1887

Chapter 31 : Biological Control of Foodborne Bacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Biological Control of Foodborne Bacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818463/9781555816261_Chap31-1.gif /docserver/preview/fulltext/10.1128/9781555818463/9781555816261_Chap31-2.gif

Abstract:

This chapter provides an overview of the biologically based preservation technologies termed "biopreservation". The first part of the chapter covers acid production by lactic acid bacteria (LAB) in temperature-abused foods (controlled acidification). While organic acids are usually added to foods, LAB can produce lactic acid in situ. The controlled production of acid in situ is an important form of biopreservation. Then the chapter discusses some LAB produce antimicrobial proteins, called bacteriocins, that inhibit spoilage and pathogenic bacteria without changing the physicochemical nature of the food. The largest section of this chapter deals with bacteriocins. Bacteriocins are ribosomally synthesized antimicrobial peptides of bacterial origin that are not lethal to the host. Many bacteriocins inhibit foodborne pathogens of serious concern such as , which is recalcitrant to traditional preservation methods. The chapter presents general characteristics, methodological considerations, bacteriocin applications in foods, genetics of LAB bacteriocins, and resistance of bacteriocins of each of these conditions in detail. The use of bacteriophages to control pathogens in food has “shown promise” for decades. But, perhaps due to the difficulty of obtaining reproducible results in foods, they have not gained widespread use. The chapter closes by examining the use of bacteriophages as biocontrol agents.

Citation: Montville T, Chikindas M. 2013. Biological Control of Foodborne Bacteria, p 803-822. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch31
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 31.1
Figure 31.1

A generic bacteriocin operon. The structural gene () codes for a prepropeptide that is modified and excreted by the processing gene products (P1 and P2) and may be regulated by a signal transduction pathway coded for by and . For additional abbreviations and explanations, see the text. doi:10.1128/9781555818463.ch31f1

Citation: Montville T, Chikindas M. 2013. Biological Control of Foodborne Bacteria, p 803-822. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch31
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 31.2
Figure 31.2

Models for pore formation and detergentlike mechanisms of bacteriocin action. doi:10.1128/9781555818463.ch31f2

Citation: Montville T, Chikindas M. 2013. Biological Control of Foodborne Bacteria, p 803-822. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch31
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818463.chap31
1. Abee, T.,, F. M. Rombouts,, J. Hugenholtz,, G. Guihard,, and L. Letellier. 1994. Mode of action of nisin Z against Listeria monocytogenes Scott A grown at high and low temperatures. Appl. Environ. Microbiol. 60: 1962 1968.
2. Abriouel, H.,, R. Lucas,, N. Ben Omar,, E. Valdivia,, M. Maqueda,, M. Martínez-Cañamero,, and A. Gálvez. 2005. Enterocin AS-48RJ: a variant of enterocin AS-48 chromosomally encoded by Enterococcus faecium RJ16 isolated from food. Syst. Appl. Microbiol. 28: 383 397.
3. Albano, H.,, S. D. Todorov,, C. A. van Reenen,, T. Hogg,, L. M. Dicks,, and P. Teixeira. 2007. Characterization of two bacteriocins produced by Pediococcus acidilactici isolated from “Alheira,” a fermented sausage traditionally produced in Portugal. Int. J. Food Microbiol. 116: 239 247.
4. Allison, G.,, C. Fremaux,, C. Ahn,, and T. R. Klaenhammer. 1994. Expansion of bacteriocin activity and host range upon complementation of two peptides encoded within the lactacin F operon. J. Bacteriol. 176: 2235 2241.
5. Al-Zoreky, N.,, J. C. Ayres,, and W. Sandine. 1991. Antimicrobial activity of Microgard ® against food spoilage and pathogenic microorganisms. J. Dairy Sci. 74: 758 763.
6. Asaduzzaman, S. M.,, and K. Sonomoto. 2009. Lantibiotics: diverse activities and unique modes of action. J. Biosci. Bioeng. 107: 475 487.
7. Balasubramanian, A.,, L. E. Rosenberg,, K. Yam,, and M. L. Chikindas. 2009. Antimicrobial packaging: potential vs. reality—a review. J. Appl. Packaging Res. 3: 193 221.
8. Bassler, B. L. 2002. Small talk. Cell-to-cell communication in bacteria. Cell 109: 421 424.
9. Berry, E. D.,, R. W. Hutkins,, and R. Mandigo. 1991. The use of bacteriocin producing Pediococcus acidilactici to control post processing Listeria monocytogenes contamination of frankfurters. J. Food Prot. 54: 681 686.
10. Bhunia, A. K.,, and M. C. Johnson. 1992. Monoclonal antibody-colony immunoblot method specific for isolation of Pediococcus acidilactici from foods and correlation with pediocin (bacteriocin) production. Appl. Environ. Microbiol. 58: 2315 2320.
11. Bierbaum, G.,, and H. G. Sahl. 2009. Lantibiotics: mode of action, biosynthesis and bioengineering. Curr. Pharm. Biotechnol. 10: 2 18.
12. Biswas, B.,, S. Adhya,, P. Washart,, B. Paul,, A. N. Trostel,, B. Powell,, R. Carlton,, and C. R. Merril. 2002. Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infect. Immun. 70: 204 210.
13. Bouksaim, M.,, C. Lacroix,, R. Bazin,, and R. E. Simard. 1999. Production and utilization of polyclonal antibodies against nisin in an ELISA and for immuno-location of nisin in producing and sensitive bacterial strains. J. Appl. Microbiol. 87: 500 510.
14. Bower, C. K.,, J. McGuire,, and M. A. Daeschel. 1995. Suppression of Listeria monocytogenes colonization following adsorption of nisin onto silica surfaces. Appl. Environ. Microbiol. 61: 992 997.
15. Breukink, E.,, I. Wiedemann,, C. van Kraaij,, O. P. Kuipers,, H. Sahl,, and B. de Kruijff. 1999. Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science 286: 2361 2364.
16. Bruno, M. E. C.,, A. Kaiser,, and T. J. Montville. 1992. Depletion of proton motive force by nisin in Listeria monocytogenes cells. Appl. Environ. Microbiol. 58: 2255 2259.
17. Bruno, M. E. C.,, and T. J. Montville. 1993. Common mechanistic action of bacteriocins from lactic acid bacteria. Appl. Environ. Microbiol. 59: 3003 3010.
18. Brurberg, M. B.,, I. F. Nes,, and V. G. Eijsink. 1997. Pheromone-induced production of antimicrobial peptides in Lactobacillus. Mol. Microbiol. 26: 347 360.
19. Brüsson, H. 2005. Phage therapy: the Escherichia coli experience. Microbiology 151: 2133 2140.
20. Buchanan, R. L.,, and L. A. Klawitter. 1992. Effectiveness of Carnobacterium piscicola LK5 for controlling the growth of Listeria monocytogenes Scott A in refrigerated foods. J. Food Safety 12: 217 224.
21. Buchman, G. W.,, S. Banergee,, and J. N. Hansen. 1988. Structure, expression and evolution of a gene encoding the precursor of nisin, a small protein antibiotic. J. Biol. Chem. 263: 16260 16266.
22. Buyong, N.,, J. Kok,, and J. B. Luchansky. 1998. Use of a genetically enhanced, pediocin-producing starter culture, Lactococcus lactis subsp. lactis MM217, to control Listeria monocytogenes in cheddar cheese. Appl. Environ. Microbiol. 64: 4842 4845.
23. Chen, Y.,, and T. J. Montville. 1995. Efflux of ions and ATP depletion induced by pediocin PA-1 are concomitant with cell death in Listeria monocytogenes Scott A. J. Appl. Bacteriol. 79: 684 690.
24. Chikindas, M. L.,, M. J. García-Garcerá,, A. J. M. Driessen,, A. M. Ledeboer,, J. Nissen-Meyer,, I. F. Nes,, T. Abee,, W. N. Konings,, and G. Venema. 1993. Pediocin PA-1, a bacteriocin from Pediococcus acidilactici PAC1.0, forms hydrophilic pores in the cytoplasmic membrane of target cells. Appl. Environ. Microbiol. 59: 3577 3584.
25. Cintas, L. M.,, P. Casaus,, C. Herranz,, L. S. Håvarstein,, H. Holo,, P. E. Hernández,, and I. F. Nes. 2000. Biochemical and genetic evidence that Enterococcus faecium L50 produces enterocins L50A and L50B, the sec-dependent enterocin P, and a novel bacteriocin secreted without an N-terminal extension termed enterocin Q. J. Bacteriol. 182: 6806 6814.
26. Cleveland, J.,, T. J. Montville,, I. F. Nes,, and M. L. Chikindas. 2001. Bacteriocins: safe, natural antimicrobials for food preservation. Int. J. Food. Microbiol. 71: 1 20.
27. Cleveland, J.,, M. Chikindas,, and T. J. Montville. 2002. Multimethod assessment of commercial nisin preparations. J. Ind. Microbiol. Biotechnol. 29: 228 232.
28. Cociancich, S.,, M. Goyffon,, F. Bontems,, P. Bulet,, F. Bouet,, A. Menez,, and J. Hoffman. 1993. Purification and characterization of a scorpion defensin, a 4kDa antibacterial peptide presenting structural similarity with insect defensins and scorpion toxins. Biochem. Biophys. Res. Commun. 194: 17 22.
29. Cotter, P. D.,, C. Hill,, and R. P. Ross. 2005. Bacteriocins: developing innate immunity for food. Nat. Rev. Microbiol. 3: 777 788.
30. Cotter, P. D.,, C. Hill,, and P. R. Ross. 2006. What’s in a name? Class distinction for bacteriocins. (Author’s reply.) Nat. Rev. Microbiol. doi:10.1038/nrmicro1273-c1.
31. Cruz, J.,, and T. J. Montville. 2008. Influence of nisin on the resistance of Bacillus anthracis Sterne spores to heat and hydrostatic pressure. J. Food Prot. 71: 196 199.
32. Daba, H.,, C. Lacroix,, J. Huang,, R. E. Simard,, and L. Lemieux. 1994. Simple method of purification and sequencing of a bacteriocin produced by Pediococcus acidilactici UL5. J. Appl. Bacteriol. 77: 682 698.
33. Daeschel, M. A. 1989. Antimicrobial substances from lactic acid bacteria for use as food preservatives. Food Technol. 43: 164 166.
34. Daeschel, M. A. 1990. Controlling wine malolactic fermentation with nisin and nisin-resistant strains of Leuconostoc oenos. Appl. Environ. Microbiol. 51: 601 603.
35. Daeschel, M. A.,, J. McGuire,, and H. Al-Makhlafi. 1992. Antimicrobial activity of nisin adsorbed to hydrophilic and hydrophobic silicon surfaces. J. Food Prot. 55: 731 735.
36. Dalet, K.,, C. Briand,, Y. Cenatiempo,, and Y. Héchard. 2000. The rpoN gene of Enterococcus faecalis directs sensitivity to subclass IIa bacteriocins. Curr. Microbiol. 41: 441 443.
37. Degnan, A. J.,, N. Buyong,, and J. B. Luchansky. 1993. Antilisterial activity of pediocin AcH in model food systems in the presence of an emulsifier or encapsulated within liposomes. Int. J. Food Microbiol. 18: 127 138.
38. Degnan, A. J.,, and J. B. Luchansky. 1992. Influence of beef tallow and muscle on the antilisterial activity of pediocin AcH and liposome-encapsulated pediocin AcH. J. Food Prot. 55: 552 554.
39. Degnan, A. J.,, A. E. Yousef,, and J. B. Luchansky. 1992. Use of Pediococcus acidilactici to control Listeria monocytogenes in temperature-abused vacuum-packaged wieners. J. Food Prot. 55: 98 103.
40. de Kwaadsteniet, M.,, K. ten Doeschate,, and L. M. Dicks. 2008. Characterization of the structural gene encoding nisin F, a new lantibiotic produced by a Lactococcus lactis subsp. lactis isolate from freshwater catfish ( Clarias gariepinus). Appl. Environ. Microbiol. 74: 547 549.
41. Delves-Broughton, J.,, G. C. Williams,, and S. Williamson. 1992. The use of the bacteriocin, nisin, as a preservative in pasteurized white egg. Lett. Appl. Microbiol. 15: 133 136.
41a. de Ruyter, P. G.,, O. P. Kuipers,, and W. M. de Vos. 1996. Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl. Environ. Microbiol. 62: 3662 3667.
42. Desriac, F.,, D. Defer,, N. Bourgougnon,, B. Brillet,, P. Le Chevalier,, and Y. Fleury. 2010. Bacteriocin as weapons in the marine animal-associated bacteria warfare: inventory and potential applications as an aquaculture probiotic. Mar. Drugs 8: 1153 1177.
43. Diep, D. B.,, L. S. Håvarstein,, J. Nissen-Meyer,, and I. F. Nes. 1994. The gene encoding plantaricin A, a bacteriocin from Lactobacillus plantarum C11, is located on the same transcription unit as an agr-like regulatory system. Appl. Environ. Microbiol. 60: 160 166.
44. Diep, D. B.,, and I. F. Nes. 2002. Ribosomally synthesized antibacterial peptides in Gram positive bacteria. Curr. Drug Targets 3: 107 122.
45. Dodd, H. M.,, N. Horn,, and M. J. Gasson. 1990. Analysis of the genetic determinant for the production of the peptide antibiotic nisin. J. Gen. Microbiol. 136: 555 556.
46. Eijsink, V. G.,, L. Axelsson,, D. B. Diep,, L. S. Håvarstein,, H. Holo,, and I. F. Nes. 2002. Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication. Antonie van Leeuwenhoek 81: 639 654.
47. Engelke, G.,, Z. Gutowski-Eckel,, M. Hammelmann,, and K. D. Entian. 1992. Biosynthesis of the lantibiotic nisin: genomic organization and membrane localization of the NisB protein. Appl. Environ. Microbiol. 58: 3730 3743.
48. Ennahar, S.,, O. Assobhel,, and C. Hasselmann. 1998. Inhibition of Listeria monocytogenes in a smear-surface soft cheese by Lactobacillus plantarum WHE 92, a pediocin AcH producer. J. Food Prot. 61: 186 191.
49. Ennahar, S.,, T. Sashihara,, K. Sonomoto,, and A. Ishizaki. 2000. Class IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiol. Rev. 24: 85 106.
50. Fang, T. J.,, and L. W. Lin. 1994. Inactivation of Listeria monocytogenes on raw pork treated with modified atmosphere packaging and nisin. J. Food Drug Anal. 2: 189 200.
51. Farber, J. M. 1993. Current research on Listeria monocytogenes in foods: an overview. J. Food Prot. 56: 640 643.
52. Fath, M. J.,, and R. Kolter. 1993. ABC transporters: bacterial exporters. Microbiol. Rev. 57: 995 1017.
53. Faye, T.,, T. Langsrud,, I. F. Nes,, and H. Holo. 2000. Biochemical and genetic characterization of propionicin T1, a new bacteriocin from Propionibacterium thoenii. Appl. Environ. Microbiol. 66: 4230 4236.
54. Federal Register. 1988. Nisin preparation: affirmation of GRAS status as a direct human food ingredient. 21CFR Part 184. 53: 1124711251.
55. Fimland, G.,, O. R. Blingsmo,, K. Sletten,, G. Jung,, I. F. Nes,, and J. Nissen-Meyer. 1996. New biologically active hybrid bacteriocins constructed by combining regions from various pediocin-like bacteriocins: the C-terminal region is important for determining specificity. Appl. Environ. Microbiol. 62: 3313 3318.
56. Fimland, G.,, L. Johnsen,, B. Dalhus,, and J. Nissen-Meyer. 2005. Pediocin-like antimicrobial peptides (class IIa bacteriocins) and their immunity proteins: biosynthesis, structure, and mode of action. J. Pept. Sci. 11: 688 696.
57. Foegeding, P. M.,, A. B. Thomas,, D. H. Pinkerton,, and T. R. Klaenhammer. 1992. Enhanced control of Listeria monocytogenes by in situ-produced pediocin during dry fermented sausage production. Appl. Environ. Microbiol. 58: 884 890.
58. Fremaux, C.,, Y. Héchard,, and Y. Cenatiempo. 1995. Mesentericin Y105 gene clusters in Leuconostoc mesenteroides Y105. Microbiology 141: 1637 1645.
59. Gao, F. H.,, T. Abee,, and W. N. Konings. 1991. The mechanism of action of the peptide antibiotic nisin in liposomes and cytochrome c oxidase proteoliposomes. Appl. Environ. Microbiol. 57: 2164 2170.
60. García Garcerá, M. J.,, M. G. L. Elferink,, A. J. M. Driessen,, and W. N. Konings. 1993. In vitro pore-forming activity of the lantibiotic nisin: role of protonmotive force and lipid composition. Eur. J. Biochem. 212: 417 422.
61. Garver, K. I.,, and P. M. Muriana. 1993. Detection, identification and characterization of bacteriocin-producing lactic acid bacteria from retail food products. Int. J. Food Microbiol. 19: 241 258.
62. Gandhi, M.,, and M. L. Chikindas. 2007. Listeria: a foodborne pathogen that knows how to survive. Int. J. Food Microbiol. 113: 1 15.
63. Gonzalez, C. F. 1988. Method for inhibiting bacterial spoilage and composition for this purpose. European patent application 88101624.
64. Goode, D.,, V. M. Allen,, and P. A. Barrow. 2003. Reduction of experimental Salmonella and Campylobacter contamination of chicken skin by application of lytic bacteriophage. Appl. Environ. Microbiol. 69: 5032 5036.
65. Gravesen, A.,, K. Sørensen,, F. M. Aarestrup,, and S. Knøchel. 2001. Spontaneous nisin-resistant Listeria monocytogenes mutants with increased expression of a putative penicillin-binding protein and their sensitivity to various antibiotics. Microb. Drug Resist. 7: 127 135.
66. Greer, G. G. 2005. Bacteriophage control of foodborne bacteria. J. Food Prot. 68: 1102 1111.
67. Gross, E.,, and J. L. Morell. 1967. The presence of a dehydroalanine in the antibiotic nisin and its relationship to activity. J. Am. Chem. Soc. 89: 2791 2792.
68. Gross, E.,, and J. L. Morell. 1971. The structure of nisin. J. Am. Chem. Soc. 93: 4634 4635.
69. Guder, A.,, I. Wiedemann,, and H. G. Sahl. 2000. Posttranslationally modified bacteriocins—the lantibiotics. Biopolymers 55: 62 73.
70. Guenther, S.,, D. Huwyler,, S. Richard,, and M. J. Loessner. 2009. Virulent bacteriophage for efficient biocontrol of Listeria monocytogenes in ready-to-eat foods. Appl. Environ. Microbiol. 75: 93 100.
71. Hanlin, M. B.,, N. Kalchayan,, P. Ray,, and B. Ray. 1993. Bacteriocins of lactic acid bacteria in combination have greater antibacterial activity. J. Food Prot. 56: 252 255.
72. Harris, L. J.,, H. P. Fleming,, and T. R. Klaenhammer. 1991. Sensitivity and resistance of Listeria monocytogenes ATCC 19115 Scott A and VAL 500 to nisin. J. Food Prot. 54: 836 840.
73. Harris, L. J.,, H. P. Fleming,, and T. R. Klaenhammer. 1992. Novel paired starter culture system for sauerkraut, consisting of a nisin resistant Leuconostoc mesenteroides strain and a nisin-producing Lactococcus lactis strain. Appl. Environ. Microbiol. 58: 1484 1489.
74. Heng, N. C. K.,, and J. R. Tagg. 2006. What’s in a name? Class distinction for bacteriocins. Nat. Rev. Microbiol. doi: 10.1038/nrmicro1273-c1.
75. Herranz, C.,, Y. Chen,, H. J. Chung,, L. M. Cintas,, P. E. Hernández,, T. J. Montville,, and M. L. Chikindas. 2001. Enterocin P selectively dissipates the membrane potential of Enterococcus faecium T136. Appl. Environ. Microbiol. 67: 1689 1692.
76. Holo, H.,, O. Nissen,, and I. F. Nes. 1991. Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: isolation and characterization of the protein and its gene. J. Bacteriol. 173: 3879 3887.
77. Hoover, D. G.,, and L. R. Steenson. 1993. Bacteriocins of Lactic Acid Bacteria. Academic Press, New York, NY.
78. Horn, N.,, S. Swindell,, H. Dodd,, and M. Gasson. 1991. Nisin biosyntheis genes are encoded by a novel conjugative transposon. Mol. Gen. Genet. 228: 129 135.
79. Reference deleted.
80. Reference deleted.
81. Hudson, J. A.,, C. Billington,, C. Carey-Smith,, and G. Greening. 2005. Bacteriophages as biocontrol agents in food. J. Food Prot. 68: 426 437.
82. Hutton, M. T.,, P. A. Chehak,, and J. H. Hanlin. 1991. Inhibition of botulism toxin production by Pediococcus acidilactici in temperature abused refrigerated foods. J. Food Safety 11: 255 267.
83. Institute of FoodTechnologists. 2001. Analysis and evaluation of preventive control measures for the control and reduction/elimination of microbial hazards on fresh and fresh-cut produce. Compr. Rev. Food Sci. Food Safety 2( Suppl. 1): 1337.
84. Jack, R. W.,, and G. Jung. 2000. Lantibiotics and microcins: polypeptides with unusual chemical diversity. Curr. Opin. Chem. Biol. 4: 310 317.
85. Jager, K.,, and S. Harlander. 1992. Characterization of a bacteriocin from Pediococcus acidilactici PC and comparison of bacteriocin-producing strains using molecular typing procedures. Appl. Microbiol. Biotechnol. 37: 631 637.
86. Jarvis, B.,, and J. Farr. 1971. Partial purification, specificity and mechanism of the nisin-inactiviating enzyme from Bacillus cereus. Biochim. Biophys. Acta 227: 232 240.
87. Juneja, V. K.,, and P. M. Davidson. 1993. Influence of altered fatty acid composition on resistance of Listeria monocytogenes to antimicrobials. J. Food Prot. 56: 302 305.
88. Kalchayanand, N.,, M. B. Hanlin,, and B. Ray. 1992. Sublethal injury makes Gram-negative and resistant Gram-positive bacteria sensitive to the bacteriocins, pediocin AcH and nisin. Lett. Appl. Microbiol. 15: 239 243.
89. Kalchayanand, N.,, T. Sikes,, C. P. Dunne,, and B. Ray. 1994. Hydrostatic pressure and electroporation have increased bactericidal efficiency in combination with bacteriocins. Appl. Environ. Microbiol. 60: 4174 4177.
90. Klaenhammer, T. R. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12: 39 86.
91. Kleerebezem, M. 2004. Quorum sensing control of lantibiotic production; nisin and subtilin autoregulate their own biosynthesis. Peptides 25: 1405 1414.
92. Kok, J.,, H. Holo,, M. J. van Belkum,, A. J. Haandrikman,, and I. F. Nes,. 1993. Nonnisin bacteriocins in lactococci: biochemistry, genetics and mode of action, p. 121 150. In D. G. Hoover, and L. R. Steenson (ed.), Bacteriocins of Lactic Acid Bacteria. Academic Press, New York, NY.
93. Konisky, J. 1982. Colicins and other bacteriocins with established modes of action. Ann. Rev. Microbiol. 36: 125 144.
94. Kuipers, O. P.,, M. M. Beerthuyzen,, R. J. Siezen,, and W. M. de Vos. 1993. Characterization of the nisin gene cluster nisABTCIPR of Lactococcus lactis: requirement of expression of the nisA and nisI gene for producer immunity. Eur. J. Biochem. 216: 281 292.
95. Leverentz, B.,, W. S. Conway,, M. J. Camp,, W. J. Janisiewcz,, T. Abuladze,, M. Yang,, R. Saftner,, and A. Sulakvelidze. 2003. Control of Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophage and a bacteriocin. Appl. Environ. Microbiol. 69: 4519 4526.
96. Lins, L.,, P. Ducarme,, E. Breukink,, and R. Brasseur. 1999. Computational study of nisin interaction with model membrane. Biochim. Biophys. Acta 1420: 111 120.
97. Luchansky, J. B.,, K. A. Glass,, K. D. Harrsono,, A. J. Degnan,, N. G. Faith,, B. Cauvin,, G. Bascus-Taylor,, K. Arihara,, B. Bater,, A. J. Maurer,, and R. G. Cassers. 1992. Genomic analysis of Pediococcus starter cultures used to control Listeria monocytogenes in turkey summer sausage. Appl. Environ. Microbiol. 58: 3053 3059.
98. Lyon, W. J.,, J. E. Sethi,, and B. A. Glatz. 1993. Inhibition of psychrotrophic organisms by propionicin PLG-1, a bacteriocin produced by Propionibacterium thoenii. J. Dairy Sci. 76: 1506 1513.
99. Maher, S.,, and S. McClean. 2006. Investigation of the cytotoxicity of eukaryotic and prokaryotic antimicrobial peptides in intestinal epithelial cells in vitro. Biochem. Pharmacol. 71: 1289 1298.
100. Martínez, J. M.,, M. I. Martínez,, C. Herranz,, A. Suárez,, M. F. Fernández,, L. M. Cintas,, J. M. Rodríguez,, and P. E. Hernández. 1999. Antibodies to a synthetic 1-9-N-terminal amino acid fragment of mature pediocin PA-1: sensitivity and specificity for pediocin PA-1 and cross-reactivity against Class IIa bacteriocins. Microbiology 145: 2777 2787.
101. Martínez, B.,, M. Fernández,, J. E. Suárez,, and A. Rodríguez. 1999. Synthesis of lactococcin 972, a bacteriocin produced by Lactococcus lactis IPLA 972, depends on the expression of a plasmid-encoded bicistronic operon. Microbiology 145: 3155 3161.
102. Marugg, J. D.,, C. F. Gonzalez,, B. S. Kunka,, A. M. Ledeboer,, M. J. Pucci,, M. Y. Toonen,, S. A. Walker,, L. C. M. Zoetmulder,, and P. A. Vandenbergh. 1992. Cloning, expression, and nucleotide sequence of genes involved in production of pediocin PA-1, a bacteriocin from Pediococcus acidilactici PAC 1.0. Appl. Environ. Microbiol. 58: 2360 2367.
103. Mayr-Harting, A.,, A. J. Hedges,, and R. C. W. Berkeley,. 1972. Methods for studying bacteriocins, p. 313 342. In J. R. Norris, and D. W. Ribbons (ed.), Methods in Microbiology, vol. 7A. Academic Press, New York, NY.
104. Mazzotta, A. S.,, A. D. Crandall,, and T. J. Montville. 1997. Nisin resistance in Clostridium botulinum spores and vegetative cells. Appl. Environ. Microbiol. 63: 2654 2659.
105. Mazzotta, A. S.,, and T. J. Montville. 1999. Characterization of fatty acid composition, germination, and thermal resistance in a nisin resistant mutant of Clostridium botulinum 169B, and the wild-type strain. Appl. Environ. Microbiol. 65: 659 664.
106. Miller, K. W.,, P. Ray,, T. Steinmetz,, T. Hanekamp,, and B. Ray. 2005. Gene organization and sequences of pediocin AcH/PA-1 production operons in Pediococcus and Lactobacillus plasmids. Lett. Appl. Microbiol. 40: 56 62.
107. Ming, X.,, and M. A. Daeschel. 1993. Nisin resistance of foodborne bacteria and the specific resistance responses of Listeria monocytogenes Scott A. J. Food Prot. 11: 944 948.
108. Modi, K. D.,, M. L. Chikindas,, and T. J. Montville. 2000. Sensitivity of nisin-resistant Listeria monocytogenes to heat and the synergistic action of heat and nisin. Lett. Appl. Microbiol. 30: 249 253.
109. Moll, G. N.,, E. van den Akker,, H. H. Hauge,, J. Nissen-Meyer,, I. F. Nes,, W. N. Konings,, and A. J. Driessen. 1999. Complementary and overlapping selectivity of the two-peptide bacteriocins plantaricin EF and JK. J. Bacteriol. 181: 4848 4852.
110. Montville, T. J.,, and M. E. C. Bruno. 1994. Evidence that dissipation of proton motive force is a common mechanism of action for bacteriocins and other antimicrobial proteins. Int. J. Food Microbiol. 24: 53 74.
111. Montville, T. J.,, A. M. Rogers,, and A. Okereke. 1992. Differential sensitivity of Clostridium botulinum strains to nisin. J. Food Prot. 56: 444 448.
112. Montville, T. J.,, K. Winkowski,, and R. D. Ludescher. 1995. Models and mechanisms for bacteriocin action and application. Int. Dairy J. 5: 797 815.
113. Mørtvedt, C. I.,, J. Nissen-Meyer,, K. Sletten,, and I. F. Nes. 1991. Purification and amino acid sequence of lactocin S, a bacteriocin produced by Lactobacillus sake L45. Appl. Environ. Microbiol. 57: 1829 1834.
114. Mulders, J. W.,, I. J. Boerrigter,, H. S. Rollema,, R. J. Siezen,, and W. M. de Vos. 1991. Identification and characterization of the lantibiotic nisin Z, a natural nisin variant. Eur. J. Biochem. 201: 581 584.
115. Murdock, C. A.,, J. Cleveland,, K. R. Matthews,, and M. L. Chikindas. 2007. The synergistic effect of nisin and lactoferrin on the inhibition of Listeria monocytogenes and Escherichia coli O157:H7. Lett. Appl. Microbiol. 44: 255 261.
116. Naghmouchi, K.,, E. Kheadr,, C. Lacroix,, and I. Fliss. 2007. Class I/Class IIa bacteriocin cross-resistance phenomenon in Listeria monocytogenes. Food Microbiol. 24: 718 727.
117. Nes, I. F.,, and H. Holo. 2000. Class II antimicrobial peptides from lactic acid bacteria. Biopolymers 55: 50 61.
118. Nettles, C. G.,, and S. F. Barefoot. 1993. Biochemical and genetic characteristics of bacteriocins of food-associated lactic acid bacteria. J. Food Prot. 56: 338 356.
119. Nielsen, J. W.,, J. S. Dickson,, and J. D. Crouse. 1990. Use of a bacteriocin produced by Pediococcus acidilactici to inhibit Listeria monocytogenes associated with fresh meat. Appl. Environ. Microbiol. 56: 2142 2145.
120. Nilsson, L.,, Y. Chen,, M. L. Chikindas,, H. H. Huss,, L. Gram,, and T. J. Montville. 2000. Carbon dioxide and nisin act synergistically on Listeria monocytogenes. Appl. Environ. Microbiol. 66: 769 774.
121. Nissen-Meyer, J.,, H. Holo,, L. S. Håvarstein,, K. Sletten,, and I. F. Nes. 1992. A novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides. J. Bacteriol. 174: 5686 5692.
122. Nussbaum, A.,, and A. Cohen. 1988. Use of a bioluminescence gene reporter for the investigation of Red-dependent and Gam-dependent plasmid recombination in E. coli K12. J. Mol. Biol. 203: 391 402.
123. O’Flyn, G.,, R. P. Ross,, G. F. Fitzgerald,, and A. Coffey. 2004. Evaluation of a cocktail of three bacteriophage for control of Escherichia coli O157:H7. Appl. Environ. Microbiol. 70: 3417 3424.
124. Ojcius, D. M.,, and J. D. E. Young. 1991. Cytolytic pore-forming proteins and peptides: is there a common structural motif? Trends Biochem. Sci. 16: 225 229.
125. Oscroft, C. A.,, J. G. Banks,, and S. McPhee. 1990. Inhibition of thermally-stressed Bacillus spores by combinations of nisin, pH and organic acids. Lebenon. Wiss. Technol. 23: 538 544.
126. Parfitt, T. 2005. Georgia: an unlikely stronghold for bacteriophage therapy. Lancet 365: 2166 2167.
127. Parret, A. H. A.,, G. Schoofs,, P. Proost,, and R. De Mot. 2003. Plant lectin-like bacteriocin from a rhizosphere-colonizing Pseudomonas isolate. J. Bacteriol. 185: 897 908.
128. Patel, J. R.,, G. C. Sanglay,, and M. B. Solomon. 2009. Control of Listeria monocytogenes on frankfurters with antimicrobials and hydrodynamic pressure processing. J. Muscle Foods 20: 227 241.
129. Pavan, S.,, P. Hols,, J. Delcour,, M. C. Geoffroy,, C. Grangette,, M. Kleerebezem,, and A. Mercenier. 2000. Adaptation of the nisin-controlled expression system in Lactobacillus plantarum: a tool to study in vivo biological effects. Appl. Environ. Microbiol. 66: 4427 4432.
130. Piard, J. C.,, O. P. Kuipers,, H. S. Rollema,, M. J. Desmazeaud,, and W. M. de Vos. 1993. Structure, organization, and expression of the lct gene for lacticin 481, a novel lantibiotic produced by Lactococcus lactis. J. Biol. Chem. 268: 16361 16368.
131. Piper, C.,, P. D. Cotter,, R. P. Ros,, and C. Hill. 2009. Discovery of medically significant lantibiotics. Curr. Drug Discov. Technol. 6: 1 18.
132. Radler, F. 1990. Possible use of nisin in winemaking. I: Action of nisin against lactic acid bacteria and wine yeasts in solid and liquid media. Am. J. Enol. Viticult. 41: 1 6.
133. Radler, F. 1990. Possible use of nisin in winemaking. II: Experiments to control lactic acid bacteria in the production of wine. Am. J. Enol. Viticult. 41: 7 11.
134. Rauch, P. J. G.,, and W. M. De Vos. 1992. Characterization of the novel nisin-sucrose conjugative transposon TN 5276 and its insertion in Lactococcus lactis. J. Bacteriol. 174: 1280 1287.
135. Ray, B.,, and M. A. Daeschel. 1992. Food Biopreservation of Microbial Origin. CRC Press, Boca Raton, FL.
136. Ray, B.,, R. Schamber,, and K. W. Miller. 1999. The pediocin AcH precursor is biologically active. Appl. Environ. Microbiol. 65: 2281 2286.
137. Rekhif, N.,, A. Atrih,, and G. Lefebvre. 1995. Selection and properties of spontaneous mutants of Listeria monocytogenes ATCC 15313 resistant to different bacteriocins produced by lactic acid bacteria strains. Curr. Microbiol. 230: 827 853.
138. Roberts, R. E.,, and E. A. Zottola. 1993. Shelf-life of pasteurized process cheese spreads made from cheddar cheese manufactured with a nisin producing starter culture. J. Dairy Sci. 76: 1830 1836.
139. Rodríguez, J. M.,, L. M. Cintas,, P. Casaus,, N. Horn,, H. M. Dodd,, P. E. Hernández,, and M. J. Gasson. 1995. Isolation of nisin-producing Lactococcus lactis strains from dry fermented sausages. J. Appl. Bacteriol. 78: 109 115.
140. Rodríguez, J. M.,, M. I. Martínez,, and J. Kok. 2002. Pediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteria. Crit. Rev. Food Sci. Nutr. 42: 91 121.
141. Rogers, A.M.,, and T. J. Montville. 1994. Quantification of factors influencing nisin’s inhibition of Clostridium botulinum 56A in a model food system. J. Food Sci. 59: 663 668, 686.
142. Reference deleted.
143. Sablon, E.,, B. Contreras,, and E. Vandamme. 2000. Antimicrobial peptides of lactic acid bacteria: mode of action, genetics and biosynthesis. Adv. Biochem. Eng. Biotechnol. 68: 21 60.
144. Saleh, M. A.,, and Z. J. Ordal. 1955. Studies on growth and toxin production of Clostridium botulinum in precooked frozen food. II: Inhibition by lactic acid bacteria. Food Res. 20: 340 346.
145. Sani, A. M.,, M. R. Ehsani,, and M. M. Asadi. 2005. Effect of Propionibacterium shermanii metabolites on sensory properties and shelf life of UF-Feta cheese. Nutr. Food Sci. 35: 88 94.
146. Scott, V. N.,, and S. L. Taylor. 1981. Effect of nisin on outgrowth of Clostridium botulinum spores. J. Food Sci. 46: 117 120.
147. Scott, V. N.,, and S. L. Taylor. 1981. Temperature, pH, and spore load on the ability of nisin to prevent the outgrowth of Clostridium botulinum spores. J. Food Sci. 46: 121 126.
148. Sears, P. M.,, B. S. Smith,, W. K. Stewart,, R. Gonzalez,, S. O. Rubino,, S. A. Gusik,, E. S. Kulisek,, S. J. Projan,, and P. Blackburn. 1992. Evaluation of a nisin-based germicidal formulation on teat skin of live cows. J. Dairy Sci. 75: 3185 3190.
149. Severina, E.,, A. Severin,, and A. Tomasz. 1998. Antibacterial efficacy of nisin against multidrug-resistant Gram-positive pathogens. J. Antimicrob. Chemother. 41: 341 347.
150. Siegers, K.,, and K. D. Entian. 1995. Genes involved in immunity to the lantibiotic nisin produced by Lactococcus lactis 6F3. Appl. Environ. Microbiol. 61: 1082 1089.
151. Somers, E. B.,, and S. L. Taylor. 1987. Antibotulinal effectiveness of nisin in pasteurized process cheese spreads. J. Food Prot. 50: 842 848.
152. Stevens, K. A.,, B. W. Sheldon,, N. A. Klapes,, and T. R. Klaenhammer. 1992. Effect of treatment conditions on nisin inactivation of Gram-negative bacteria. J. Food Prot. 55: 763 767.
153. Stoddard, G. W.,, J. P. Petzel,, M. J. van Belkum,, J. Kok,, and L. L. McKay. 1992. Molecular analyses of the lactococcin A gene cluster from Lactococcus lactis subsp. lactis biovar diacetylactis WM4. Appl. Envrion. Microbiol. 58: 1952 1961.
154. Stoffels, G.,, J. Nissen-Meyer,, A. Gudmundsdottir,, K. Sletten,, H. Holo,, and I. F. Nes. 1992. Purification and characterization of a new bacteriocin isolated from a Carnobacterium sp. Appl. Environ. Microbiol. 58: 1417 1422.
155. Stone, R. 2002. Bacteriophage therapy: Stalin’s forgotten cure. Science 298: 728 731.
156. Svetoch, E. A.,, B. V. Eruslanov,, Y. N. Kovalev,, E. V. Mitsevich,, I. P. Mitsevich,, V. P. Levchuk,, N. K. Fursova,, V. V. Perelygin,, Y. G. Stepanshin,, M. G. Teymurasov,, B. S. Seal,, and N. J. Stern. 2009. Antimicrobial activities of bacteriocins E 50-52 and B 602 against antibiotic-resistant strains involved in nosocomial infections. Probiotics Antimicrob. Prot. 1: 136 142.
157. Tagg, J. R.,, A. S. Dajani,, and L. W. Wannamaker. 1976. Bacteriocins of Gram-positive bacteria. Bacteriol. Rev. 40: 722 756.
158. Tanaka, N. E.,, E. Traisman,, M. H. Lee,, and R. Cassens. 1980. Inhibition of botulism toxin formation in bacon by acid development. J. Food Prot. 43: 450 452.
159. Taylor, L. Y.,, O. O. Cann,, and B. J. Welch. 1990. Antibotulinal properties of nisin in fresh fish packaged in an atmosphere of carbon dioxide. J. Food Prot. 53: 953 957.
160. Thompson, L. V.,, and J. Delves-Broughton,. 2005. Nisin, p. 239 275. In P. M. Davidson,, J. N. Sofos,, and A. L. Branen (ed.), Antimicrobials in Foods, 3rd ed. CRC Press, Boca Raton, FL.
161. Tramer, J.,, and G. G. Fowler. 1964. Estimation of nisin in foods. J. Sci. Food Agric. 15: 522 528.
162. Turovskiy, Y.,, D. Kashtanov,, B. Paskhover,, and M. L. Chikindas. 2007. Quorum sensing: fact, fiction and everything in between. Adv. Appl. Microbiol. 62: 191 234.
163. Vadyvaloo, V.,, S. Arous,, A. Gravesen,, Y. Héchard,, R. Chauhan-Haubrock,, J. W. Hasting,, and M. Rautenbach. 2004. Cell-surface alterations in class IIa bacteriocin-resistant Listeria monocytogenes strains. Microbiology 150: 3025 3033.
164. van Belkum, M. J.,, B. J. Hayema,, R. E. Jeeninga,, J. Kok,, and G. Venema. 1991. Organization and nucleotide sequence of two lactococcal bacteriocin operons. Cloning of two bacteriocin genes from a lactococcal bacteriocin plasmid. Appl. Envirion. Microbiol. 57: 492 498.
165. van Belkum, M. J.,, J. Kok,, G. Venema,, H. Holo,, I. F. Nes,, W. N. Konings,, and T. Abee. 1991. The bacteriocin lactococcin A specifically increases the permeability of lactococcal cytoplasmic membranes in a voltage-independent, protein-mediated manner. J. Bacteriol. 173: 7934 7941.
166. van Belkum, M. J.,, R. W. Worobo,, and M. E. Stiles. 1997. Double-glycine-type leader peptides direct secretion of bacteriocins by ABC transporters: colicin V secretion in Lactococcus lactis. Mol. Microbiol. 23: 1293 1301.
167. Vandenbergh, P. A. 1993. Lactic acid bacteria, their metabolic products and interference with microbial growth. FEMS Microbiol. Rev. 12: 221 238.
168. Vandenbergh, P. A.,, M. J. Pucci,, B. S. Kunka,, and E. B. Vedamuthu. 1989. Method for inhibiting Listeria monocytogenes using a bacteriocin. European patent application 89101126.6.
169. van der Meer, J. R.,, J. Polman,, M. M. Beerthuyzen,, R. J. Siezen,, O. P. Kuipers,, and W. M. de Vos. 1993. Characterization of the Lactococcus lactis nisin A operon genes nisP, encoding a subtilisin-like serine protease involved in precursor processing, and nisR, encoding a regulatory protein involved in nisin biosynthesis. J. Bacteriol. 175: 2578 2588.
170. Van Reenen, C. A.,, M. L. Chikindas,, W. H. Van Zyl,, and L. M. Dicks. 2003. Characterization and heterologous expression of a class IIa bacteriocin, plantaricin 423 from Lactobacillus plantarum 423, in Saccharomyces cerevisiae. Int. J. Food Microbiol. 81: 29 40.
171. Venema, K.,, T. Abee,, A. J. Haandrikman,, K. J. Leenhouts,, J. Kok,, W. N. Konings,, and G. Venema. 1993. Mode of action of lactococcin B, a thiol-activated bacteriocin from Lactococcus lactis. Appl. Environ. Microbiol. 59: 1041 1048.
172. Vogel, R. F.,, B. S. Pohle,, P. S. Tichaczek,, and W. Hammes. 1993. The competitive advantage of Lactobacillus curvatus LTH 1174 in sausage fermentations is caused by formation of curvacin. Syst. Appl. Microbiol. 16: 457 462.
173. Wagenaar, J.,, M. Van Bergen,, M. Mueller,, T. Wassenaar,, and R. Carlton. 2005. Phage therapy reduces Campylobacter jejuni colonization in broilers. Vet. Microbiol. 109: 275 283.
174. Wahlstrom, G.,, and P. E. Saris. 1999. A nisin bioassay based on bioluminescence. Appl. Environ. Microbiol. 65: 3742 3745.
175. Winkowski, K.,, M. E. C. Bruno,, and T. J. Montville. 1994. Correlation of bioenergetic parameters with cell death in Listeria monocytogenes cells exposed to nisin. Appl. Environ. Microbiol. 60: 4186 4187.
176. Winkowski, K.,, A. D. Crandall,, and T. J. Montville. 1993. Inhibition of Listeria monocytogenes by Lactobacillus bavaricus MN in meat systems at refrigeration temperatures. Appl. Environ. Microbiol. 59: 2552 2557.
177. Winkowski, K.,, and T. J. Montville. 1992. Use of a meat isolate, Lactobacillus bavaricus MN, to inhibit Listeria monocytogenes growth in a model meat gravy system. J. Food Safety 13: 19 31.
178. Worobo, R. W.,, M. J. van Belkum,, H. Sailer,, K. L. Roy,, J. C. Vederas,, and M. E. Stiles. 1995. A signal peptide secretion-dependent bacteriocin from Carnobacterium divergens. J. Bacteriol. 177: 3143 3149.

Tables

Generic image for table
Table 31.1

Parallel mechanisms of antibiotic and bacteriocin resistance

Citation: Montville T, Chikindas M. 2013. Biological Control of Foodborne Bacteria, p 803-822. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch31
Generic image for table
Table 31.2

Analogies between the use of insecticides in production agriculture and the use of antimicrobials for food safety

Citation: Montville T, Chikindas M. 2013. Biological Control of Foodborne Bacteria, p 803-822. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch31

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error