1887

Chapter 32 : Fermented Dairy Products

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Fermented Dairy Products, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818463/9781555816261_Chap32-1.gif /docserver/preview/fulltext/10.1128/9781555818463/9781555816261_Chap32-2.gif

Abstract:

The fermented dairy products category contains products with a diversity of flavors, textures, and appearances, all of which are directly dependent on microbial metabolism. The enzymes and metabolites required to produce these products are provided by a diverse set of microorganisms, including molds, yeasts, and bacteria. Of these organisms, homofermentative lactic acid bacteria (LAB) are of the greatest importance, as the manufacture of fermented dairy products is directly dependent on their primary metabolic end product, lactic acid. This chapter describes the potential for production of diacetyl and carbon dioxide from lactose metabolism in lactococci with reduced lactic acid dehydrogenase activity. The main volatile flavor components of fermented milks are acetic acid, acetaldehyde, and diacetyl. Proteolytic systems in LAB contribute to their ability to grow in milk and are necessary for the development of flavor in ripened cheeses. Peptides and amino acids formed by proteolysis may impart flavor directly or serve as flavor precursors in fermented dairy products. The dairy industry has employed improved sanitation regimens, utilized sophisticated starter culture propagation vessels, developed starter culture systems to minimize the impact of phage infection, and isolated and constructed starter strains with enhanced bacteriophage resistance. The power of recombinant DNA approaches is that strains can be constructed that differ in a single defined genetic alteration, e.g., inactivation of a specific gene.

Citation: Johnson M, Steele J. 2013. Fermented Dairy Products, p 825-839. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch32
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 32.1
Figure 32.1

Lactose metabolism in homofermentative LAB. doi:10.1128/9781555818463.ch32f1

Citation: Johnson M, Steele J. 2013. Fermented Dairy Products, p 825-839. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch32
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 32.2
Figure 32.2

Lactose metabolism in heterofermentative LAB. doi:10.1128/9781555818463.ch32f2

Citation: Johnson M, Steele J. 2013. Fermented Dairy Products, p 825-839. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch32
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 32.3
Figure 32.3

Pyruvic acid and citric acid metabolism in LAB. CoA, coenzyme A; Tpp, thiamine pyrophosphate. doi:10.1128/9781555818463.ch32f3

Citation: Johnson M, Steele J. 2013. Fermented Dairy Products, p 825-839. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch32
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 32.4
Figure 32.4

Schematic representation of the lactococcal proteolytic system. PrtP, cell envelope-associated proteinase; Opp, oligopeptide transport system; Dtp, di-/tripeptide transport systems; AAT, amino acid transport systems; EP, endopeptidases; AP, aminopeptidases; TP, tripeptidases; DP, dipeptidases. doi:10.1128/9781555818463.ch32f4

Citation: Johnson M, Steele J. 2013. Fermented Dairy Products, p 825-839. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch32
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818463.chap32
1. Allison, G. E.,, and T. R. Klaenhammer. 1998. Phage defense mechanisms in lactic acid bacteria. Int. Dairy J. 8:207226.
2. Ardö, Y. 2006. Flavour formation by amino acid catabolism. Biotechnol. Adv. 24:238242.
3. Aymes, F.,, C. Monnet,, and G. Corrieu. 1999. Effect of ?-acetolactatedecarboxylase inactivation on α-acetolactate and diacetyl production by Lactococcus lactis subsp. lactis biovar diacetylactis. J. Biosci. Bioeng. 87:8792.
4. Bandel, M.,, M. E. Lhotte,, C. Marty-Teysset,, A. Veyrat,, H. Prévost,, V. Dartois,, C. Diviès,, W. N. Konings,, and J. S. Lolkema. 1998. Mechanism of the citrate transporters in carbohydrate and citrate cometabolism in Lactococcus and Leuconostoc species. Appl. Environ. Microbiol. 64:15941600.
5. Bassit, N.,, C. Y. Boquien,, D. Picque,, and G. Corrieu. 1993. Effect of initial oxygen concentration on diacetyl and acetoin production by Lactococcus lactis subsp. lactis biovar diacetylactis. Appl. Environ. Microbiol. 59:18931897.
6. Bassit, N.,, C. Y. Boquien,, D. Picque,, and G. Corrieu. 1995. Effect of temperature on diacetyl and acetoin production by Lactococcus lactis subsp. lactis biovar diacetylactis. CNRZ 483. J. Dairy Res. 62:123129.
7. Bills, D. D.,, and E. A. Day. 1966. Dehydrogenase activity of lactic streptococci. J. Dairy Sci. 49:14731477.
8. Bills, D. D.,, M. E. Morgan,, L. M. Libby,, and E. A. Day. 1965. Identification of compounds responsible for fruity flavor defect of experimental cheeses. J. Dairy Sci. 48:11681173.
9. Bongers, R. S.,, M. H. N. Hoefnagel,, and M. Kleerebezem. 2005. High-level acetaldehyde production in Lactococcus lactis by metabolic engineering. Appl. Environ. Microbiol. 71:11091113.
10. Broadbent, J.R., 2001. Genetics of lactic acid bacteria, p. 243299. In E. H. Marth, and J. L. Steele (ed.), Applied Dairy Microbiology, 2nd ed. Marcel Dekker, Inc., New York, NY.
11. Broadbent, J. R.,, H. Cai,, R. L. Larsen,, J. E. Hughes,, D. L. Welker,, V. G. De Carvalho,, T. A. Tompkins,, Y. Ardö,, F. Vogensen,, A. De Lorentiis,, M. Gatti,, E. Neviani,, and J. L. Steele. 2011. Genetic diversity in proteolytic enzymes and amino acid metabolism among Lactobacillus helveticus strains. J. Dairy Sci. 94:43134328.
12. Broadbent, J.R.,, and J. L. Steele,. 2007. Biochemistry of cheese flavor development: insights from genomics studies on lactic acid bacteria, p. 177192. In K. R. Caldwaller,, M. A. Drake,, and R. J. McGorrin (ed.), Flavor of Dairy Products. American Chemical Society, Washington, DC.
13. Broadbent, J.R.,, M. Strickland,, B. C. Weimer,, M. E. Johnson,, and J. L. Steele. 1998. Small peptide accumulation and bitterness in Cheddar cheese made from single strain Lactococcus lactis starters with distinct proteinase specificities. J. Dairy Sci. 81:327337.
14. Chaves, A. C. S. D.,, M. Fernandez,, A. L. S. Lerayer,, I. Mierau,, M. Kleerebezem,, and J. Hugenholtz. 2002. Metabolic engineering of acetaldehyde production by Streptococcus thermophilus. Appl. Environ. Microbiol. 68:56565662.
15. Christensen, J. E.,, E. G. Dudley,, J. R. Pederson,, and J. L. Steele. 1999. Peptidases and amino acid catabolism in lactic acid bacteria. Antonie van Leeuwenhoek 76:217246.
16. Cogan, T. M. 1987. Co-metabolism of citrate and glucose by Leuconostoc spp.: effects on growth, substrates and products. J. Appl. Bacteriol. 63:551558.
17. Cogan, T. M.,, R. J. Fitzgerald,, and S. Doonan. 1984. Acetolactate synthase of Leuconostoc lactis and its regulation of acetoin production. J. Dairy Res. 51:597604.
18. Condon, S. 1987. Responses of lactic acid bacteria to oxygen. FEMS Microbiol. Rev. 46:269280.
19. Crow, V. L. 1990. Properties of 2,3-butanediol dehydrogenases from Lactococcus lactis subsp. lactis in relation to citrate fermentation. Appl. Environ. Microbiol. 56:16561665.
20. Davidson, B. E.,, N. Kordias,, M. Dobos,, and A. J. Hillier. 1996. Genomic organization of lactic acid bacteria. Antonie van Leeuwenhoek 70:161183.
21. Deborde, C.,, D. B. Rolin,, A. Bondon,, J. D. De Certaines,, and P. Boyaval. 1998. In vivo nuclear magnetic resonance study of citrate metabolism in Propionibacterium freudenreichii subsp. shermanii. J. Dairy Res. 65:503514.
22. Desiere, F.,, S. Lucchini,, C. Canchaya,, M. Ventura,, and H. Brüssow. 2002. Comparative genomics of phages and prophages in lactic acid bacteria. Antonie van Leeuwenhoek 82:7391.
23. Detmers, F. J. M.,, E. R. S. Kunji,, F. C. Lanfermeijer,, B. ?Poolman,, and W. N. Konings. 1998. Kinetics and specificity of peptide uptake by the oligopeptide transport system of Lactococcus lactis. Biochemistry 37:1667116679.
24. Deveau, H.,, R. Barrangou,, J. E. Garneau,, J. Labonté,, C. ?Fremaux,, P. Boyaval,, D. A. Romero,, P. Horvath,, and S. Moineau. 2008. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol. 190:13901400.
25. Díaz-Muñiz, I.,, and J. L. Steele. 2006. Limiting galactose requirement for citrate utilization by Lactobacillus casei is annulled in Cheddar cheese extract. Antonie van Leeuwenhoek 90:233243.
26. Driesson, F. M.,, and Z. Puhan. 1988. Technology of mesophilic fermented milks. Int. Dairy Fed. Bull. 227:7581.
27. Dunny, G. M.,, and L. L. McKay. 1999. Group II introns and expression of conjugative transfer functions in lactic acid bacteria. Antonie van Leeuwenhoek 76:7788.
28. Forde, A.,, and G. F. Fitzgerald. 1999. Bacteriophage defense systems in lactic acid bacteria. Antonie van Leeuwenhoek 76:89113.
29. Fordyce, A. M.,, V. L. Crow,, and T. D. Thomas. 1984. Regulation of product formation during glucose or lactose limitation in nongrowing cells of Streptococcus lactis. Appl. Environ. Microbiol. 48:332337.
30. Fox, P. F. (ed.). 1993. Cheese: Chemistry, Physics and Microbiology, vol. 1 and 2. Chapman and Hall, Ltd., London, United Kingdom.
31. Fox, P. F.,, J. Law,, P. L. H. McSweeney,, and J. Wallace,. 1993. Biochemistry of cheese ripening, p. 389438. In P. F. Fox (ed.), Cheese: Chemistry, Physics and Microbiology, vol. 1. Chapman and Hall, Ltd., London, United Kingdom.
32. Fox, P. F.,, J. A. Lucey,, and T. M. Cogan. 1990. Glycolysis and related reactions during cheese manufacture and ripening. Food Sci. Nutr. 29:237253.
33. Fryer, T. F.,, M. E. Sharpe,, and B. Reiter. 1970. Utilization of milk citrate by lactic acid bacteria and “blowing” of film wrapped cheese. J. Dairy Sci. 37:1728.
34. Gancel, F.,, and G. Novel. 1994. Exopolysaccharide production by Streptococcus salivarius spp. thermophilus cultures. 1. Conditions of production. J. Dairy Sci. 77:685688.
35. Green, M. L.,, and D. J. Manning. 1982. Development of texture and flavor in cheese and other fermented products. J. Dairy Res. 49:737748.
36. Griffith, R.,, and E. G. Hammond. 1989. Generation of Swiss cheese flavor components by the reaction of amino acids with carbonyl compounds. J. Dairy Sci. 72:604613.
37. Horvath, P.,, A.-C. Coûté-Monvoisin,, D. A. Romero,, P. Boyaval,, C. Fremaux,, and R. Barrangou. 2009. Comparative analysis of CRISPR loci in lactic acid bacteria genomes. Int. J. Food Microbiol. 131:6270.
38. Huang, D. Q.,, H. Prévost,, and C. Diviès. 1995. Principal characteristics of ?-galactosidase from Leuconostoc spp. Int. Dairy J. 5:2943.
39. Hugenholtz, J. 1993. Citrate metabolism in lactic acid bacteria. FEMS Microbiol. Rev. 12:165178.
40. Hutkins, R.W., 2001. Metabolism of starter cultures, p. 207241. In E. H. Marth, and J. L. Steele (ed.), Applied Dairy Microbiology, 2nd ed. Marcel Dekker, Inc., New York, NY.
41. Imhof, R.,, and J. O. Bosset. 1994. Review: relationships between micro-organisms and formation of aroma compounds in fermented dairy products. Z. Lebensm. Unters. Forsch. 198:267276.
42.InternationalDairyFederation. 1988. Fermented Milks: Science and Technology. International Dairy Federation, Brussels, Belgium.
43. Jensen, N. B. S.,, C. R. Melchiorsen,, K. V. Jokumsen,, and J. Villadsen. 2001. Metabolic behavior of Lactococcus lactis MG1363 in microaerobic continuous cultivation at a low dilution rate. Appl. Environ. Microbiol. 67:26772682.
44. Juillard, V.,, D. Le Bars,, E. R. S. Kunji,, W. N. Konings,, J.-C. Gripon,, and J. Richard. 1995. Oligopeptides are the main source of nitrogen for Lactococcus lactis during growth in milk. Appl. Environ. Microbiol. 61:30243030.
45. Kamaly, M. K.,, and E. H. Marth. 1989. Enzyme activities of lactic streptococci and their role in maturation of cheese: a review. J. Dairy Sci. 72:19451966.
46. Keenan, T. W.,, R. C. Lindsay,, M. E. Morgan,, and E. A. Day. 1966. Acetaldehyde production by single strain lactic streptococci. J. Dairy Sci. 49:1014.
47. Kempler, G. M.,, and L. L. McKay. 1981. Biochemistry and genetics of citrate utilization in Streptococcus lactis subsp. diacetylactis. J. Dairy Sci. 64:15271539.
48. Klaenhammer, T.,, E. Altermann,, F. Arigoni,, A. Bolotin,, F. Breidt,, J. Broadbent,, R. Cano,, S. Chaillou,, J. Reutscher,, M. Gasson,, M. van de Guchte,, J. Guzzo,, A. Hartke,, T. Hawkins,, P. Hols,, R. Hutkins,, M. Kleerebezem,, J. Kok,, O. Kuipers,, M. Lubbers,, E. Maguin,, L. McKay,, D. Mills,, A. Nauta,, R. Overbeek,, H. Pel,, D. Pridmore,, M. Saier,, D. van Sinderen,, A. Sorokin,, J. Steele,, D. O’Sullivan,, W. de Vos,, B. Weimer,, M. Zagorec,, and R. Siezen. 2002. Discovering lactic acid bacteria by genomics. Antonie van Leeuwenhoek 82:2958.
49. Klaenhammer, T. R.,, and G. F. Fitzgerald,. 1994. Bacteriophages and bacteriophage resistance, p. 106168. In M. J. Gasson, and W. M. de Vos (ed.), Genetics and Biotechnology of Lactic Acid Bacteria. Chapman and Hall, Ltd., London, United Kingdom.
50. Kunji, E. R. S.,, I. Mierau,, A. Hagting,, B. Poolman,, and W. N. Konings. 1996. The proteolytic systems of lactic acid bacteria. Antonie van Leeuwenhoek 70:187221.
51. Lees, G. J.,, and G. R. Jago. 1978. Role of acetaldehyde in metabolism: a review. 1. Enzymes catalyzing reactions involving acetaldehyde. J. Dairy Sci. 61:12051215.
52. Lees, G. J.,, and G. R. Jago. 1978. Role of acetaldehyde in metabolism: a review. 2. The metabolism of acetaldehyde in cultured dairy products. J. Dairy Sci. 61:12161224.
53. Lemieux, L.,, and R. E. Simard. 1992. Bitter flavour in dairy products. II. A review of bitter peptides from caseins: their formation, isolation and identification, structure masking and inhibition. Lait 72:335382.
54. Lindgren, S. E.,, and L. T. Axelsson. 1990. Anaerobic L-lactate degradation by Lactobacillus plantarum. FEMS Microbiol. Lett. 66:209214.
55. Lindsay, R. C.,, E. A. Day,, and W. E. Sandine. 1965. Green flavor defect in lactic starter cultures. J. Dairy Sci. 48:863869.
56. Liu, M.,, J. R. Bayjanov,, B. Renckens,, A. Nauta,, and R. J. Siezen. 2010. The proteolytic system of lactic acid bacteria revisited: a genome comparison. BMC Genomics 11:36.
57. Liu, S. Q.,, R. V. Asmundson,, P. K. Gopal,, R. Holland,, and V. L. Crow. 1998. Influence of reduced water activity on lactose metabolism by Lactococcus lactis subsp. cremoris at different pH values. Appl. Environ. Microbiol. 64:21112116.
58. Lucey, C. A.,, and S. Condon. 1986. Active role of oxygen and NADH oxidase in growth and energy metabolism of Leuconostoc. J. Gen. Microbiol. 132:17891796.
59. Manning, D. J. 1979. Chemical production of essential Cheddar flavor compounds. J. Dairy Res. 46:531537.
60. McKay, L. L.,, and K. A. Baldwin. 1974. Altered metabolism in a Streptococcus lactis C2 mutant deficient in lactate dehydrogenase. J. Dairy Sci. 57:181186.
61. Mierau, I.,, E. R. S. Kunji,, K. J. Leenhouts,, M. A. Hellendoorn,, A. J. Haandrikman,, B. Poolman,, W. ?N. Konings, G. Venema, and J. Kok. 1996. Multiple-peptidase mutants of Lactococcus lactis are severely impaired in their ability to grow in milk. J. Bacteriol. 178:27942803.
62. Mills, S.,, R. P. Ross,, H. Neve,, and A. Coffey,. 2011. Bacteriophage and anti-phage mechanism in lactic acid bacteria, p. 165186. In S. Lahtinen,, A. C. Ouwehand,, S. Salminen,, and A. von Wright (ed.), Lactic Acid Bacteria: Microbiology and Functional Aspects, 4th ed. CRC Press, Boca Raton, FL.
63. Moineau, S. 1999. Applications of phage resistance in lactic acid bacteria. Antonie van Leeuwenhoek 76:377382.
64. Montville, M. R.,, B. Ardestani,, and B. L. Geller. 1994. Lactococcal bacteriophage require a host cell wall carbohydrate and a plasma membrane protein for adsorption and ejection of DNA. Appl. Environ. Microbiol. 60:32043211.
65. Morelli, L.,, F. K. Vogensen,, and A. von Wright,. 2004. Genetics of lactic acid bacteria, p. 249293. In S. Salminen,, A. von Wright,, and A. Ouwehand (ed.), Lactic Acid Bacteria: Microbiology and Functional Aspects, 3rd ed. Marcel Dekker, Inc., New York, NY.
66. Palles, T.,, T. Beresford,, S. Condon,, and T. M. Cogan. 1998. Citrate metabolism in Lactobacillus casei and Lactobacillus plantarum. J. Appl. Microbiol. 85:147154.
67. Peterson, S. D.,, and R. T. Marshall. 1990. Nonstarter lactobacilli in Cheddar cheese: a review. J. Dairy Sci. 73:13951410.
68. Poolman, B. 1993. Energy transduction in lactic acid bacteria. FEMS Microbiol. Rev. 12:125148.
69. Ramos, A.,, K. N. Jordan,, T. M. Cogan,, and H. Santos. 1994. 13C nuclear magnetic resonance studies of citrate and glucose cometabolism by Lactococcus lactis. Appl. Environ. Microbiol. 60:17391748.
70. Ramos, A.,, J. S. Lolkema,, W. N. Konings,, and H. Santos. 1995. Enzyme basis for pH regulation of citrate and pyruvate metabolism by Leuconostoc oenos. Appl. Environ. Microbiol. 61:13031310.
71. Salminen, S.,, A. von Wright,, and A. Ouwehand (ed.). 2004. Lactic Acid Bacteria: Microbiology and Functional Aspects, 3rd ed. Marcel Dekker, Inc., New York, NY.
72. Schmitt, P.,, and C. Diviès. 1991. Co-metabolism of citrate and lactose by Leuconostoc mesenteroides subsp. cremoris. J. Ferment. Bioeng. 71:7274.
73. Sieuwerts, S.,, D. Molenaar,, S. A. F. T. van Hijum,, M. Beerthuyzen,, M. J. A. Stevens,, P. W. M. Janssen,, C. J. Ingham,, F. A. M. de Bok,, W. M. de Vos,, and J. E. T. van Hylckama Vlieg. 2010. Mixed-culture transcriptome analysis reveals the molecular basis of mixed-culture growth in Streptococcus thermophilus and Lactobacillus bulgaricus. Appl. Environ. Microbiol. 76:77757784.
74. Sijtsma, L.,, N. Jansen,, W. C. Hazeleger,, J. T. M. Wouters,, and K. J. Hellingwerf. 1990. Cell surface characteristics of bacteriophage-resistant Lactococcus lactis subsp. cremoris SK110 and its bacteriophage-sensitive variant SK112. Appl. Environ. Microbiol. 56:32303233.
75. Smart, J. B.,, and T. D. Thomas. 1987. Effect of oxygen of lactose metabolism in lactic streptococci. Appl. Environ. 53:533541.
76. Smit, G.,, B. A. Smit,, and W. J. M. Engels. 2005. Flavour formation by lactic acid bacteria and biochemical flavor profiling of cheese products. FEMS Microbiol. Rev. 29:591610.
77. Smit, G.,, A. Verheul,, R. van Kranenburg,, E. Ayad,, R. Siezen,, and W. J. M. Engels. 2000. Cheese flavour development by enzymatic conversions of peptides and amino acids. Food Res. Int. 33:153160.
78. Sturino, J. M.,, and T. R. Klaenhammer. 2004. Bacteriophage defense systems and strategies for lactic acid bacteria. Adv. Appl. Microbiol. 56:331378.
79. Thierry, A.,, D. Salvat-Brunaud,, and J.-L. Maubois. 1999. Influence of thermophilic lactic acid bacteria strains on propionibacteria growth and lactate consumption in an Emmental juice-like medium. J. Dairy Res. 66:105113.
80. Thomas, T. D.,, D. C. Ellwoos,, and V. M. C. Longyear. 1979. Change from homo- to heterolactic fermentation by Streptococcus lactis resulting from glucose limitation in anaerobic chemostat cultures. J. Bacteriol. 138:109117.
81. Urbach, G. 1995. Contribution of lactic acid bacteria to flavor compound formation in dairy products. Int. Dairy J. 5:877903.
82. Vaughan, E. E.,, S. David,, A. Harrington,, C. Daly,, G. F. Fitzgerald,, and W. M. De Vos. 1995. Characterization of plasmid-encoded citrate permease (citP) genes from Leuconostoc species reveals high sequence conversation with the Lactococcus lactis citP gene. Appl. Environ. Microbiol. 61:31723176.
83. Visser, S. 1993. Proteolytic enzymes and their relation to cheese ripening and flavor: an overview. J. Dairy Sci. 76:329350.
84. Warriner, K. S. R.,, and J. G. Morris. 1995. The effects of aeration on the bioreductive abilities of some heterofermentative lactic acid bacteria. Lett. Appl. Microbiol. 20:322327.
85. Weimer, B.,, K. Seefeldt,, and B. Dias. 1999. Sulfur metabolism in bacteria associated with cheese. Antonie van Leeuwenhoek 76:247261.
86. Whitehead, W. E.,, J. W. Ayres,, and W. E. Sandine. 1993. A review of starter media for cheese making. J. Dairy Sci. 76:23442353.
87. Wilkins, D. W.,, R. H. Schmidt,, R. B. Shireman,, K. L. Smith,, and J. J. Jezeski. 1986. Evaluating acetaldehyde synthesis from L-[14C(U)] threonine by Streptococcus thermophilus and Lactobacillus bulgaricus. J. Dairy Sci. 69:12191224.
88. Yvon, M.,, and L. Rijnen. 2001. Cheese flavor formation by amino acid catabolism. Int. Dairy J. 11:185201.
89. Zourari, A.,, J. P. Accolas,, and M. J. Desmazeaud. 1992. Metabolism and biochemical characteristics of yogurt bacteria. A review. Lait 72:134.

Tables

Generic image for table
Table 32.1

Microorganisms involved in the manufacture of cheeses and fermented milks

Citation: Johnson M, Steele J. 2013. Fermented Dairy Products, p 825-839. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch32
Generic image for table
Table 32.2

Peptidases purified and characterized from lactococci

Citation: Johnson M, Steele J. 2013. Fermented Dairy Products, p 825-839. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch32

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error