Chemical Preservatives and Natural Antimicrobial Compounds, p 765-801. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch30
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 30.1
Figure 30.1

Fate of an organic acid (RCOOH) in a low-pH environment in the presence of a microbial cell. doi:10.1128/9781555818463.ch30f1

Citation: Davidson P, Taylor T, Schmidt S. 2013. Chemical Preservatives and Natural Antimicrobial Compounds, p 765-801. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 30.2
Figure 30.2

Organic acids used as antimicrobial food preservatives. doi:10.1128/9781555818463.ch30f2

Citation: Davidson P, Taylor T, Schmidt S. 2013. Chemical Preservatives and Natural Antimicrobial Compounds, p 765-801. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 30.3
Figure 30.3

DMDC. doi:10.1128/9781555818463.ch30f3

Citation: Davidson P, Taylor T, Schmidt S. 2013. Chemical Preservatives and Natural Antimicrobial Compounds, p 765-801. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 30.4
Figure 30.4

Alkyl esters of -hydroxybenzoic acid (parabens). doi:10.1128/9781555818463.ch30f4

Citation: Davidson P, Taylor T, Schmidt S. 2013. Chemical Preservatives and Natural Antimicrobial Compounds, p 765-801. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 30.5
Figure 30.5

Examples of antimicrobial compounds in spice essential oils. doi:10.1128/9781555818463.ch30f5

Citation: Davidson P, Taylor T, Schmidt S. 2013. Chemical Preservatives and Natural Antimicrobial Compounds, p 765-801. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 30.6
Figure 30.6

Allicin (diallyl thiosulfinate; thio-2-propene-1-sulfinic acid-5-allyl ester). doi:10.1128/9781555818463.ch30f6

Citation: Davidson P, Taylor T, Schmidt S. 2013. Chemical Preservatives and Natural Antimicrobial Compounds, p 765-801. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818463.chap30
1. Aalto, T. R.,, M. C. Firman,, and N. E. Rigler. 1953. p-Hydroxybenzoic acid esters as preservatives. I. Uses, antibacterial and antifungal studies, properties and determination. J. Am. Pharm. Assoc. 42: 449 458.
2. Alakomi, H.-L.,, E. Skyttä,, M. Saarela,, T. Mattila-Sandholm,, K. Latva-Kala,, and I. M. Helander 1999. Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl. Environ. Microbiol. 66: 2001 2005.
3. Al-Dagal, M. M.,, and W. A. Bazaraa. 1999. Extension of shelf life of whole and peeled shrimp with organic acid salts and bifidobacteria. J. Food Prot. 62: 51 56.
4. Al-Holy, M. A.,, L. F. Castro,, and H. M. Al-Qadiri. 2010. Inactivation of Cronobacter spp. ( Enterobacter sakazakii) in infant formula using lactic acid, copper sulfate and monolaurin. Lett. Appl. Microbiol. 50: 246 251.
5. Aligiannis, N.,, E. Kalpoutzakis,, S. Mitaku,, and I. B. Chinou. 2001. Composition and antimicrobial activity of the essential oils of two Origanum species. J. Agric. Food Chem. 49: 4168 4170.
6. Al-Nabulsi, A. A.,, and R. A. Holley. 2005. Effect of bovine lactoferrin against Carnobacterium viridans. Food Microbiol. 22: 179 187.
7. Altieri, C.,, D. Cardillo,, A. Bevilacqua,, and M. Sinigaglia. 2007. Inhibition of Aspergillus spp. and Penicillium spp. by fatty acids and their monoglycerides. J. Food Prot. 70: 1206 1212.
8. Álvarez-Ordóñez, A.,, A. Fernández,, M. López,, and A. Bernardo. 2009. Relationship between membrane fatty acid composition and heat resistance of acid and cold stressed Salmonella senftenberg CECT 4384. Food Microbiol. 26: 347 353.
9. Amber, K.,, A. Aijaz,, X. Immaculata,, K. A. Luqman,, and M. Nikhat. 2010. Anticandidal effect of Ocimum sanctum essential oil and its synergy with fluconazole and ketoconazole. Phytomedicine 17: 921 925.
10. Amerine, M. A.,, and M. A. Joslyn. 1970. Table Wines: the Technology of Their Production, 2nd ed. University of California Press, Berkeley, CA.
11. Ananou, S.,, A. Baños,, M. Maqueda,, M. Martínez-Bueno,, A. Gálvez,, and E. Valdivia. 2010. Effect of combined physico-chemical treatments based on enterocin AS-48 on the control of Listeria monocytogenes and Staphylococcus aureus in a model cooked ham. Food Control 21: 478 486.
12. Anonymous. 1999. Sorbic acid and potassium sorbate for preserving freshness. Public. ZS-1D. Eastman Chemical Co., Kingsport, TN.
13. Anonymous. 2007. Levulinate validated for use as an antilisterial agent. AMI Foundation News 9: 1, 6.
14. Aran, N. 2001. The effect of calcium and sodium lactates on growth from spores of Bacillus cereus and Clostridum perfringens in a ‘sous-vide’ beef goulash under temperature abuse Int. J. Food Microbiol. 63: 117 123.
15. Arseneault, M.,, S. Bédard,, M. Boulet-Audet,, and M. Pézolet. 2010. Study of the interaction of lactoferricin B with phosopholipid monolayers and bilayers. Langmuir 26: 3468 3478.
16. Aureli, P.,, A. Costantini,, and S. Zolea. 1992. Antimicrobial activity of some plant essential oils against Listeria monocytogenes. J. Food Prot. 55: 344 348.
17. Aymerich, T.,, A. Jofre,, M. Garriga,, and M. Hugas. 2005. Inhibition of Listeria monocytogenes and Salmonella by natural antimicrobials and high hydrostatic pressure in sliced cooked ham. J. Food Prot. 68: 173 177.
18. Ayres, H. M.,, J. R. Furr,, and A. D. Russell. 1998. Effect of divalent cations on permeabilizer-induced lysozyme lysis of Pseudomonas aeruginosa. Lett. Appl. Microbiol. 27: 372 374.
19. Babu, R.,, M. L. Varshney,, and D. S. Sog. 2004. Preservation of raw milk with lactoperoxidase system. J. Food Sci. Technol. 41: 42 46.
20. Bae, Y.-M.,, and S.-Y. Lee. 2010. Effect of pre-exposure to sodium chloride on the resistance of pathogens to thermal and acid stresses. J. Food Safety 30: 1016 1025.
21. Bagamboula, C. F.,, M. Uyttendaele,, and J. Debevere. 2003. Antimicrobial effect of spices and herbs on Shigella sonnei and Shigella flexneri. J. Food Prot. 66: 668 673.
22. Bala, M. F. A.,, and D. L. Marshall. 1996. Testing matrix, inoculum size, and incubation temperature affect monolaurin activity against Listeria monocytogenes. Food Microbiol. 13: 467 473.
23. Bala, M. F. A.,, and D. L. Marshall. 1996. Use of double-gradient plates to study combined effects of salt, pH, monolaurin, and temperature on Listeria monocytogenes. J. Food Prot. 59: 601 607.
24. Banks, J. G.,, and R. G. Board. 1982. Sulfite-inhibition of Enterobacteriaceae including Salmonella in British fresh sausage and in culture systems. J. Food Prot. 45: 1292 1297.
25. Banville, C.,, J.-C. Vuillemard,, and C. Lacroix. 2000. Comparison of different methods for fortifying Cheddar cheese with vitamin D. Int. Dairy J. 10: 375 382.
26. Barbosa, L. N.,, V. L. Rall,, A. A. Fernandes,, P. I. Ushimaru,, I. da Silva Probst,, and A. Fernandes, Jr. 2009. Essential oils against foodborne pathogens and spoilage bacteria in minced meat. Foodborne Pathog. Dis. 6: 725 728.
27. Bargiota, E. E.,, E. Rico-Muñoz,, and P. M. Davidson. 1987. Lethal effect of methyl and propyl parabens as related to Staphylococcus aureus lipid composition. Int. J. Food Microbiol. 4: 257 266.
28. Bari, M. L.,, D. O. Ukuku,, T. Kawasaki,, Y. Inatsu,, K. Isshiki,, and S. Kawamoto. 2005. Combined efficacy of nisin and pediocin with sodium lactate, citric acid, phytic acid, and potassium sorbate and EDTA in reducing the Listeria monocytogenes population of inoculated fresh-cut produce. J. Food Prot. 68: 1381 1387.
29. Barmpalia, I. M.,, I. Geornaras,, K. E. Belk,, J. A. Scanga,, P. A. Kendall,, G. C. Smith,, and J. N. Sofos. 2004. Control of Listeria monocytogenes on frankfurters with antimicrobials in the formulation and by dipping in organic acid solutions. J. Food Prot. 67: 2456 2464.
30. Barone, F. E.,, and M. R. Tansey. 1977. Isolation, purification, identification, synthesis and kinetics of the activity of the anticandidal component of Allium sativum, and a hypothesis for its mode of action. Mycologia 69: 793 825.
31. Barreteau, H.,, L. Mandoukou,, I. Adt,, I. Gaillard,, B. Courtois,, and J. Courtois 2004. A rapid method for determining the antimicrobial activity of novel natural molecules. J. Food Prot. 67: 1961 1964.
32. Barrett, N. E.,, A. S. Grandison,, and M. J. Lewis. 1999. Contribution of the lactoperoxidase system to the keeping quality of pasteurized milk. J. Dairy Res. 66: 73 80.
33. Basaran-Akgul, N.,, J. J. Churey,, P. Basaran,, and R. W. Worobo. 2009. Inactivation of different strains of Escherichia coli O157:H7 in various apple ciders treated with dimethyl dicarbonate (DMDC) and sulfur dioxide (SO 2) as an alternative method. Food Microbiol. 26: 8 15.
34. Bedie, G. K.,, J. Samelis,, J. N. Sofos,, K. E. Belk,, J. A. Scanga,, and G. C. Smith 2001. Antimicrobials in the formulation to control Listeria monocytogenes postprocessing contamination on frankfurters stored at 4°C in vacuum packages. J. Food Prot. 64: 1949 1955.
35. Benabbou, R.,, A. Zihler,, M. Desbiens,, E. Kheadr,, M. Subirade,, and I. Fliss. 2009. Inhibition of Listeria monocytogenes by a combination of chitosan and divergicin M35. Can. J. Microbiol. 55: 347 355.
36. Benech, R.-O.,, E. E. Kheadr,, C. Lacroix,, and I. Fliss. 2002. Antibacterial activities of nisin Z encapsulated in liposomes or produced in situ by mixed culture during cheddar cheese ripening. Appl. Environ. Microbiol. 68: 5607 5619.
37. Benech, R.-O.,, E. E. Kheadr,, R. Laridi,, C. Lacroix,, and I. Fliss. 2002. Inhibition of Listeria innocua in cheddar cheese by addition of nisin Z in liposomes or by in situ production in mixed culture. Appl. Environ. Microbiol. 68: 3683 3690.
38. Bennis, S.,, F. Chami,, N. Chami,, T. Bouchikhi,, and A. Remmal. 2004. Surface alteration of Saccharomyces cerevisiae induced by thymol and eugenol. Lett. Appl. Microbiol. 38: 454 458.
39. Beuchat, L. R., 1994. Antimicrobial properties of spices and their essential oils, p. 167 179. In V. M. Dillon, and R. G. Board (ed.), Natural Antimicrobial Systems and Food Preservation. CAB International, Wallingford, United Kingdom.
40. Bintsis, T.,, E. Litopoulou-Tzanetaki,, R. Davies,, and R. K. Robinson. 2000. The antimicrobial effects of long-wave ultra-violet light and furocoumarins on some micro-organisms that occur in cheese brines. Food Microbiol. 17: 687 695.
41. Birk, T.,, A. C. Grønlund,, B. B. Christensen,, S. Knøchel,, K. Lohse,, and H. Rosenquist. 2010. Effect of organic acids and marination ingredients on the survival of Campylobacter jejuni on meat. J. Food Prot. 73: 258 265.
42. Blom, H.,, E. Nerbink,, R. Dainty,, T. Hagtvedt,, E. Borch,, H. Nissen,, and T. Nesbakken. 1997. Addition of 2.5% lactate and 0.25% acetate controls growth of Listeria monocytogenes in vacuum-packed, sensory acceptable servelat sausage and cooked ham stored at 4°C. Int. J. Food Microbiol. 38: 71 76.
43. Boban, N.,, M. Tonkic,, D. Budimir,, D. Modun,, D. Sutlovic,, V. Punda-Polic,, and M. Boban. 2010. Antimicrobial effects of wine: separating the role of polyphenols, pH, ethanol, and other wine components. J. Food Sci. 75: M322 M326.
44. Boland, J. S.,, P. M. Davidson,, B. Bruce,, and J. Weiss. 2004. Cations reduce antimicrobial efficacy of lysozyme-chelator combinations. J. Food Prot. 67: 285 294.
45. Boland, J. S.,, P. M. Davidson,, and J. Weiss. 2003. Enhanced inhibition of Escherichia coli O157:H7 by lysozyme and chelators. J. Food Prot. 66: 1783 1789.
46. Borges, F.,, F. Roleira,, N. Milhazes,, L. Santana,, and E. Uriarte. 2005. Simple coumarins and analogues in medicinal chemistry: occurrence, synthesis and biological activity. Curr. Med. Chem. 12: 887 916.
47. Boussouel, N.,, F. Mathieu,, A.-M. Revol-Junelles,, and J.-B. Millière. 2000. Effects of combinations of lactoperoxidase system and nisin on the behaviour of Listeria monocytogenes ATCC 15313 in skim milk. Int. J. Food Microbiol. 61: 169 175.
48. Bower, C. K.,, and M. A. Daeschel. 1999. Resistance responses of microorganisms in food environments. Int. J. Food Microbiol. 50: 33 44.
49. Bozin, B.,, N. Mimica-Dukic,, I. Samojlik,, and E. Jovin. 2007. Antimicrobial and antioxidant properties of rosemary and sage ( Rosmarinus officinalis L. and Salvia officinalis L., Lamiaceae) essential oils. J. Agric. Food Chem. 55: 7879 7885.
50. Bracey, D.,, C. D. Holyoak,, and P. J. Coote. 1998. Comparison of the inhibitory effect of sorbic acid and amphotericin B on Saccharomyces cerevisiae: is growth inhibition dependent on reduced intracellular pH? J. Appl. Microbiol. 85: 1056 1066.
51. Brandi, G.,, G. Amagliani,, G. F. Schiavano,, M. De Santi,, and M. Sisti. 2006. Activity of Brassica oleracea leaf juice on foodborne pathogenic bacteria. J. Food Prot. 69: 2274 2279.
52. Brandt, A. L. 2009. In vitro inhibition of Listeria monocytogenes by novel combinations of food antimicrobials. M.S. thesis. Texas A&M University, College Station, TX.
53. Brandt, A. L.,, A. Castillo,, K. B. Harris,, J. T. Keeton,, M. D. Hardin,, and T. M. Taylor. 2010. Inhibition of Listeria monocytogenes by food antimicrobials applied singly and in combination. J. Food Sci. 75: M557 M563.
54. Branen, A. L.,, P. M. Davidson,, and B. Katz. 1980. Antimicrobial properties of phenolic antioxidants and lipids. Food Technol. 34: 42 53, 63.
55. Branen, J.,, and P. M. Davidson. 2000. Activity of hydrolyzed lactoferrin against foodborne pathogenic bacteria in growth media: the effect of EDTA. Lett. Appl. Microbiol. 30: 233 237.
56. Branen, J. K.,, and P. M. Davidson. 2004. Enhancement of nisin, lysozyme, and monolaurin antimicrobial activities by ethylenediaminetetraacetic acid and lactoferrin. Int. J. Food Microbiol. 90: 63 74.
57. Bredin, J.,, A. Davin-Régli,, and J.-M. Pagès. 2005. Propyl paraben induces potassium efflux in Escherichia coli. J. Antimicrob. Chemother. 55: 1013 1015.
58. Brown, C. A.,, B. Wang,, and J.-H. Oh. 2008. Antimicrobial activity of lactoferrin against foodborne pathogenic bacteria incorporated into edible chitosan film. J. Food Prot. 71: 319 324.
59. Buchanan, R. L.,, and S. G. Edelson. 1999. pH-dependent stationary-phase acid resistance response of enterohemorrhagic Escherichia coli in the presence of various acidulants. J. Food Prot. 62: 211 218.
60. Buchanan, R. L.,, and M. H. Golden. 1994. Interaction of citric acid concentration and pH on the kinetics of Listeria monocytogenes inactivation. J. Food Prot. 57: 567 570.
61. Bullerman, L. B. 1983. Effects of potassium sorbate on growth and aflatoxin production by Aspergillus parasiticus and Aspergillus flavus. J. Food Prot. 46: 940 942.
62. Bullerman, L. B. 1984. Effects of potassium sorbate on growth and patulin production by Penicillium patulum and Penicillium roqueforti. J. Food Prot. 47: 312 315.
63. Burnett, S. L.,, J. H. Chopskie,, T. C. Podtburg,, T. A. Gutzmann,, S. E. Gilbreth,, and P. W. Bodnaruk. 2007. Use of octanoic acid as a postlethality treatment to reduce Listeria monocytogenes on ready-to-eat meat and poultry products. J. Food Prot. 70: 392 398.
64. Burt, S. 2004. Essential oils: their antibacterial properties and potential applications in foods—a review. Int. J. Food Microbiol. 94: 223 253.
65. Byelashov, O. A.,, J. M. Adler,, I. Geornaras,, K. Y. Ko,, K. E. Belk,, G. C. Smith,, and J. N. Sofos. 2010. Evaluation of brining ingredients and antimicrobials for effects on thermal destruction of Escherichia coli O157:H7 in a meat model system. J. Food Sci. 75: M209 M217.
66. Cacace, J. E.,, P. J. Delaquis,, and G. Mazza. 2002. Effect of chemical inhibitors and storage temperature on the quality of fresh-cut potatoes. J. Food Qual. 25: 181 195.
67. Cals, M.-M.,, P. Mailliart,, G. Brignon,, P. Anglade,, and B. R. Dumas. 1991. Primary structure of bovine lactoperoxidase, a fourth member of a mammailian heme peroxidase family. Eur. J. Biochem. 198: 733 739.
68. Carlson, B. A.,, I. Geornaras,, Y. Yoon,, J. A. Scanga,, J. N. Sofos,, G. C. Smith,, and K. E. Belk. 2008. Studies to evaluate chemicals and conditions with low-pressure applications for reducing microbial counts on cattle hides. J. Food Prot. 71: 1343 1348.
69. Carlson, B. A.,, J. Ruby,, G. C. Smith,, J. N. Sofos,, G. R. Bellinger,, W. Warren-Serna,, B. Centrella,, R. A. Rowling,, and K. E. Belk. 2008. Comparison of antimicrobial efficacy of multiple beef hide decontamination strategies to reduce levels of Escherichia coli O157:H7 and Salmonella. J. Food Prot. 71: 2223 2227.
70. Carlsson, J.,, Y. Iwami,, and T. Yamada. 1983. Hydrogen peroxide excretion by oral streptococci and effect of lactoperoxidase-thiocyanate-hydrogen peroxide. Infect. Immun. 40: 70 80.
71. Carneiro deMelo, A. M. S.,, C. A. Cassar,, and R. J. Miles. 1998. Trisodium phosphate increases sensitivity of gram-negative bacteria to lysozyme and nisin. J. Food Prot. 61: 839 844.
72. Carović-Stanko, K.,, S. Orlić,, O. Politeo,, F. Strikić,, I. Kolak,, M. Milos,, and Z. Satovic. 2010. Composition and antibacterial activities of essential oils of seven Ocimum taxa. Food Chem. 119: 196 201.
73. Carpenter, C. E.,, D. S. A. Reddy,, and D. P. Cornforth. 1987. Inactivation of clostridial ferredoxin and pyruvate-ferredoxin oxidoreductase by sodium nitrite. Appl. Environ. Microbiol. 53: 549 552.
74. Cavallito, C. J.,, and J. H. Bailey 1944. Allicin, the antibacterial principal of Allium sativum. I. Isolation, physical properties and antibacterial action. J. Am. Chem. Soc. 16: 1950 1951.
75. Cerrutti, P.,, and S. M. Alzamora. 1996. Inhibitory effects of vanillin on some food spoilage yeasts in laboratory media and fruit purées. Int. J. Food Microbiol. 29: 379 386.
76. Cerrutti, P.,, S. M. Alzamora,, and S. L. Vidales. 1997. Vanillin as an antimicrobial for producing shelf-stable strawberry purées. J. Food Sci. 62: 608 610.
77. Červenka, L.,, Z. Malíková,, I. Zachová,, and J. Vytřasová. 2004. The effect of acetic acid, citric acid, and trisodium citrate in combination with different levels of water activity on the growth of Arcobacter butzleri in culture. Folia Microbiol. 49: 8 12.
78. Ceylan, E.,, D. Y. C. Fung,, and J. R. Sabah. 2004. Antimicrobial activity and synergistic effect of cinnamon with sodium benzoate or potassium sorbate in controlling Escherichia coli O157:H7 in apple juice. J. Food Sci. 69: M102 M106.
79. Chacon, P. A.,, R. A. Buffo,, and R. A. Holley. 2006. Inhibitory effects of microencapsulated allyl isothiocyanate (AIT) against Escherichia coli O157:H7 in refrigerated, nitrogen packed, finely chopped beef. Int. J. Food Microbiol. 107: 231 237.
80. Chami, F.,, N. Chami,, S. Bennis,, T. Bouchikhi,, and A. Remmal. 2005. Oregano and clove essential oils induce surface alteration of Saccharomyces cerevisiae. Phytother. Res. 19: 405 408.
81. Chami, N.,, S. Bennis,, F. Chami,, A. Aboussekhra,, and A. Remmal. 2005. Study of anticandidal activity of carvacrol and eugenol in vitro and in vivo. Oral Microbiol. Immunol. 20: 106 111.
82. Chang, S.-S.,, M. Redondo-Solano,, and H. Thippareddi. 2010. Inactivation of Escherichia coli O157:H7 and Salmonella spp. on alfalfa seeds by caprylic acid and monocaprylin. Int. J. Food Microbiol. 144: 141 146.
83. Char, C. D.,, S. N. Guerrero,, and S. M. Alzamora. 2010. Mild thermal process combined with vanillin plus citral to help shorten the inactivation time for Listeria innocua in orange juice. Food Bioprocess. Technol. 3: 752 761.
84. Chen, N.,, and L. A. Shelef. 1992. Relationship between water activity, salts of lactic acid, and growth of Listeria monocytogenes in a meat model system. J. Food Prot. 55: 574 578.
85. Cherrington, C. A.,, M. Hinton,, and I. Chopra. 1990. Effect of short-chain organic acids on macromolecular synthesis in Escherichia coli. J. Appl. Bacteriol. 68: 69 74.
86. Chipley, J. R., 2005. Sodium benzoate and benzoic acid, p. 11 48. In P. M. Davidson,, J. N. Sofos,, and A. L. Branen (ed.), Antimicrobials in Foods, 3rd ed. CRC Press, Boca Raton, FL.
87. Chipley, J. R.,, and N. Uraih. 1980. Inhibition of Aspergillus growth and aflatoxin release by derivatives of benzoic acid. Appl. Environ. Microbiol. 40: 352.
88. Chung, K. T.,, Z. Lu,, and M. W. Chou. 1998. Mechanism of inhibition of tannic acid and related compounds on the growth of intestinal bacteria. Food Chem. Toxicol. 36: 1053 1060.
89. Chung, K. T.,, and C. A. Murdock. 1991. Natural systems for preventing contamination and growth of microorganisms in foods. Food Microstruct. 10: 361 374.
90. Chung, W.,, and R. E. W. Hancock. 2000. Action of lysozyme and nisin mixture against lactic acid bacteria. Int. J. Food Microbiol. 60: 25 32.
91. Cimino, G. D.,, H. B. Gamper,, S. T. Isaacs,, and J. E. Hearst. 1985. Psoralens as photoactive probes of nucleic acid structure and function. Ann. Rev. Biochem. 54: 1151 1193.
92. Combina, M.,, A. M. Dalcero,, E. Varsavsky,, and S. Chulze. 1999. Effects of food preservatives on Alternaria alternata growth and tenuazonic acid production. Food Addit. Contam. 16: 433 437.
93. Comes, J. E.,, and R. B. Beelman. 2002. Addition of fumaric acid and sodium benzoate as an alternative method to achieve a 5-log reduction of Escherichia coli O157:H7 populations in apple cider. J. Food Prot. 65: 476 483.
94. Conner, D. E.,, and L. R. Beuchat. 1984. Effects of essential oils from plants on growth of food spoilage yeasts. J. Food Sci. 49: 429 434.
95. Conner, D. E.,, L. R. Beuchat,, R. E. Worthington,, and H. L. Hitchcock. 1984. Effects of essential oils and oleoresins of plants on ethanol production, respiration and sporulation of yeasts. Int. J. Food Microbiol. 1: 63 74.
96. Costa, A.,, A. Barata,, M. Malfeito-Ferreira,, and V. Loureiro. 2008. Evaluation of the inhibitory effect of dimethyl dicarbonate (DMDC) against wine microorganisms. Food Microbiol. 25: 422 427.
97. Cox, S. D.,, C. M. Mann,, J. L. Markham,, H. C. Bell,, J. E. Gustafson,, J. R. Warmington,, and S. G. Wyllie. 2000. The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). J. Appl. Microbiol. 88: 170 175.
98. Critzer, F. J.,, D. H. D’Souza,, and D. A. Golden. 2008. Transcription analysis of the stx 1, marA, and eaeA genes in Escherichia coli O157:H7 treated with sodium benozate. J. Food Prot. 71: 1469 1474.
99. Critzer, F. J.,, D. H. D’Souza,, A. M. Saxton,, and D. A. Golden. 2010. Increased transcription of the phosphate-specfic transport system of Escherichia coli O157:H7 after exposure to sodium benzoate. J. Food Prot. 73: 819 824.
100. Cui, X.,, C. L. Joannou,, M. N. Hughes,, and R. Cammack. 1992. The bacteriocidal effects of transition metal complexes containing the NO + group on the food-spoilage bacterium Clostridium sporogenes. FEMS Microbiol. Lett. 98: 67 70.
101. Cushnie, T. P. T.,, and A. J. Lamb. 2005. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 26: 343 356.
102. Cutter, C. N.,, and G. R. Siragusa. 1994. Efficacy of organic acids against Escherichia coli O157:H7 attached to beef carcass tissue using a pilot scale model carcass washer. J. Food Prot. 57: 97 103.
103. Daferera, D. J.,, B. N. Ziogas,, and M. G. Polissiou. 2000. GC-MS analysis of essential oils from some Greek aromatic plants and their fungitoxicity on Penicillium digitatum. J. Agric. Food Chem. 48: 2576 2581.
104. Dai, Y.,, M. D. Normand,, J. Weiss,, and M. Peleg. 2010. Modeling the efficacy of triplet antimicrobial combinations: yeast suppression by lauric arginate, cinnamic acid, and sodium benzoate or potassium sorbate as a case study. J. Food Prot. 73: 515 523.
105. da SilvaMalheiros, P.,, D. J. Daroit,, N. Pesce da Silveira,, and A. Brandelli. 2010. Effect of nanovesicle-encapsulated nisin on growth of Listeria monocytogenes in milk. Food Microbiol. 27: 175 178.
106. Davidson, P.M., 2005. Parabens, p. 291 304. In P. M. Davidson,, J. N. Sofos,, and A. L. Branen (ed.), Antimicrobials in Foods, 3rd ed. CRC Press, Boca Raton, FL.
107. Davidson, P.M.,, and A. L. Branen,. 2005. Foodantimicrobials—an introduction, p. 1 10. In P. M. Davidson,, J. N. Sofos,, and A. L. Branen (ed.), Antimicrobials in Food, 3rded. CRC Press, Boca Raton, FL.
108. Davidson, P. M.,, and M. A. Harrison. 2002. Resistance and adaptation to food antimicrobials, sanitizers, and other process controls. Food Technol. 56: 69 78.
109. Davidson, P. M.,, and A. S. Naidu,. 2000. Phyto-phenols, p. 266 294. In A. S. Naidu (ed.), Natural Food Antimicrobial Systems. CRC Press, Boca Raton, FL.
110. de Carvalho, C. C.,, and P. Fernandes. 2010. Production of metabolites as bacterial responses to the marine environment. Mar. Drugs 8: 705 727.
111. Degnan, A. J.,, C. W. Kaspar,, W. S. Otwell,, M. L. Tamplin,, and J. B. Luchansky. 1994. Evaluation of lactic acid bacterium fermentation products and food-grade chemicals to control Listeria monocytogenes in blue crab ( Callinectes sapidus) meat. Appl. Environ. Microbiol. 60: 3198 3203.
112. Degnan, A. J.,, and J. B. Luchansky. 1992. Influence of beef tallow and muscle on the antilisterial activity of pediocin AcH and liposome-encapsulated pediocin AcH. J. Food Prot. 55: 552 554.
113. Delaquis, P. J.,, and G. Mazza. 1995. Antimicrobial properties of isothiocyanates in food preservation. Food Technol. 49: 73 84.
114. Delaquis, P. J.,, and P. L. Sholberg. 1997. Antimicrobial activity of gaseous allyl isothiocyanate. J. Food Prot. 60: 943 947.
115. Del Olmo, A.,, J. Calzada,, and M. Nuñez. 2010. Antimicrobial efficacy of lactoferrin, its amidated and pepsin-digested derivatives, and their combinations, on Escherichia coli O157:H7 and Serratia liquefaciens. Lett. Appl. Microbiol. 52: 9 14.
116. delRío, E.,, B. González de Caso,, M. Prieto,, C. Alonso-Calleja,, and R. Capita. 2008. Effect of poultry decontaminants concentration on growth kinetics for pathogenic and spoilage bacteria. Food Microbiol. 25: 888 894.
117. delRío, E.,, R. Muriente,, M. Prieto,, C. Alonso-Calleja,, and R. Capita 2007. Effectiveness of trisodium phosphate, acidified sodium chlorite, citric acid, and peroxyacids against pathogenic bacteria on poultry during refrigerated storage. J. Food Prot. 70: 2063 2071.
118. De Spiegeleer, P.,, J. Sermon,, K. Vanoirbeek,, A. Aertsen,, and C. W. Michiels. 2005. Role of porins in sensitivity of Escherichia coli to antibacterial activity of the lactoperoxidase enzyme system. Appl. Environ. Microbiol. 71: 3512 3518.
119. Devlieghere, F.,, A. Vermeulen,, and J. M. Debevere. 2004. Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiol. 21: 703 714.
120. DiPersio, P. A.,, P. A. Kendall,, M. Calicioglu,, and J. N. Sofos. 2003. Inactivation of Salmonella during drying and storage of apple slices treated with acidic or sodium metabisulfite solutions. J. Food Prot. 66: 2245 2251.
121. Divol, B.,, P. Strehaiano,, and A. Lonvaud-Funel. 2005. Effectiveness of dimethyldicarbonate to stop alcoholic fermentation in wine. Food Microbiol. 22: 169 178.
122. Dock, L. L.,, J. D. Floros,, and R. H. Linton. 2000. Heat inactivation of Escherichia coli O157:H7 in apple cider containing malic acid, sodium benzoate, and potassium sorbate. J. Food Prot. 63: 1026 1031.
123. Dong, T.,, and H. E. Schellhorn. 2010. Role of RpoS in virulence of pathogens. Infect. Immun. 78: 887 897.
124. Doores, S., 2005. Organic acids, p. 91 142. In P. M. Davidson,, J. N. Sofos,, and A. L. Branen (ed.), Antimicrobials in Foods, 3rd ed. CRC Press, Boca Raton, FL.
125. Drosinos, E.H.,, P. N. Skandamis,, and M. Mataragas,. 2009. Antimicrobialtreatment, p. 255 298. In F. Toldrá (ed.), Safety of Meat and Processed Meat. Springer, New York, NY.
126. Duncan, C. E. 2010. Factors influencing the stability and marketability of a novel, phytochemical-rich oil from the açai palm fruit ( Euterpe Oleracea, Mart.). Dissertation. Texas A&M University, College Station, TX.
127. Duncan, C. L.,, and E. M. Foster. 1968. Effect of sodium nitrite, sodium chloride, and sodium nitrate on germination and outgrowth of anaerobic spores. Appl. Microbiol. 16: 406 411.
128. Ehrenberg, L.,, I. Fedorscsak,, and F. Solymosy. 1976. Diethyl pyrocarbonate in nucleic acid research. Prog. Nucleic Acid Res. Mol. Biol. 16: 189 262.
129. Eklund, T. 1980. Inhibition of growth and uptake processes in bacteria by some chemical food preservatives. J. Appl. Bacteriol. 48: 423 432.
130. Eklund, T. 1983. The antimicrobial effect of dissociated and undissociated sorbic acid at different pH levels. J. Appl. Bacteriol. 54: 383 389.
131. Eklund, T. 1985. Inhibition of microbial growth at different pH levels by benzoic and propionic acids and esters of p-hydroxybenzoic acid. Int. J. Food Microbiol. 2: 159 167.
132. Reference deleted.
133. Ekstrand, B., 1994. Lactoperoxidase and lactoferrin, p. 15 63. In V. M. Dillon, and R. G. Board (ed.), Natural Antimicrobial Systems and Food Preservation. CAB International, Wallingford, United Kingdom.
134. Elci, S.,, and N. O. Akpolat. 2003. Effect of glycerol monolaurate and sodium benzoate at different concentrations, temperatures and pH on the growth of Listeria monocytogenes. Biotechnol. Biotechnol. Equip. 17: 123 127.
135. Elliot, R. M.,, J. C. McLay,, M. J. Kennedy,, and R. S. Simmonds. 2004. Inhibition of foodborne bacteria by the lactoperoxidase system in a beef cube system. Int. J. Food Microbiol. 91: 73 81.
136. Ellison, R. T.,, T. G. Giehl,, and F. M. LaForce. 1988. Damage of the outer membrane of enteric Gram-negative bacteria by lactoferrin and transferrin. Infect. Immun. 56: 2774 2781.
137. Elo, H. A.,, S. Räisänen,, and P. J. Tuohimaa. 1980. Induction of an antimicrobial biotin-binding egg white protein (avidin) in chick tissues in septic Escherichia coli infection. Experientia 36: 312 313.
138. Enrique, M.,, P. Manzanares,, M. Yuste,, M. Martínez,, S. Vallés,, and J. F. Marcos. 2009. Selectivity and antimicrobial action of bovine lactoferrin derived peptides against wine lactic acid bacteria. Food Microbiol. 26: 340 346.
139. Farnaud, S.,, and R. W. Evans. 2003. Lactoferrin—a multifunctional protein with antimicrobial properties. Mol. Immunol. 40: 395 405.
140. Food and DrugAdministration. 1998. Direct food substances affirmed as generally recognized as safe: egg white lysozyme. Fed. Reg. 63: 1242112426.
141. Fernandez, J. L.,, and W. J. Simpson. 1993. Aspects of the resistance of lactic acid bacteria to hop bitter acids. J. Appl. Bacteriol. 75: 315 319.
142. Fernández-Segovia, I.,, I. Escriche,, A. Fuentes,, and J. A. Serra. 2007. Microbial and sensory changes during refrigerated storage of desalted cod ( Gadus morhua) preserved by combined methods. Int. J. Food Microbiol. 116: 64 72.
143. Fisher, K.,, and C. Phillips. 2009. The mechanism of action of a citrus oil blend against Enterococcus faecium and Enterococcus faecalis. J. Appl. Microbiol. 106: 1343 1349.
144. Fisher, T. L.,, and D. A. Golden. 1998. Survival of Escherichia coli O157:H7 in apple cider as affected by dimethyl dicarbonate, sodium bisulfite, and sodium benzoate. J. Food Sci. 63: 904 906.
145. Flores-Villaseñor, H.,, A. Canizalez-Román,, M. Reyes-Lopez,, K. Nazmi,, M. de la Garza,, J. Zazueta-Beltrán,, N. León-Sicairos,, and J. G. M. Bolscher. 2010. Bactericidal effect of bovine lactoferrin, LFcin, LFampin and LFchimera on antibiotic-resistant Staphylococcus aureus and Escherichia coli. Biometals 23: 569 578.
146. Foster, J. W. 1995. Low pH adaptation and the acid tolerance response of Salmonella Typhimurium. Crit. Rev. Microbiol. 21: 215 237.
147. Freese, E., 1978. Mechanism of growth inhibition by lipophilic acids, p. 123 131. In J. J. Kabara (ed.), The Pharmacological Effect of Lipids. American Oil Chemists Society, Champaign, IL.
148. Freese, E.,, C. W. Sheu,, and E. Galliers. 1973. Function of lipophilic acids as antimicrobial food additives. Nature 241: 321 327.
149. Friedman, M. 2007. Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas. Mol. Nutr. Food Res. 51: 116 134.
150. Friedman, M.,, R. Buick,, and C. T. Elliott. 2004. Antibacterial activities of naturally occurring compounds against antibiotic-resistant Bacillus cereus vegetative cells and spores, Escherichia coli, and Staphylococcus aureus. J. Food Prot. 67: 1774 1778.
151. Friedman, M.,, P. R. Henika,, and R. E. Mandrell. 2002. Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J. Food Prot. 65: 1545 1560.
152. Fujita, K.-I.,, and I. Kubo. 2005. Naturally occurring antifungal agents against Zygosaccharomyces bailii and their synergism. J. Agric. Food Chem. 53: 5187 5191.
153. Garcia, M.,, M. A. R. Amalaradjou,, M. K. M. Nair,, T. Annamalai,, S. Surendranath,, S. Lee,, T. Hoagland,, D. Dzurec,, C. Faustman,, and K. Venkitanarayana. 2007. Inactivation of Listeria monocytogenes on frankfurters by monocaprylin alone or in combination with acetic acid. J. Food Prot. 70: 1594 1599.
154. García-Ruiz, A.,, B. Bartolomé,, C. Cueva,, P. J. Martín-Álvarez,, and M. V. Moreno-Arribas. 2009. Inactivation of oenological lactic acid bacteria ( Lactobacillus hilgardii and Pediococcus pentosaceus) by wine phenolic compounds. J. Appl. Microbiol. 107: 1042 1053.
155. Gaysinsky, S.,, P. M. Davidson,, B. D. Bruce,, and J. Weiss. 2005. Growth inhibition of Escherichia coli O157:H7 and Listeria monocytogenes by carvacrol and eugenol encapsulated in surfactant micelles. J. Food Prot. 68: 2559 2566.
156. Gaysinsky, S.,, P. M. Davidson,, B. D. Bruce,, and J. Weiss. 2005. Stability and antimicrobial efficiency of eugenol encapsulated in surfactant micelles as affected by temperature and pH. J. Food Prot. 68: 1359 1366.
157. Gaysinsky, S.,, T. M. Taylor,, P. M. Davidson,, B. D. Bruce,, and J. Weiss. 2007. Antimicrobial efficacy of eugenol microemulsions in milk against Listeria monocytogenes and Escherichia coli O157:H7. J. Food Prot. 70: 2631 2637.
158. Geornaras, I.,, K. E. Belk,, J. A. Scanga,, P. A. Kendall,, G. C. Smith,, and J. N. Sofos. 2005. Postprocessing antimicrobial treatments to control Listeria monocytogenes in commercial vacuum-packaged bologna and ham stored at 10°C. J. Food Prot. 68: 991 998.
159. Gerez, C.L.,, M. I. Torino,, M. D. Obregozo,, and G. Font de Valdez. 2010. A ready-to-use antifungal starter culture improves the shelf life of packaged bread. J. Food Prot. 73: 758 762.
160. Gibson, A. M.,, and T. A. Roberts. 1986. The effect of pH, water activity, sodium nitrite and storage temperature on the growth of enteropathogenic Escherichia coli and salmonellae in laboratory medium. Int. J. Food Microbiol. 3: 183 194.
161. Gibson, A. M.,, and T. A. Roberts. 1986. The effect of pH, sodium chloride, sodium nitrite and storage temperature on the growth of Clostridium perfringens and faecal streptococci in laboratory media. Int. J. Food Microbiol. 3: 195 210.
162. Gifford, J. L.,, H. N. Hunter,, and H. J. Vogel. 2005. Lactoferricin: a lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cell. Mol. Life Sci. 62: 2588 2598.
163. Gill, A. O.,, and R. A. Holley. 2000. Inhibition of bacterial growth on ham and bologna by lysozyme, nisin and EDTA. Food Res. Int. 33: 83 90.
164. Gill, A. O.,, and R. A. Holley. 2003. Interactive inhibition of meat spoilage and pathogenic bacteria by lysozyme, nisin and EDTA in the presence of nitrite and sodium chloride at 24 °C. Int. J. Food Microbiol. 80: 251 259.
165. Gill, A. O.,, and R. A. Holley. 2006. Inhibition of membrane bound ATPases of Escherichia coli and Listeria monocytogenes by plant oil aromatics. Int. J. Food Microbiol. 111: 170 174.
166. Glass, K. A.,, D. A. Granberg,, A. L. Smith,, A. M. McNamara,, M. Hardin,, J. Mattias,, K. Ladwig,, and E. A. Johnson. 2002. Inhibition of Listeria monocytogenes by sodium diacetate and sodium lactate on wieners and cooked bratwurst. J. Food Prot. 65: 116 123.
167. Golden, D. A.,, R. W. Worobo,, and C. S. Ough,. 2005. Dimethyl dicarbonate and diethyl dicarbonate, p. 305 326. In P. M. Davidson,, J. N. Sofos,, and A. L. Branen (ed.), Antimicrobials in Foods, 3rd ed. CRC Press, Boca Raton, FL.
168. Golden, M. H.,, R. L. Buchanan,, and R. C. Whiting. 1995. Effect of sodium acetate or sodium propionate with EDTA and ascorbic acid on the inactivation of Listeria monocytogenes. J. Food Safety 15: 53 65.
169. González-Chávez, S. A.,, S. Arévalo-Gallegos,, and Q. Rascón-Cruz. 2009. Lactoferrin: structure, function and applications. Int. J. Antimicrob. Agents 33: 301.e301 301.e308.
170. González-Fandos, E.,, B. Herrera,, and N. Maya. 2009. Efficacy of citric acid against Listeria monocytogenes attached to poultry skin during refrigerated storage. Int. J. Food Sci. Technol. 44: 262 268.
171. Gould, G. W. (ed). 1989. Mechanisms of Action of Food Preservation Procedures. Elsevier Applied Science, London, United Kingdom.
172. Gould, G. W., 2000. The use of other chemical preservatives: sulfite and nitrite, p. 200 213. In B. M. Lund,, T. C. Baird-Parker,, and G. W. Gould (ed.), The Microbiological Safety and Quality of Food. Aspen Publishers, Gaithersburg, MD.
173. Gould, G. W.,, and N. J. Russell,. 1991. Sulphite, p. 72 88. In N. J. Russell, and G. W. Gould (ed.), Food Preservatives. Blackie and Son Ltd., Glasgow, United Kingdom.
174. Gram, L. 1991. Inhibition of mesophilic spoilage Aeromonas spp. on fish by salt, potassium sorbate, liquid smoke, and chilling. J. Food Prot. 54: 436 442.
175. Guan, W.,, and X. Fan. 2010. Combination of sodium chlorite and calcium propionate reduces enzymatic browning and microbial population of fresh-cut “Granny Smith” apples. J. Food Sci. 75: M72 M77.
176. Gutierrez, J.,, C. Barry-Ryan,, and B. Bourke. 2009. Antimicrobial activity of plant essential oils using food model media: efficacy, synergistic potential and interactions with food components. Food Microbiol. 26: 142 150.
177. Gutierrez, J.,, G. Rodriguez,, C. Barry-Ryan,, and P. Bourke 2008. Efficacy of plant essential oils against foodborne pathogens and spoilage bacteria associated with ready-to-eat vegetables: antimicrobial and sensory screening. J. Food Prot. 71: 1846 1854.
178. Hao, Y. Y.,, R. E. Brackett,, and M. P. Doyle. 1998. Efficacy of plant extracts in inhibiting Aeromonas hydrophila and Listeria monocytogenes in refrigerated, cooked poultry. Food Microbiol. 15: 367 378.
179. Hao, Y. Y.,, R. E. Brackett,, and M. P. Doyle. 1998. Inhibition of Listeria monocytogenes and Aeromonas hydrophila by plant extracts in refrigerated cooked beef. J. Food Prot. 61: 307 312.
180. Hara-Kudo, Y.,, A. Kobayashi,, Y. Sugita-Konishi,, and K. Kondo. 2004. Antibacterial activity of plants used in cooking for aroma and taste. J. Food Prot. 67: 2820 2824.
181. Harris, K.,, M. F. Miller,, G. H. Loneragan,, and M. M. Brashears 2006. Validation of the use of organic acids and acidified sodium chlorite to reduce Escherichia coli O157 and Salmonella Typhimurium in beef trim and ground beef in a simulated processing environment. J. Food Prot. 69: 1802 1807.
182. Harris, V.,, V. Jiranek,, C. M. Ford,, and P. R. Grbin. 2010. Inhibitory effect of hydroxycinnamic acids on Dekkera spp. Appl. Microbiol. Biotechnol. 86: 721 729.
183. Heller, C. E.,, J. A. Scanga,, J. N. Sofos,, K. E. Belk,, W. Warren-Serna,, G. R. Bellinger,, R. T. Bacon,, M. L. Rossman,, and G. C. Smith. 2007. Decontamination of beef subprimal cuts intended for blade tenderization or moisture enhancement. J. Food Prot. 70: 1174 1180.
184. Herald, P. J.,, and P. M. Davidson. 1983. The antibacterial activity of selected hydroxycinnamic acids. J. Food Sci. 48: 1378 1379.
185. Hinze, H.,, and H. Holzer. 1985. Effect of sulfite or nitrite on the ATP content and the carbohydrate metabolism in yeast. Z. Lebensm. Unters. Forsch. 181: 87 91.
186. Ho, C. T., 1992. Phenolic compounds in food. An overview, p. 2 7 In C. T. Ho,, C. Y. Lee,, and M. T. Huang (ed.), Phenolic Compounds in Food and Their Effects on Health, vol. 2. Antioxidants and Cancer Prevention. American Chemical Society, Washington, DC.
187. Hong, M. S.,, S. J. Lim,, Y. K. Oh,, and C. K. Kim. 2002. pH-sensitive, serum-stable and long-circulating liposomes as a new drug delivery system. J. Pharm. Pharmacol. 54: 51 58.
188. Houtsma, P. C.,, A. Heuvelink,, J. Dufrenne,, and S. Notermans. 1994. Effect of sodium lactate on toxin production, spore germination and heat resistance of proteolytic C. botulinum strains. J. Food Prot. 57: 327 330.
189. Houtsma, P. C.,, J. C. Wit,, and F. M. Rombouts. 1996. Minimum inhibitory concentration (MIC) of sodium lactate and sodium chloride for spoilage organisms and pathogens at different pH values and temperatures. J. Food Prot. 59: 1300 1304.
190. Hsieh, Y.-F.,, T.-L. Chen,, Y.-T. Wang,, J.-H. Chang,, and H.-M. Chang. 2002. Properties of liposomes prepared with various lipids. J. Food Sci. 67: 2808 2813.
191. Huang, L.,, and V. K. Juneja. 2003. Thermal inactivation of Escherichia coli O157:H7 in ground beef supplemented with sodium lactate. J. Food Prot. 66: 664 667.
192. Hughey, V. L.,, R. A. Wilger,, and E. A. Johnson. 1989. Antibacterial activity of hen egg white lysozyme against Listeria monocytogenes Scott A in foods. Appl. Environ. Microbiol. 55: 631 638.
193. Ibrahim, H. R.,, S. Higashiguchi,, M. Koketsu,, L. R. Juneja,, M. Kim,, T. Yamamoto,, Y. Sugimoto,, and T. Aoki. 1996. Partially unfolded lysozyme at neutral pH agglutinates and kills gram-negative and gram-positive bacteria through membrane damage mechanism. J. Agric. Food Chem. 44: 3799 3806.
194. Ibrahim, H. R.,, T. Matsuzaki,, and T. Aoki. 2001. Genetic evidence that antibacterial activity of lysozyme is independent of its catalytic function. FEBS Lett. 506: 27 32.
195. Infante, R.,, J. G. Dominguez,, P. Erra,, R. Julia,, and M. Prats. 1984. Surface active molecules: preparation and properties of long chain Nα-acyl-L-α-amino-ω-guanidine alkyl acid derivatives. Int. J. Cosmet. Sci. 6: 275 282.
196. Isshiki, K.,, K. Tokuora,, R. Mori,, and S. Chiba. 1992. Preliminary examination of allyl isothiocyanate vapor for food preservation. Biosci. Biotechnol. Biochem. 56: 1476 1477.
197. Johansen, C.,, L. Gram,, and A. S. Meyer. 1994. The combined inhibitory effect of lysozyme and low pH on growth of Listeria monocytogenes. J. Food Prot. 57: 561 566.
198. Johnson, E. A.,, and A. E. Larson,. 2005. Lysozyme, p. 361 388. In P. M. Davidson,, J. N. Sofos,, and A. L. Branen (ed.), Antimicrobials in Foods, 3rd ed. CRC Press, Boca Raton, FL.
199. Johny, A. K.,, M. J. Darre,, A. M. Donoghue,, D. J. Donoghue,, and K. Venkitanarayana. 2010. Antibacterial effect of trans-cinnamaldehyde, eugenol, carvacrol, and thymol on Salmonella Enteriditis and Campylobacter jejuni in chicken cecal contents in vitro. J. Appl. Poult. Res. 19: 237 244.
200. Jones, E. M.,, A. Smart,, G. Bloomberg,, L. Burgess,, and M. R. Millar. 1994. Lactoferricin, a new antimicrobial peptide. J. Appl. Bacteriol. 77: 208 214.
201. Juliano, R. L. 1981. Liposomes as a drug delivery system. Trends Pharmacol. Sci. 2: 39 42.
202. Juneja, V. K. 2006. Delayed Clostridium perfringens growth from a spore inocula by sodium lactate in sous-vide chicken products. Food Microbiol. 23: 105 111.
203. Juneja, V. K.,, and P. M. Davidson. 1992. Influence of altered fatty acid composition on resistance of Listeria monocytogenes to antimicrobials. J. Food Prot. 56: 302 305.
204. Jung, Y. J.,, K. J. Min,, and K. S. Yoon. 2009. Responses of acid-stressed Salmonella Typhimurium in broth and chicken patties to subsequent antimicrobial stress with ϵ-polylysine and combined potassium lactate and sodium diacetate. Food Microbiol. 26: 467 474.
205. Kabara, J. J.,, and D. L. Marshall,. 2005. Medium-chain fatty acids and esters., p. 327 360. In P. M. Davidson,, J. N. Sofos,, and A. L. Branen (ed.), Antimicrobials in Foods, 3rd ed. CRC Press, Boca Raton, FL.
206. Kalemba, D.,, and A. Kunicka. 2003. Antibacterial and antifungal properties of essential oils. Curr. Med. Chem. 10: 813 829.
207. Karapinar, M.,, and S. A. Gonul. 1992. Removal of Yersinia enterocolitica from fresh parsley by washing with acetic acid or vinegar. Int. J. Food Microbiol. 16: 261 264.
208. Kasrazadeh, M.,, and C. Genigeorgis. 1995. Potential growth and control of Escherichia coli O157:H7 in soft Hispanic type cheese. Int. J. Food Microbiol. 25: 289 300.
209. Kheadr, E. E.,, J.-C. Vuillemard,, and S. A. El-Deeb. 2002. Acceleration of Cheddar cheese lipolysis by using liposome-entrapped lipases. J. Food Sci. 67: 485 492.
210. Kihm, D. J.,, G. J. Leyer,, G.-H. An,, and E. A. Johnson. 1994. Sensitization of heat-treated Listeria monocytogenes to added lysozyme in milk. Appl. Environ. Microbiol. 60: 3854 3861.
211. Kilinc, B.,, S. Cakli,, T. Dincer,, and S. Tolasa. 2009. Microbiological, chemical, sensory, color, and textural changes of rainbow trout fillets treated with sodium acetate, sodium lactate, sodium citrate, and stored at 4°C. J. Aquat. Food Prod. Technol. 18: 3 17.
212. Kim, C. R.,, J. O. Hearnsberger,, A. P. Vickery,, C. H. White,, and D. L. Marshall. 1995. Extending shelf life of refrigerated catfish fillets using sodium acetate and monopotassium phosphate. J. Food Prot. 58: 644 647.
213. Kim, T. J.,, W. L. Weng,, J. L. Silva,, Y. S. Jung,, and D. Marshall. 2010. Identification of natural antimicrobial substances in red muscadine juice against Cronobacter sakazakii. J. Food Sci. 75: M150 M154.
214. Kim, Y.,, M. Kim,, and K. B. Song. 2009. Combined treatment of fumaric acid with aqueous chlorine dioxide or UV-C irradiation to inactivate Escherichia coli O157:H7, Salmonella enterica, serovar Typhimurium, and Listeria monocytogenes inoculated on alfalfa and clover sprouts. LWT Food Sci. Technol. 42: 1654 1658.
215. Kim, Y. J.,, M. H. Kim,, and K. B. Song. 2009. Efficacy of aqueous chlorine dioxide and fumaric acid for inactivating pre-existing microorganisms and Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes on broccoli sprouts. Food Control 20: 1002 1005.
216. Kim, Y. J.,, B. A. Nahm,, and I. H. Choi. 2010. An evaluation of the antioxidant and antimicrobial effectiveness of different forms of garlic and BHA in emulsion-type sausages during refrigerated storage. J. Muscle Foods 21: 813 825.
217. Kirby, G. W.,, L. Atkin,, and C. N. Frey. 1937. Further studies on the growth of bread molds as influenced by acidity. Cereal Chem. 14: 865 878.
218. Ko, K. Y.,, A. F. Mendonca,, and D. U. Ahn. 2008. Effect of ethylenediaminetetraacetate and lysozyme on the antimicrobial activity of ovotransferrin against Listeria monocytogenes. Poult. Sci. 87: 1649 1658.
219. Ko, K. Y.,, A. F. Mendonca,, H. Ismail,, and D. U. Ahn. 2009. Ethylenediaminetetraacetate and lysozyme improves antimicrobial activities against ovotransferrin against Escherichia coli O157:H7. Poult. Sci. 88: 406 414.
220. Koczoń, P. 2009. Growth inhibition mode of action of selected benzoic acid derivatives against the yeast Pichia anomala. J. Food Prot. 72: 791 800.
221. Kondo, N.,, M. Murata,, and K. Isshiki. 2006. Efficiency of sodium hypochlorite, fumaric acid, and mild heat in killing native microflora and Escherichia coli O157:H7, Salmonella Typhimurium DT104, and Staphylococcus aureus attached to fresh-cut lettuce. J. Food Prot. 69: 323 329.
222. Kong, M.,, X. G. Chen,, K. Xing,, and H. J. Park. 2010. Antimicrobial properties of chitosan and mode of action: a state of the art review. Int. J. Food Microbiol. 144: 51 63.
223. Kussendrager, K. D.,, and A. C. M. van Hooijdonk. 2000. Lactoperoxidase: physico-chemical properties, occurrence, mechanism of action and applications. Br. J. Nutr. 84: S19 S25.
224. Lachowicz, K. J.,, G. P. Jones,, D. R. Briggs,, F. E. Bienvenu,, J. Wan,, A. Wilcock,, and M. J. Coventry. 1998. The synergistic preservative effects of the essential oils of sweet basil ( Ocimum basilicum L.) against acid-tolerant food microflora. Lett. Appl. Microbiol. 26: 209 214.
225. Lambert, R. J.,, and M. Stratford. 1999. Weak-acid preservatives: modeling microbial inhibition and response. J. Appl. Microbiol. 86: 157 164.
226. Larson, A. E.,, R. R. Y. Yu,, O. A. Lee,, S. Price,, G. J. Haas,, and E. A. Johnson. 1996. Antimicrobial activity of hop extracts against Listeria monocytogenes in media and in food. Int. J. Food Microbiol. 33: 195 207.
227. Lasch, J.,, V. Weissig,, and M. Brandl,. 2003. Preparation of liposomes, p. 3 30. In V. P. Torchilin, and V. Weissig (ed.), Liposomes: a Practical Approach, 2nd ed. Oxford University Press, New York, NY.
228. Laury, A. M.,, M. V. Alvarado,, G. Nace,, C. Z. Alvarado,, J. C. Brooks,, A. Echeverry,, and M. M. Brashears. 2009. Validation of a lactic acid- and citric acid-based antimicrobial product for the reduction of Escherichia coli O157:H7 and Salmonella on beef tips and whole chicken carcasses. J. Food Prot. 72: 2208 2211.
229. Lawrence, R.,, P. Tripathi,, and E. Jeyakumar. 2009. Isolation, purification and evaluation of antibacterial agents from Aloe vera. Braz. J. Microbiol. 40: 906 915.
230. Lee, S.-Y.,, and D.-H. Kang. 2009. Combined effects of heat, acetic acid, and salt for inactivating Escherichia coli O157:H7 in laboratory media. Food Control 20: 1006 1012.
231. Lee, Y.-L.,, T. Cesario,, J. Owens,, E. Shanbrom,, and L. D. Thrupp. 2002. Antibacterial activity of citrate and acetate. Nutrition 18: 665 666.
232. Lemar, K. M.,, O. Passa,, M. A. Aon,, S. Cortassa,, C. T. Müller,, S. Plummer,, B. O’Rourke,, and D. Lloyd. 2005. Allyl alcohol and garlic ( Allium sativum) extract produce oxidative stress in Candida albicans. Microbiology 151: 3257 3265.
233. Lennox, J. E.,, and L. J. McElroy. 1984. Inhibition of growth and patulin synthesis in Penicillium expansum by potassium sorbate and sodium propionate in culture. Appl. Environ. Microbiol. 48: 1031 1033.
234. Li, J.,, and B. A. McClane. 2006. Comparative effects of osmotic, sodium nitrite-induced, and pH-induced stress on growth and survival of Clostridium perfringens type A isolates carrying chromosomal or plasmid-borne enterotoxin genes. Appl. Environ. Microbiol. 72: 7620 7625.
235. Liewen, M. B.,, and E. H. Marth. 1985. Growth of sorbate-resistant and -sensitive strains of Penicillium roqueforti in the presence of sorbate. J. Food Prot. 48: 525 529.
236. Lillard, H. S.,, L. C. Blankenship,, J. A. Dickens,, S. E. Craven,, and A. D. Shackelford. 1987. Effect of acetic acid on the microbiological quality of scalded picked and unpicked broiler carcasses. J. Food Prot. 50: 112 114.
237. Lim, K.,, and A. Mustapha. 2004. Effects of cetylpyridinium chloride, acidified sodium chlorite, and potassium sorbate on populations of Escherichia coli O157:H7, Listeria monocytogenes, and Staphylococcus aureus on fresh beef. J. Food Prot. 67: 310 315.
238. Lin, C.-A.,, J. F. Preston,, and C.-I. Wei. 2000. Antibacterial mechanism of allyl isothiocyanate. J. Food Prot. 63: 727 734.
239. Liolios, C. C.,, O. Gortzi,, S. Lalas,, J. Tsaknis,, and I. Chinou. 2009. Liposomal incorporation of carvacrol and thymol isolated from the essential oil of Origanum dictamnus L. and in vitro antimicrobial activity. Food Chem. 112: 77 83.
240. Lloyd, T.,, C. Z. Alvarado,, M. M. Brashears,, L. D. Thompson,, S. R. McKee,, and M. Berrang. 2009. Control of Listeria monocytogenes in turkey deli loaves using organic acids as formulation ingredients. Poult. Sci. 88: 2235 2239.
241. Lopez, M.,, S. Martinez,, J. Gonzalez,, R. Martin,, and A. Bernardo. 1998. Sensitization of thermally injured spores of Bacillus stearothermophilus to sodium benzoate and potassium sorbate. Lett. Appl. Microbiol. 27: 331 335.
242. López-Expósito, I.,, A. Pellegrini,, L. Amigo,, and I. Recio. 2008. Synergistic effect between different milk-derived peptides and proteins. J. Dairy Sci. 91: 2184 2189.
243. López-Malo, A.,, S. M. Alzamora,, and A. Argaiz. 1995. Effect of natural vanillin on germination time and radial growth of moulds in fruit-based agar systems. Food Microbiol. 12: 213 219.
244. López-Malo, A.,, S. M. Alzamora,, and S. Guerrero,. 2000. Natural antimicrobialsfrom plants, p. 237 264. In S. M. Alzamora,, M. S. Tapia,, and A. López-Malo (ed.), Minimally Processed Fruits and Vegetables: Fundamental Aspects and Applications. Aspen Publishers, Gaithersburg, MD.
245. López-Malo, A.,, S. M. Alzamora,, and E. Palou. 2002. Aspergillus flavus dose-response curves to selected natural and synthetic antimcrobials. Int. J. Food Microbiol. 73: 213 218.
246. López-Malo, A.,, E. Palou,, and S. M. Alzamora,. 2005. Naturally occurring compounds—plant sources, p. 429 452. In P. M. Davidson,, J. N. Sofos,, and A. L. Branen (ed.), Antimicrobials in Foods, 3rd ed. CRC Press, Boca Raton, FL.
247. Luciano, F. B.,, and R. A. Holley. 2009. Enzymatic inhibition by allyl isothiocyanate and factors affecting its antimicrobial action against Escherichia coli O157:H7. Int. J. Food Microbiol. 131: 240 245.
248. Lund, B. M.,, S. M. George,, and J. G. Franklin. 1987. Inhibition of type A and type B (proteolytic) Clostridium botulinum by sorbic acid. Appl. Environ. Microbiol. 53: 935 941.
249. Maks, N.,, L. Zhu,, V. K. Juneja,, and S. Ravishankar. 2010. Sodium lactate, sodium diacetate and pediocin: effects and interactions on the thermal inactivation of Listeria monocytogenes on bologna. Food Microbiol. 27: 64 69.
250. Manderfield, M. M.,, H. W. Schafer,, P. M. Davidson,, and E. A. Zottola. 1997. Isolation and identification of antimicrobial furocoumarins from parsley. J. Food Prot. 60: 72 77.
251. Mangalassary, S.,, I. Han,, J. Rieck,, J. Acton,, and P. Dawson. 2008. Effect of combining nisin and/or lysozyme with in-package pasteurization for control of Listeria monocytogenes in ready-to-eat turkey bologna during refrigerated storage. Food Microbiol. 25: 866 870.
252. Mann, C. M.,, S. D. Cox,, and J. L. Markham. 2000. The outer membrane of Pseudomonas aeruginosa NCTC 6749 contributes to its tolerance to the essential oil of Melaleuca alternifolia (tea tree oil). Lett. Appl. Microbiol. 30: 294 297.
253. Mansour, M.,, and J.-B. Milliere. 2001. An inhibitory synergistic effect of a nisin-monolaurin combination on Bacillus sp. vegetative cells in milk. Food Microbiol. 18: 87 94.
254. Mari, M.,, R. Iori,, O. Leoni,, and A. Marchi. 1993. In vitro activity of glucosinolate derived isothiocyanates against postharvest fruit pathogens. Ann. Appl. Biol. 123: 155 164.
255. Martin, E. M.,, C. L. Griffis,, K. L. S. Vaughn,, C. A. O’Bryan,, E. C. Friedly,, J. A. Marcy,, S. C. Ricke,, P. G. Crandall,, and R. Y. Lary, Jr. 2009. Control of Listeria monocytogenes by lauric arginate on frankfurters formulated with or without lactate/diacetate. J. Food Sci. 74: M237 M241.
256. Mastromatteo, M.,, A. Lucera,, M. Sinigaglia,, and M. R. Corbo. 2010. Use of lysozyme, nisin, and EDTA combined treatments for maintaining quality of packed ostrich patties. J. Food Sci. 75: M178 M186.
257. Mazzotta, A. S.,, K. D. Modi,, and T. J. Montville. 2000.