1887

Chapter 32 : Fermented Dairy Products

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Fermented Dairy Products, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818463/9781555816261_Chap32-1.gif /docserver/preview/fulltext/10.1128/9781555818463/9781555816261_Chap32-2.gif

Abstract:

The fermented dairy products category contains products with a diversity of flavors, textures, and appearances, all of which are directly dependent on microbial metabolism. The enzymes and metabolites required to produce these products are provided by a diverse set of microorganisms, including molds, yeasts, and bacteria. Of these organisms, homofermentative lactic acid bacteria (LAB) are of the greatest importance, as the manufacture of fermented dairy products is directly dependent on their primary metabolic end product, lactic acid. This chapter describes the potential for production of diacetyl and carbon dioxide from lactose metabolism in lactococci with reduced lactic acid dehydrogenase activity. The main volatile flavor components of fermented milks are acetic acid, acetaldehyde, and diacetyl. Proteolytic systems in LAB contribute to their ability to grow in milk and are necessary for the development of flavor in ripened cheeses. Peptides and amino acids formed by proteolysis may impart flavor directly or serve as flavor precursors in fermented dairy products. The dairy industry has employed improved sanitation regimens, utilized sophisticated starter culture propagation vessels, developed starter culture systems to minimize the impact of phage infection, and isolated and constructed starter strains with enhanced bacteriophage resistance. The power of recombinant DNA approaches is that strains can be constructed that differ in a single defined genetic alteration, e.g., inactivation of a specific gene.

Citation: Johnson M, Steele J. 2013. Fermented Dairy Products, p 825-839. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch32
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 32.1
Figure 32.1

Lactose metabolism in homofermentative LAB. doi:10.1128/9781555818463.ch32f1

Citation: Johnson M, Steele J. 2013. Fermented Dairy Products, p 825-839. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch32
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 32.2
Figure 32.2

Lactose metabolism in heterofermentative LAB. doi:10.1128/9781555818463.ch32f2

Citation: Johnson M, Steele J. 2013. Fermented Dairy Products, p 825-839. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch32
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 32.3
Figure 32.3

Pyruvic acid and citric acid metabolism in LAB. CoA, coenzyme A; Tpp, thiamine pyrophosphate. doi:10.1128/9781555818463.ch32f3

Citation: Johnson M, Steele J. 2013. Fermented Dairy Products, p 825-839. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch32
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 32.4
Figure 32.4

Schematic representation of the lactococcal proteolytic system. PrtP, cell envelope-associated proteinase; Opp, oligopeptide transport system; Dtp, di-/tripeptide transport systems; AAT, amino acid transport systems; EP, endopeptidases; AP, aminopeptidases; TP, tripeptidases; DP, dipeptidases. doi:10.1128/9781555818463.ch32f4

Citation: Johnson M, Steele J. 2013. Fermented Dairy Products, p 825-839. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch32
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818463.chap32
1. Allison, G. E.,, and T. R. Klaenhammer. 1998. Phage defense mechanisms in lactic acid bacteria . Int. Dairy J. 8: 207 226.
2. Ardö, Y. 2006. Flavour formation by amino acid catabolism. Biotechnol. Adv. 24: 238 242.
3. Aymes, F.,, C. Monnet,, and G. Corrieu. 1999. Effect of ?-acetolactatedecarboxylase inactivation on α-acetolactate and diacetyl production by Lactococcus lactis subsp. lactis biovar diacetylactis. J. Biosci. Bioeng. 87: 87 92.
4. Bandel, M.,, M. E. Lhotte,, C. Marty-Teysset,, A. Veyrat,, H. Prévost,, V. Dartois,, C. Diviès,, W. N. Konings,, and J. S. Lolkema. 1998. Mechanism of the citrate transporters in carbohydrate and citrate cometabolism in Lactococcus and Leuconostoc species. Appl. Environ. Microbiol. 64: 1594 1600.
5. Bassit, N.,, C. Y. Boquien,, D. Picque,, and G. Corrieu. 1993. Effect of initial oxygen concentration on diacetyl and acetoin production by Lactococcus lactis subsp. lactis biovar diacetylactis. Appl. Environ. Microbiol. 59: 1893 1897.
6. Bassit, N.,, C. Y. Boquien,, D. Picque,, and G. Corrieu. 1995. Effect of temperature on diacetyl and acetoin production by Lactococcus lactis subsp. lactis biovar diacetylactis. CNRZ 483. J. Dairy Res. 62: 123 129.
7. Bills, D. D.,, and E. A. Day. 1966. Dehydrogenase activity of lactic streptococci. J. Dairy Sci. 49: 1473 1477.
8. Bills, D. D.,, M. E. Morgan,, L. M. Libby,, and E. A. Day. 1965. Identification of compounds responsible for fruity flavor defect of experimental cheeses. J. Dairy Sci. 48: 1168 1173.
9. Bongers, R. S.,, M. H. N. Hoefnagel,, and M. Kleerebezem. 2005. High-level acetaldehyde production in Lactococcus lactis by metabolic engineering. Appl. Environ. Microbiol. 71: 1109 1113.
10. Broadbent, J.R., 2001. Genetics of lactic acid bacteria, p. 243 299. In E. H. Marth, and J. L. Steele (ed.), Applied Dairy Microbiology, 2nd ed. Marcel Dekker, Inc., New York, NY.
11. Broadbent, J. R.,, H. Cai,, R. L. Larsen,, J. E. Hughes,, D. L. Welker,, V. G. De Carvalho,, T. A. Tompkins,, Y. Ardö,, F. Vogensen,, A. De Lorentiis,, M. Gatti,, E. Neviani,, and J. L. Steele. 2011. Genetic diversity in proteolytic enzymes and amino acid metabolism among Lactobacillus helveticus strains. J. Dairy Sci. 94: 4313 4328.
12. Broadbent, J.R.,, and J. L. Steele,. 2007. Biochemistry of cheese flavor development: insights from genomics studies on lactic acid bacteria, p. 177 192. In K. R. Caldwaller,, M. A. Drake,, and R. J. McGorrin (ed.), Flavor of Dairy Products. American Chemical Society, Washington, DC.
13. Broadbent, J.R.,, M. Strickland,, B. C. Weimer,, M. E. Johnson,, and J. L. Steele. 1998. Small peptide accumulation and bitterness in Cheddar cheese made from single strain Lactococcus lactis starters with distinct proteinase specificities. J. Dairy Sci. 81: 327 337.
14. Chaves, A. C. S. D.,, M. Fernandez,, A. L. S. Lerayer,, I. Mierau,, M. Kleerebezem,, and J. Hugenholtz. 2002. Metabolic engineering of acetaldehyde production by Streptococcus thermophilus. Appl. Environ. Microbiol. 68: 5656 5662.
15. Christensen, J. E.,, E. G. Dudley,, J. R. Pederson,, and J. L. Steele. 1999. Peptidases and amino acid catabolism in lactic acid bacteria. Antonie van Leeuwenhoek 76: 217 246.
16. Cogan, T. M. 1987. Co-metabolism of citrate and glucose by Leuconostoc spp.: effects on growth, substrates and products. J. Appl. Bacteriol. 63: 551 558.
17. Cogan, T. M.,, R. J. Fitzgerald,, and S. Doonan. 1984. Acetolactate synthase of Leuconostoc lactis and its regulation of acetoin production. J. Dairy Res. 51: 597 604.
18. Condon, S. 1987. Responses of lactic acid bacteria to oxygen. FEMS Microbiol. Rev. 46: 269 280.
19. Crow, V. L. 1990. Properties of 2,3-butanediol dehydrogenases from Lactococcus lactis subsp. lactis in relation to citrate fermentation. Appl. Environ. Microbiol. 56: 1656 1665.
20. Davidson, B. E.,, N. Kordias,, M. Dobos,, and A. J. Hillier. 1996. Genomic organization of lactic acid bacteria. Antonie van Leeuwenhoek 70: 161 183.
21. Deborde, C.,, D. B. Rolin,, A. Bondon,, J. D. De Certaines,, and P. Boyaval. 1998. In vivo nuclear magnetic resonance study of citrate metabolism in Propionibacterium freudenreichii subsp. shermanii. J. Dairy Res. 65: 503 514.
22. Desiere, F.,, S. Lucchini,, C. Canchaya,, M. Ventura,, and H. Brüssow. 2002. Comparative genomics of phages and prophages in lactic acid bacteria. Antonie van Leeuwenhoek 82: 73 91.
23. Detmers, F. J. M.,, E. R. S. Kunji,, F. C. Lanfermeijer,, B. ?Poolman,, and W. N. Konings. 1998. Kinetics and specificity of peptide uptake by the oligopeptide transport system of Lactococcus lactis. Biochemistry 37: 16671 16679.
24. Deveau, H.,, R. Barrangou,, J. E. Garneau,, J. Labonté,, C. ?Fremaux,, P. Boyaval,, D. A. Romero,, P. Horvath,, and S. Moineau. 2008. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol. 190: 1390 1400.
25. Díaz-Muñiz, I.,, and J. L. Steele. 2006. Limiting galactose requirement for citrate utilization by Lactobacillus casei is annulled in Cheddar cheese extract. Antonie van Leeuwenhoek 90: 233 243.
26. Driesson, F. M.,, and Z. Puhan. 1988. Technology of mesophilic fermented milks. Int. Dairy Fed. Bull. 227: 75 81.
27. Dunny, G. M.,, and L. L. McKay. 1999. Group II introns and expression of conjugative transfer functions in lactic acid bacteria. Antonie van Leeuwenhoek 76: 77 88.
28. Forde, A.,, and G. F. Fitzgerald. 1999. Bacteriophage defense systems in lactic acid bacteria. Antonie van Leeuwenhoek 76: 89 113.
29. Fordyce, A. M.,, V. L. Crow,, and T. D. Thomas. 1984. Regulation of product formation during glucose or lactose limitation in nongrowing cells of Streptococcus lactis. Appl. Environ. Microbiol. 48: 332 337.
30. Fox, P. F. (ed.). 1993. Cheese: Chemistry, Physics and Microbiology, vol. 1 and 2. Chapman and Hall, Ltd., London, United Kingdom.
31. Fox, P. F.,, J. Law,, P. L. H. McSweeney,, and J. Wallace,. 1993. Biochemistry of cheese ripening, p. 389 438. In P. F. Fox (ed.), Cheese: Chemistry, Physics and Microbiology, vol. 1. Chapman and Hall, Ltd., London, United Kingdom.
32. Fox, P. F.,, J. A. Lucey,, and T. M. Cogan. 1990. Glycolysis and related reactions during cheese manufacture and ripening. Food Sci. Nutr. 29: 237 253.
33. Fryer, T. F.,, M. E. Sharpe,, and B. Reiter. 1970. Utilization of milk citrate by lactic acid bacteria and “blowing” of film wrapped cheese. J. Dairy Sci. 37: 17 28.
34. Gancel, F.,, and G. Novel. 1994. Exopolysaccharide production by Streptococcus salivarius spp. thermophilus cultures. 1. Conditions of production. J. Dairy Sci. 77: 685 688.
35. Green, M. L.,, and D. J. Manning. 1982. Development of texture and flavor in cheese and other fermented products. J. Dairy Res. 49: 737 748.
36. Griffith, R.,, and E. G. Hammond. 1989. Generation of Swiss cheese flavor components by the reaction of amino acids with carbonyl compounds. J. Dairy Sci. 72: 604 613.
37. Horvath, P.,, A.-C. Coûté-Monvoisin,, D. A. Romero,, P. Boyaval,, C. Fremaux,, and R. Barrangou. 2009. Comparative analysis of CRISPR loci in lactic acid bacteria genomes. Int. J. Food Microbiol. 131: 62 70.
38. Huang, D. Q.,, H. Prévost,, and C. Diviès. 1995. Principal characteristics of ?-galactosidase from Leuconostoc spp. Int. Dairy J. 5: 29 43.
39. Hugenholtz, J. 1993. Citrate metabolism in lactic acid bacteria. FEMS Microbiol. Rev. 12: 165 178.
40. Hutkins, R.W., 2001. Metabolism of starter cultures, p. 207 241. In E. H. Marth, and J. L. Steele (ed.), Applied Dairy Microbiology, 2nd ed. Marcel Dekker, Inc., New York, NY.
41. Imhof, R.,, and J. O. Bosset. 1994. Review: relationships between micro-organisms and formation of aroma compounds in fermented dairy products. Z. Lebensm. Unters. Forsch. 198: 267 276.
42.InternationalDairyFederation. 1988. Fermented Milks: Science and Technology. International Dairy Federation, Brussels, Belgium.
43. Jensen, N. B. S.,, C. R. Melchiorsen,, K. V. Jokumsen,, and J. Villadsen. 2001. Metabolic behavior of Lactococcus lactis MG1363 in microaerobic continuous cultivation at a low dilution rate. Appl. Environ. Microbiol. 67: 2677 2682.
44. Juillard, V.,, D. Le Bars,, E. R. S. Kunji,, W. N. Konings,, J.-C. Gripon,, and J. Richard. 1995. Oligopeptides are the main source of nitrogen for Lactococcus lactis during growth in milk. Appl. Environ. Microbiol. 61: 3024 3030.
45. Kamaly, M. K.,, and E. H. Marth. 1989. Enzyme activities of lactic streptococci and their role in maturation of cheese: a review. J. Dairy Sci. 72: 1945 1966.
46. Keenan, T. W.,, R. C. Lindsay,, M. E. Morgan,, and E. A. Day. 1966. Acetaldehyde production by single strain lactic streptococci. J. Dairy Sci. 49: 10 14.
47. Kempler, G. M.,, and L. L. McKay. 1981. Biochemistry and genetics of citrate utilization in Streptococcus lactis subsp. diacetylactis. J. Dairy Sci. 64: 1527 1539.
48. Klaenhammer, T.,, E. Altermann,, F. Arigoni,, A. Bolotin,, F. Breidt,, J. Broadbent,, R. Cano,, S. Chaillou,, J. Reutscher,, M. Gasson,, M. van de Guchte,, J. Guzzo,, A. Hartke,, T. Hawkins,, P. Hols,, R. Hutkins,, M. Kleerebezem,, J. Kok,, O. Kuipers,, M. Lubbers,, E. Maguin,, L. McKay,, D. Mills,, A. Nauta,, R. Overbeek,, H. Pel,, D. Pridmore,, M. Saier,, D. van Sinderen,, A. Sorokin,, J. Steele,, D. O’Sullivan,, W. de Vos,, B. Weimer,, M. Zagorec,, and R. Siezen. 2002. Discovering lactic acid bacteria by genomics. Antonie van Leeuwenhoek 82: 29 58.
49. Klaenhammer, T. R.,, and G. F. Fitzgerald,. 1994. Bacteriophages and bacteriophage resistance, p. 106 168. In M. J. Gasson, and W. M. de Vos (ed.), Genetics and Biotechnology of Lactic Acid Bacteria. Chapman and Hall, Ltd., London, United Kingdom.
50. Kunji, E. R. S.,, I. Mierau,, A. Hagting,, B. Poolman,, and W. N. Konings. 1996. The proteolytic systems of lactic acid bacteria. Antonie van Leeuwenhoek 70: 187 221.
51. Lees, G. J.,, and G. R. Jago. 1978. Role of acetaldehyde in metabolism: a review. 1. Enzymes catalyzing reactions involving acetaldehyde. J. Dairy Sci. 61: 1205 1215.
52. Lees, G. J.,, and G. R. Jago. 1978. Role of acetaldehyde in metabolism: a review. 2. The metabolism of acetaldehyde in cultured dairy products. J. Dairy Sci. 61: 1216 1224.
53. Lemieux, L.,, and R. E. Simard. 1992. Bitter flavour in dairy products. II. A review of bitter peptides from caseins: their formation, isolation and identification, structure masking and inhibition. Lait 72: 335 382.
54. Lindgren, S. E.,, and L. T. Axelsson. 1990. Anaerobic L-lactate degradation by Lactobacillus plantarum. FEMS Microbiol. Lett. 66: 209 214.
55. Lindsay, R. C.,, E. A. Day,, and W. E. Sandine. 1965. Green flavor defect in lactic starter cultures. J. Dairy Sci. 48: 863 869.
56. Liu, M.,, J. R. Bayjanov,, B. Renckens,, A. Nauta,, and R. J. Siezen. 2010. The proteolytic system of lactic acid bacteria revisited: a genome comparison. BMC Genomics 11: 36.
57. Liu, S. Q.,, R. V. Asmundson,, P. K. Gopal,, R. Holland,, and V. L. Crow. 1998. Influence of reduced water activity on lactose metabolism by Lactococcus lactis subsp. cremoris at different pH values. Appl. Environ. Microbiol. 64: 2111 2116.
58. Lucey, C. A.,, and S. Condon. 1986. Active role of oxygen and NADH oxidase in growth and energy metabolism of Leuconostoc. J. Gen. Microbiol. 132: 1789 1796.
59. Manning, D. J. 1979. Chemical production of essential Cheddar flavor compounds. J. Dairy Res. 46: 531 537.
60. McKay, L. L.,, and K. A. Baldwin. 1974. Altered metabolism in a Streptococcus lactis C2 mutant deficient in lactate dehydrogenase. J. Dairy Sci. 57: 181 186.
61. Mierau, I.,, E. R. S. Kunji,, K. J. Leenhouts,, M. A. Hellendoorn,, A. J. Haandrikman,, B. Poolman,, W. ?N. Konings, G. Venema, and J. Kok. 1996. Multiple-peptidase mutants of Lactococcus lactis are severely impaired in their ability to grow in milk. J. Bacteriol. 178: 2794 2803.
62. Mills, S.,, R. P. Ross,, H. Neve,, and A. Coffey,. 2011. Bacteriophage and anti-phage mechanism in lactic acid bacteria, p. 165 186. In S. Lahtinen,, A. C. Ouwehand,, S. Salminen,, and A. von Wright (ed.), Lactic Acid Bacteria: Microbiology and Functional Aspects, 4th ed. CRC Press, Boca Raton, FL.
63. Moineau, S. 1999. Applications of phage resistance in lactic acid bacteria. Antonie van Leeuwenhoek 76: 377 382.
64. Montville, M. R.,, B. Ardestani,, and B. L. Geller. 1994. Lactococcal bacteriophage require a host cell wall carbohydrate and a plasma membrane protein for adsorption and ejection of DNA. Appl. Environ. Microbiol. 60: 3204 3211.
65. Morelli, L.,, F. K. Vogensen,, and A. von Wright,. 2004. Genetics of lactic acid bacteria, p. 249 293. In S. Salminen,, A. von Wright,, and A. Ouwehand (ed.), Lactic Acid Bacteria: Microbiology and Functional Aspects, 3rd ed. Marcel Dekker, Inc., New York, NY.
66. Palles, T.,, T. Beresford,, S. Condon,, and T. M. Cogan. 1998. Citrate metabolism in Lactobacillus casei and Lactobacillus plantarum. J. Appl. Microbiol. 85: 147 154.
67. Peterson, S. D.,, and R. T. Marshall. 1990. Nonstarter lactobacilli in Cheddar cheese: a review. J. Dairy Sci. 73: 1395 1410.
68. Poolman, B. 1993. Energy transduction in lactic acid bacteria. FEMS Microbiol. Rev. 12: 125 148.
69. Ramos, A.,, K. N. Jordan,, T. M. Cogan,, and H. Santos. 1994. 13C nuclear magnetic resonance studies of citrate and glucose cometabolism by Lactococcus lactis. Appl. Environ. Microbiol. 60: 1739 1748.
70. Ramos, A.,, J. S. Lolkema,, W. N. Konings,, and H. Santos. 1995. Enzyme basis for pH regulation of citrate and pyruvate metabolism by Leuconostoc oenos. Appl. Environ. Microbiol. 61: 1303 1310.
71. Salminen, S.,, A. von Wright,, and A. Ouwehand (ed.). 2004. Lactic Acid Bacteria: Microbiology and Functional Aspects, 3rd ed. Marcel Dekker, Inc., New York, NY.
72. Schmitt, P.,, and C. Diviès. 1991. Co-metabolism of citrate and lactose by Leuconostoc mesenteroides subsp. cremoris. J. Ferment. Bioeng. 71: 72 74.
73. Sieuwerts, S.,, D. Molenaar,, S. A. F. T. van Hijum,, M. Beerthuyzen,, M. J. A. Stevens,, P. W. M. Janssen,, C. J. Ingham,, F. A. M. de Bok,, W. M. de Vos,, and J. E. T. van Hylckama Vlieg. 2010. Mixed-culture transcriptome analysis reveals the molecular basis of mixed-culture growth in Streptococcus thermophilus and Lactobacillus bulgaricus. Appl. Environ. Microbiol. 76: 7775 7784.
74. Sijtsma, L.,, N. Jansen,, W. C. Hazeleger,, J. T. M. Wouters,, and K. J. Hellingwerf. 1990. Cell surface characteristics of bacteriophage-resistant Lactococcus lactis subsp. cremoris SK110 and its bacteriophage-sensitive variant SK112. Appl. Environ. Microbiol. 56: 3230 3233.
75. Smart, J. B.,, and T. D. Thomas. 1987. Effect of oxygen of lactose metabolism in lactic streptococci. Appl. Environ. 53: 533 541.
76. Smit, G.,, B. A. Smit,, and W. J. M. Engels. 2005. Flavour formation by lactic acid bacteria and biochemical flavor profiling of cheese products. FEMS Microbiol. Rev. 29: 591 610.
77. Smit, G.,, A. Verheul,, R. van Kranenburg,, E. Ayad,, R. Siezen,, and W. J. M. Engels. 2000. Cheese flavour development by enzymatic conversions of peptides and amino acids. Food Res. Int. 33: 153 160.
78. Sturino, J. M.,, and T. R. Klaenhammer. 2004. Bacteriophage defense systems and strategies for lactic acid bacteria. Adv. Appl. Microbiol. 56: 331 378.
79. Thierry, A.,, D. Salvat-Brunaud,, and J.-L. Maubois. 1999. Influence of thermophilic lactic acid bacteria strains on propionibacteria growth and lactate consumption in an Emmental juice-like medium. J. Dairy Res. 66: 105 113.
80. Thomas, T. D.,, D. C. Ellwoos,, and V. M. C. Longyear. 1979. Change from homo- to heterolactic fermentation by Streptococcus lactis resulting from glucose limitation in anaerobic chemostat cultures. J. Bacteriol. 138: 109 117.
81. Urbach, G. 1995. Contribution of lactic acid bacteria to flavor compound formation in dairy products. Int. Dairy J. 5: 877 903.
82. Vaughan, E. E.,, S. David,, A. Harrington,, C. Daly,, G. F. Fitzgerald,, and W. M. De Vos. 1995. Characterization of plasmid-encoded citrate permease ( citP) genes from Leuconostoc species reveals high sequence conversation with the Lactococcus lactis citP gene. Appl. Environ. Microbiol. 61: 3172 3176.
83. Visser, S. 1993. Proteolytic enzymes and their relation to cheese ripening and flavor: an overview. J. Dairy Sci. 76: 329 350.
84. Warriner, K. S. R.,, and J. G. Morris. 1995. The effects of aeration on the bioreductive abilities of some heterofermentative lactic acid bacteria. Lett. Appl. Microbiol. 20: 322 327.
85. Weimer, B.,, K. Seefeldt,, and B. Dias. 1999. Sulfur metabolism in bacteria associated with cheese. Antonie van Leeuwenhoek 76: 247 261.
86. Whitehead, W. E.,, J. W. Ayres,, and W. E. Sandine. 1993. A review of starter media for cheese making. J. Dairy Sci. 76: 2344 2353.
87. Wilkins, D. W.,, R. H. Schmidt,, R. B. Shireman,, K. L. Smith,, and J. J. Jezeski. 1986. Evaluating acetaldehyde synthesis from L-[ 14C(U)] threonine by Streptococcus thermophilus and Lactobacillus bulgaricus. J. Dairy Sci. 69: 1219 1224.
88. Yvon, M.,, and L. Rijnen. 2001. Cheese flavor formation by amino acid catabolism. Int. Dairy J. 11: 185 201.
89. Zourari, A.,, J. P. Accolas,, and M. J. Desmazeaud. 1992. Metabolism and biochemical characteristics of yogurt bacteria. A review. Lait 72: 1 34.

Tables

Generic image for table
Table 32.1

Microorganisms involved in the manufacture of cheeses and fermented milks

Citation: Johnson M, Steele J. 2013. Fermented Dairy Products, p 825-839. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch32
Generic image for table
Table 32.2

Peptidases purified and characterized from lactococci

Citation: Johnson M, Steele J. 2013. Fermented Dairy Products, p 825-839. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch32

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error