1887

Chapter 33 : Fermented Vegetables

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Fermented Vegetables, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818463/9781555816261_Chap33-1.gif /docserver/preview/fulltext/10.1128/9781555818463/9781555816261_Chap33-2.gif

Abstract:

The wide variety of fermented foods can be classified by the products of the fermentation, such as alcohol (beer, wine); organic acids, including lactic acid and acetic acid (vegetables, dairy); carbon dioxide (bread); and amino acids or peptides from protein (fish fermentations and others). Food fermentation is one of the earliest technologies developed by humans. The primary retail fermented vegetable products produced in the United States and Europe are cucumber pickles, olives, and sauerkraut. In Asia, a variety of fermented vegetable products are available, including pickles and fermented cabbage, notably kimchi in South Korea. The fermentation process for vegetables can result in nutritious foods that may be stored for extended periods, one year or more, without refrigeration. Prior to fermentation, fresh fruits and vegetables harbor a variety of microorganisms, including aerobic spoilage microflora such as , , and species, as well as yeasts and molds. Brining vegetables for fermentation results in the production by lactic acid bacteria (LAB) of organic acids and a variety of antimicrobial compounds. With the advent of whole-genome sequencing, it has become apparent that the LAB present in vegetable fermentations have relatively small genomes compared with many other mesophilic organisms. LAB isolated from vegetable fermentations frequently contain plasmids. Plasmid-borne genes encoding proteins involved in bacteriocin production, lactose utilization, and citric acid utilization have been isolated from several species; however, none of these functions appears to be present in the ATCC 8293 plasmid.

Citation: Breidt F, Pérez-Díaz I, McFeeters R, Lee C. 2013. Fermented Vegetables, p 841-855. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch33
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555818463.chap33
1. Barrangou, R.,, S. S. Yoon,, F. Breidt, Jr.,, H. P. Fleming,, and T. R. Klaenhammer. 2002. Characterization of six Leuconostoc fallax bacteriophages isolated from an industrial sauerkraut fermentation. Appl. Environ. Microbiol. 68:54525458.
2. Bell, T. A.,, and J. L. Etchells. 1952. Sugar and acid tolerance of spoilage yeasts from sweet-cucumber pickles. Food Technol. 6:468472.
3. Bell, T. A.,, J. L. Etchells,, and I. D. Jones. 1950. Softening of commercial cucumber salt-stock in relation to polygalacturonase activity. Food Technol. 4:157163.
4. Bell, T. A.,, J. L. Etchells,, and I. D. Jones. 1951. Pectinesterase in the cucumber. Arch. Biochem. Biophys. 31:431441.
5. Bolotin, A.,, P. Wincker,, S. Mauger,, O. Jaillon,, K. Malarme,, J. Weissenbach,, S. D. Ehrlich,, and A. Sorokin. 2001. The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res. 11:731753.
6. Breidt, F.,, and H. P. Fleming. 1992. Competitive growth of genetically marked malolactic-deficient Lactobacillus plantarum in cucumber fermentations. Appl. Environ. Microbiol. 58:38453849.
7. Breidt, F.,, J. S. Hayes,, and R. F. McFeeters. 2007. Determination of 5-log reduction times for food pathogens in acidified cucumbers during storage at 10 and 25°C. J. Food Prot. 70:26382641.
8. Breidt, F., Jr.,, J. S. Hayes,, J. A. Osborne,, and R. F. McFeeters. 2005. Determination of 5-log pathogen reduction times for heat-processed, acidified foods. J. Food Prot. 68:305310.
9. Buescher, R. W.,, and C. Burgin. 1992. Diffusion plate assay for measurement of polygalacturonase activities in pickle brines. J. Food Biochem. 16:5968.
10. Buescher, R.,, and C. Hamilton. 2002. Adsorption of polygalacturonase from recycled cucumber pickle brines by Pure-Flo B80 clay. J. Food Biochem. 26:153156.
11. Caplice, E.,, and G. F. Fitzgerald. 1999. Food fermentations: role of microorganisms in food production and preservation. Int. J. Food Microbiol. 50:131149.
12. Chang, H.W.,, K. H. Kim,, Y. D. Nam,, S. W. Roh,, M. S. Kim,, C. O. Jeon,, H. M. Oh,, and J. W. Bae. 2008. Analysis of yeast and archaeal population dynamics in kimchi using denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 126:159166.
13. Chang, R.B.,, H. Waters,, and E. R. Liman. 2010. A proton current drivesaction potentials in genetically identified sour taste cell. Proc. Natl.Acad. Sci. USA 107:2232022325. www.pnas.org/cgi/doi/10.1073/pnas.1013664107.
14. Cheigh, H. S.,, and K. Y. Park. 1994. Biochemical, microbiological and nutritional aspects of kimchi. Crit. Rev. Food Sci. Nutr. 34:175203.
15. Chin, H. S.,, F. Breidt,, H. P. Fleming,, W. C. Shin,, and S. S. Yoon. 2006. Identification of predominant bacterial isolates from the fermenting kimchi using ITS-PCR and partial 16S rDNA sequence analyses. J. Microbiol. Biotechnol. 16:6876.
16. Ciska, E.,, and D. R. Pathak. 2004. Glucosinolate derivatives in stored fermented cabbage. J. Agric. Food Chem. 52:79387943.
17. Costilow, R. N.,, C. L. Bedford,, D. Mingus,, and D. Black. 1977. Purging of natural salt-stock pickle fermentations to reduce bloater damage. J. Food Sci. 42:234240.
18. Da ConceicaoNeta, E. R.,, S. D. Johanningsmeier,, M. A. Drake,, and R. F. McFeeters. 2007. A chemical basis for sour taste perception of acid solutions and fresh-pack dill pickles. J. Food Sci. 72:S352S359.
19. Daeschel, M. A.,, R. F. McFeeters,, H. P. Fleming,, T. R. Klaenhammer,, and R. B. Sanozky. 1984. Mutation and selection of Lactobacillus plantarum strains that do not produce carbon dioxide from malate. Appl. Environ. Microbiol. 47:419420.
20. Daxenbichler, M. E.,, C. H. VanEtten,, and P. H. Williams. 1980. Glucosinolate products in commercial sauerkraut. J. Agric. Food Chem. 28:809811.
21. De Castro, A.,, P. García,, C. Romero,, M. Brenes,, and A. Garrido. 2007. Industrial implementation of black ripe olive storage under acid conditions. J. Food Eng. 80:12061212.
22. de las Rivas, B.,, A. Marcobal,, and R. Muñoz. 2006. Development of a multilocus sequence typing method for analysis of Lactobacillus plantarum strains. Microbiology 152:8593.
23. DeVuyst, L.,, and E. J. Vandamme,. 1994. Antimicrobial potential of lactic acid bacteria, p. 91142. In L. DeVuyst, and E. J. Vandamme (ed.), Bacteriocins of Lactic acid Bacteria. Blackie Academic and Professional, London, United Kingdom.
24. Dougherty, D.P.,, F. Breidt, Jr.,, R. F. McFeeters,, and S. R. Lubkin. 2002. Energy-based dynamic model for variable temperature batch fermentation by Lactococcus lactis. Appl. Environ. Microbiol. 68:24682478.
25. El-Rayah-Ahmed, A.,, and J. M. Labavitch. 1980. Cell wall metabolism in ripening fruit. II. Changes in carbohydrate-degrading enzymes in ripening ‘Bartlett’ pears. Plant Physiol. 65:10141016.
26. Etchells, J. L. 1950. Salt-tolerant yeasts from commercial cucumber brines. Texas Rep. Biol. Med. 8:103104.
27. Etchells, J. L.,, T. A. Bell,, H. P. Fleming,, R. E. Kelling,, and R. L. Thompson. 1973. Suggested procedure for the controlled fermentation of commercially brined pickling cucumbers—the use of starter cultures and reduction of carbon dioxide accumulation. Pickle Pak Sci. 3:414.
28. Etchells, J. L.,, T. A. Bell,, and W. R. Moore, Jr. 1976. Refrigerated dill pickles, questions and answers. Pickle Pak Sci. 5:120.
29. Etchells, J. L.,, A. F. Borg,, and T. A. Bell. 1961. Influence of sorbic acid on populations and species of yeasts occurring in cucumber fermentations. Appl. Microbiol. 9:139144.
30. Etchells, J. L.,, and I. D. Jones. 1942. Pasteurization of pickle products. Fruit Prod. 21:330332.
31. Fernández, A. G.,, P. G. Garcia,, and M. B. Balbuena,. 1995. Olive fermentations, p. 593627. In H.-J. Rehm, and G. Reed (ed.), Biotechnology. VCH Publishers, New York, NY.
32. Fleming, H. P.,, M. A. Daeschel,, R. F. McFeeters,, and M. D. Pierson. 1989. Butyric acid spoilage of fermented cucumbers. J. Food Sci. 54:636639.
33. Fleming, H.P.,, J. L. Etchells,, R. L. Thompson,, and T. A. Bell. 1975. Purging of CO2 from cucumber brines to reduce bloater damage. J. Food Sci. 40:13041310.
34. Fleming, H. P.,, E. G. Humphries,, R. L. Thompson,, and R. F. McFeeters. 2002. Bag-in-box technology: storage stability of process-ready, fermented cucumbers. Pickle Pak Sci. 8:1418.
35. Fleming, H.P.,, K.-H. Kyung,, and F. Breidt, Jr., 1995. Vegetable fermentations, p. 629661. In H.-J. Rehm, and G. Reed (ed.), Biotechnology. VCH Publishers, New York, NY.
36. Fleming, H.P.,, R. F. McFeeters,, and F. Breidt,. 2001. Fermented and acidified vegetables, p. 521532. In F. P. Downes, and K. Ito (ed.), Compendium of Methods for the Microbiological Examination of Foods, 4th ed. American Public Health Association, Washington, DC.
37. Fleming, H. P.,, R. F. McFeeters,, and M. A. Daeschel,. 1992. Fermented and acidified vegetables, p. 929952. In C. Vanderzant, and D. F. Splittstoesser (ed.), Compendium of Methods for the Microbiological Examination of Foods, 3rd ed. American Public Health Association, Washington, DC.
38. Fleming, H. P.,, R. F. McFeeters,, and E. G. Humphries. 1988. A fermentor for study of sauerkraut fermentation. Biotechnol. Bioeng. 31:189197.
39. Fleming, H. P.,, R. L. Thompson,, T. A. Bell,, and L. H. Hontz. 1978. Controlled fermentation of sliced cucumbers. J. Food Sci. 43:888891.
40. Fleming, H. P.,, W. M. Walter, Jr.,, and J. L. Etchells. 1973. Antimicrobial properties of oleuropein and products of its hydrolysis from green olives. Appl. Microbiol. 26:777782.
41. Gasson, M. 1990. In vivo genetic systems in lactic acid bacteria. FEMS Microbiol. Rev. 87:4360.
42. Gates, K.,, and R. N. Costilow. 1981. Factors influencing softening of salt-stock pickles in air-purged fermentations. J. Food Sci. 46:274277.
43. Gómez, A. H. S.,, P. G. García,, and L. R. Navarro. 2006. Trends in table olive production, elaboration of table olives. Grasas y Aceites 57:8694.
44. Gottschalk, G. 1986. Bacterial Metabolism, 2nd ed., p. 208220. Springer-Verlag, New York, NY.
45. Heredia, A.,, R. Guillén,, A. Jiménez,, and J. Fernández-Bolanos. 1993. Activity of glycosidases during development and ripening of olive fruit. Z. Lebensm. Unters. Forsch. 196:147151.
46. Holzapfel, W. H.,, R. Geisen,, and U. Schillinger. 1995. Biological preservation of foods with reference to protective cultures, bacteriocins, and food-grade enzymes. Int. J. Food Microbiol. 24:343362.
47. Hudson, J. M.,, and R. W. Buescher. 1986. Relationship between degree of pectin methylation and tissue firmness of cucumber pickles. J. Food Sci. 51:138140, 149.
48. Johanningsmeier, S. D.,, H. P. Fleming,, R. L. Thompson,, and R. F. McFeeters. 2005. Chemical and sensory properties of sauerkraut produced with Leuconostoc mesenteroides starter cultures of differing malolactic phenotypes. J. Food Sci. 70:S343S349.
49. Jones, I. D.,, J. L. Etchells,, M. K. Veldhuis,, and O. Veerhoff. 1941. Pasteurization of genuine dill pickles. Fruit Prod. 20:304305, 316, 325.
50. Kala?, P.,, J. Spicka,, M. Krizek,, and T. Pelikanova. 2000. Changes in biogenic amine concentrations during sauerkraut storage. Food Chem. 69:309314.
51. Klaenhammer, T.,, E. Altermann,, F. Arigoni,, A. Bolotin,, F. Breidt,, J. Broadbent,, R. Cano,, S. Chaillou,, J. Deutscher,, M. Gasson,, M. van de Guchte,, J. Guzzo,, A. Hartke,, T. Hawkins,, P. Hols,, R. Hutkins,, M. Kleerebezem,, J. Kok,, O. Kuipers,, M. Lubbers,, E. Maguin,, L. McKay,, D. Mills,, A. Nauta,, R. Overbeek,, H. Pel,, D. Pridmore,, M. Saier,, D. van Sinderen,, A. Sorokin,, J. Steele,, D. O’Sullivan,, W. de Vos,, B. Weimer,, M. Zagorec,, and R. Siezen. 2002. Discovering lactic acid bacteria by genomics. Antonie van Leeuwenhoek 82:2958.
52. Klappenbach, J.,, J. Dunbar,, and T. Schmidt. 2000. rRNA operon copy number reflects ecological strategies of bacteria. Appl. Environ. Microbiol. 66:13281333.
53. Kleerebezem, M.,, J. Boekhorst,, R. van Kranenburg,, D. Molenaar,, O. P. Kuipers,, R. Leer,, R. Tarchini,, S. A. Peters,, H. M. Sandbring,, M. W. E. J. Fiers,, W. Stickema,, R. M. K. Lankhorst,, P. A. Bron,, S. M. Hoffer,, M. N. M. Groot,, R. Kerkhoven,, M. de Vries,, B. Ursing,, W. M. de Vos,, and R. J. Siezen. 2003. Complete genome sequence of Lactobacillus plantarum WCFS1. Proc. Natl. Acad. Sci. USA 100:19901995.
54. Krall, S. M.,, and R. F. McFeeters. 1998. Pectin hydrolysis: effect of temperature, degree of methylation, pH, and calcium on hydrolysis rates. J. Agric. Food Chem. 46:13111315.
55. Lee, C. H., 1994. Importance of lactic acid bacteria in non-dairy food fermentation, p. 825. In C. H. Lee,, J. Adler-Nissen,, and G. Barwald (ed.), Lactic Acid Fermentation of Non-dairy Food and Beverages. HarnLimWon, Seoul, South Korea.
56. Lee, C. H. 2001. Fermentation Technology in Korea. Korea University Press, Seoul, South Korea.
57. Lee, C. H., 2009. Food biotechnology, p. 85114. In G. Campbell-Platt (ed.), Food Science and Technology. Wiley-Blackwell, West Sussex, United Kingdom.
58. Lu, Z.,, E. Altermann,, F. Breidt,, and S. Kozyavkin. 2010. Sequence analysis of Leuconostoc mesenteroides bacteriophage Φ1-A4 isolated from industrial vegetable fermentation. Appl. Environ. Microbiol. 76:19551966.
59. Lu, Z.,, E. Altermann,, F. Breidt, Jr.,, P. Predki,, H. P. Fleming,, and T. R. Klaenhammer. 2005. Sequence analysis of the Lactobacillus plantarum bacteriophage FJL-1. Gene 348:4554.
60. Lu, Z.,, F. Breidt, Jr.,, H. P. Fleming,, E. Altermann,, and T. R. Klaenhammer. 2003. Isolation and characterization of a Lactobacillus plantarum bacteriophage, FJL-1, from a cucumber fermentation. Int. J. Food Microbiol. 84:225235.
61. Lu, Z.,, F. Breidt, Jr.,, V. Plengvidhya,, and H. P. Fleming. 2003. Bacteriophage ecology in commercial sauerkraut fermentations. Appl. Environ. Microbiol. 69:31923202.
62. Lu, Z.,, H. P. Fleming,, and R. F. McFeeters. 2002. Effects of fruit size on fresh cucumber composition and the chemical and physical consequences of fermentation. J. Food Sci. 67:29342939.
63. Mah, J. H.,, Y. H. Chang,, and H. J. Hwang. 2008. Paenibacillus tyraminigenes sp. nov. isolated from Myeolchi-jeotgal, a traditional Korean salted and fermented anchovy. Int. J. Food Microbiol. 127:209214.
64. Makarova, K.,, A. Slesarev,, Y. Wolf,, A. Sorokin,, B. Mirkin,, E. Koonin,, A. Pavlov,, N. Pavlova,, V. Karamychev,, N. Polouchine,, V. Shakhova,, I. Grigoriev,, Y. Lou,, D. Rohksar,, S. Lucas,, K. Huang,, D. M. Goodstein,, T. Hawkins,, V. Plengvidhya,, D. Welker,, J. Hughes,, Y. Goh,, A. Benson,, K. Baldwin,, J.-H. Lee,, I. Díaz-Muñiz,, B. Dosti,, V. Smeianov,, W. Wechter,, R. Barabote,, G. Lorca,, E. Altermann,, R. Barrangou,, B. Ganesan,, Y. Xie,, H. Rawsthorne,, D. Tamir,, C. Parker,, F. Breidt, Jr.,, J. Broadbent,, R. Hutkins,, D. O’Sullivan,, J. Steele,, G. Unlu,, M. Saier,, T. Klaenhammer,, P. Richardson,, S. Kozyavkin,, B. Weimer,, and D. Mills. 2006. Comparative genomics of the lactic acid bacteria. Proc. Natl. Acad. Sci. USA 103:1561115616.
65. Marsili, R. T.,, and N. Miller. 2000. Determination of major aroma impact compounds in fermented cucumbers by solid-phase microextraction-gas chromatography-mass spectrometry-olfactometry detection. J. Chromatogr. Sci. 38:307314.
66. Maruvada, R. 2005. Evaluation of the importance of enzymatic and non-enzymatic softening in low salt cucumber fermentations. M.S. thesis. North Carolina State University, Raleigh.
67. McDonald, L. C.,, H. P. Fleming,, and H. M. Hassan. 1990. Acid tolerance of Leuconostoc mesenteroides and Lactobacillus plantarum. Appl. Environ. Microbiol. 56:21202124.
68. McFeeters, R. F.,, and S. A. Armstrong. 1984. Measurement of pectin methylation in plant cell walls. Anal. Biochem. 139:212217.
69. McFeeters, R. F.,, M. Balbuena,, M. Brenes,, and H. P. Fleming. 1995. Softening rates of fermented cucumber tissue: effects of pH, calcium, and temperature. J. Food Sci. 60:786788.
70. McFeeters, R. F.,, T. A. Bell,, and H. P. Fleming. 1980. An endo-polygalacturonase in cucumber fruit. J. Food Biochem. 4:116.
71. McFeeters, R. F.,, and K.-H. Chen. 1986. Utilization of electron acceptors for anaerobic mannitol metabolism by Lactobacillus plantarum. Compounds which serve as electron acceptors. Food Microbiol. 3:7381.
72. McFeeters, R. F.,, W. Coon,, M. P. Palnitkar,, M. Velting,, and N. Fehringer. 1978. Reuse of Fermentation Brines in the Cucumber Pickling Industry, p. 1115. EPA-600/2-78-207. U.S. Environmental Protection Agency, Washington, DC.
73. McFeeters, R. F.,, and H. P. Fleming. 1989. Inhibition of cucumber tissue softening in acid brines by multivalent cations: inadequacy of the pectin “egg box” model to explain textural effects. J. Agric. Food Chem. 37:10531059.
74. McFeeters, R. F.,, and H. P. Fleming. 1990. Effect of calcium ions on the thermodynamics of cucumber tissue softening. J. Food Sci. 55:446449.
75. McFeeters, R. F.,, H. P. Fleming,, and R. L. Thompson. 1982. Malic acid as a source of carbon dioxide in cucumber fermentations. J. Food Sci. 47:18621865.
76. Medina, E.,, M. Brenes,, C. Romero,, A. García,, and A. de Castro. 2007. Main antimicrobial compounds in table olives. J. Agric. Food Chem. 55:98179823.
77. Medina, E.,, C. Gori,, M. Servili,, A. de Castro,, C. Romero,, and M. Brenes. 2010. Main variables affecting the lactic acid fermentation of table olives. Int. J. Food Sci. Technol. 45:12911296.
78. Meurer, P.,, and K. Gierschner. 1992. Occurrence and effect of indigenous and eventual microbial enzymes in lactic acid fermented vegetables. Acta Aliment. 21:171188.
79. Mheen, T. I.,, and T. W. Kwon. 1984. Effect of temperature and salt concentration on kimchi fermentation. Korean J. Food Sci. Technol. 16:443450.
80. Moret, S.,, D. Smela,, T. Populin,, and L. S. Conte. 2005. A survey on free biogenic amine content of fresh and preserved vegetables. Food Chem. 89:355361.
81. Mudgal, P.,, F. Breidt, Jr.,, S. R. Lubkin,, and K. P. Sandeep. 2006. Quantifying the significance of phage attack on starter cultures: a mechanistic model for population dynamics of phage and their hosts isolated from fermenting sauerkraut. Appl. Environ. Microbiol. 72:39083915.
82. Nam, Y. D.,, H. W. Chang,, K. H. Kim,, S. W. Roh,, and J. W. Bae. 2009. Metatranscriptome analysis of lactic acid bacteria during kimchi fermentation with genome-probing microarrays. Int. J. Food Microbiol. 130:140146.
83. Nguyen-the, C.,, and F. Carlin. 1994. The microbiology of minimally processed fresh fruits and vegetables. Crit. Rev. Food Sci. Nutr. 34:371401.
84. Park, J.M.,, J. H. Shin,, D. W. Lee,, J. C. Song,, H. J. Suh,, U. J. Chang,, and J. M. Kim. 2010. Identification of the lactic acid bacteria in kimchi according to initial and over-ripened fermentation using PCR and 16S rRNA gene sequence analysis. Food Sci. Biotechnol. 19:541546.
85. Pederson, C. S.,, and M. N. Albury. 1954. The influence of salt and temperature on the microflora of sauerkraut fermentation. Food Technol. 8:15.
86. Pederson, C. S.,, and M. N. Albury. 1969. The Sauerkraut Fermentation. Technical Bulletin no. 824. N.Y. State Agricultural Experiment Station, Geneva, NY.
87. Pérez-Díaz, I. M.,, and R. F. McFeeters. 2008. Microbiological preservation of cucumbers for bulk storage by the use of acetic acid and food preservatives. J. Food Sci. 73:M287M291.
88. Pérez-Díaz, I. M.,, and R. F. McFeeters. 2010. Preservation of acidified cucumbers with a natural preservative combination of fumaric acid and allyl isothiocyanate that target lactic acid bacteria and yeasts. J. Food Sci. 75:M204M208.
89. Plastourgos, S.,, and R. H. Vaughn. 1957. Species of Propionibacterium associated with zapatera spoilage of olives. Appl. Microbiol. 5:267271.
90. Plengvidhya, V.,, F. Breidt,, Z. Lu,, and H. P. Fleming. 2007. DNA fingerprinting of lactic acid bacteria in sauerkraut fermentations. Appl. Environ. Microbiol. 73:76977702.
91. Pressey, R.,, and J. K. Avants. 1975. Cucumber polygalacturonase. J. Food Sci. 40:937939.
92. Preuss, L. M.,, W. H. Peterson,, and E. B. Fred. 1928. Gas production in the making of sauerkraut. J. Ind. Eng. Chem. 20:11871190.
93. Priem, L. A.,, W. H. Peterson,, and E. B. Fred. 1927. Studies of commercial sauerkraut with special reference to changes in the bacterial flora during fermentation at low temperatures. J. Agric. Res. 34:7995.
94. Ruiz Barba, J. L.,, R. M. Rios Sanchez,, C. Fedriani Iriso,, J. M. Olias,, J. L. Rios,, and J. L. Jimenez-Diaz. 1990. Bactericidal effects of phenolic compounds from green olives on Lactobacillus plantarum. Syst. Appl. Microbiol. 13:199205.
95. Rybaczyk-Pathak, D. 2005. Joint association ofhigh cabbage/sauerkraut intake at 12–13 years of age and adulthood with reduced breast cancer risk in Polish migrant women: results from the U.S. Component of the Polish Women’s Health Study (PWHS), abstr. 3697. Abstr. Am. Assoc. Cancer Res. 4th Annu. Frontiers Cancer Prevention Res., Baltimore, MD, 2 November 2005.
96. Steinkraus, K. H. 1983. Handbook of Indigenous Fermented Foods. Marcel Dekker, New York, NY.
97. Steinkraus, K. H., 1993. Comparison of fermented foods of the East and West, p. 112. In C. H. Lee,, K. H. Steinkraus,, and P. J. A. Reilly (ed.), Fish Fermentation Technology. UNU Press, Tokyo, Japan.
98. Takayanagi, T.,, T. Okuda,, and K. Yokotsuka. 1997. Changes in glycosidase activity in grapes during development. J. Inst. Enol. Viticult. Yamanashi Univ. 32:14.
99. Tang, H. C. L.,, and R. F. McFeeters. 1983. Relationships among cell wall constituents, calcium and texture during cucumber fermentation and storage. J. Food Sci. 48:6670.
100. Tolonen, M.,, T.,, T. Marianne,, V. Britta,, P. Juha-Matti,, K. Hannu,, and R. Eeva-Liisa. 2002. Plant-derived biomolecules in fermented cabbage. J. Agric. Food Chem. 50:67986803.
101. Tolonen, M.,, S. Rajaniemi,, J.-M. Pihlava,, T. Johansson,, P. E. J. Saris,, and E.-L. Ryhanen. 2004. Formation of nisin, plant-derived biomolecules and antimicrobial activity in starter culture fermentations of sauerkraut. Food Microbiol. 21:167179.
102. Vaughn, R. H., 1985. The microbiology of vegetable fermentations, p. 49109. In J. B. Wood (ed.), Microbiology of Fermented Foods, vol. 1. Elsevier Applied Science, Barking, United Kingdom.
103. Whitehead, H. R.,, and A. G. Cox. 1935. The occurrence of bacteriophages in starter cultures of lactic streptococci. N. Z. J. Sci. Technol. 16:319320.
104. Yoon, S. S.,, R. Barrangou-Poueys,, F. Breidt,, and H. P. Fleming. 2007. Detection and characterization of a lytic Pediococcus bacteriophage from the fermenting cucumber brine. J. Microbiol. Biotechnol. 17:262270.
105. Yoon, S. S.,, R. Barrangou-Poueys,, F. Breidt, Jr., T. R. Klaenhammer, and H. P. Fleming. 2002. Isolation and characterization of bacteriophages from fermenting sauerkraut. Appl. Environ. Microbiol. 68:973976.
106. Yoon, S. S.,, J. W. Kim,, F. Breidt,, and H. P. Fleming. 2001. Characterization of a lytic Lactobacillus plantarum bacteriophage and molecular cloning of a lysin gene in Escherichia coli. Int. J. Food Microbiol. 65:6374.
107. Yoon, S. S.,, Y. J. Shin,, S. Her,, and D. H. Oh. 1997. Isolation and characterization of the Lactobacillus plantarum bacteriophage SC921. Korean J. Appl. Microbiol. Biotechnol. 25:96101.
108. Zhou, A.,, and R. F. McFeeters. 1998. Volatile compounds in cucumbers fermented in low-salt conditions. J. Agric. Food Chem. 46:21172122.
109. Zhou, A.,, R. F. McFeeters,, and H. P. Fleming. 2000. Development of oxidized odor and volatile aldehydes in fermented cucumber tissue exposed to oxygen. J. Agric. Food Chem. 48:193197.

Tables

Generic image for table
Table 33.1

Examples of acid-fermented vegetables produced in different regions of the world

Citation: Breidt F, Pérez-Díaz I, McFeeters R, Lee C. 2013. Fermented Vegetables, p 841-855. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch33
Generic image for table
Table 33.2

Distribution of ORFs among Clusters of Orthologous Groups (COG) functional categories

Citation: Breidt F, Pérez-Díaz I, McFeeters R, Lee C. 2013. Fermented Vegetables, p 841-855. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch33
Generic image for table
Table 33.3

Pyruvic acid-dissipating enzymes present in the predominant LAB in fermented vegetables

Citation: Breidt F, Pérez-Díaz I, McFeeters R, Lee C. 2013. Fermented Vegetables, p 841-855. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch33

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error