1887

Chapter 34 : Fermented Meat, Poultry, and Fish Products

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Fermented Meat, Poultry, and Fish Products, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818463/9781555816261_Chap34-1.gif /docserver/preview/fulltext/10.1128/9781555818463/9781555816261_Chap34-2.gif

Abstract:

Understanding the technological, microbiological, and biochemical processes that occur during meat, poultry, and fish fermentation is essential for ensuring safe, palatable products. Dry and semidry sausages represent the largest category of fermented meat products, with many present-day processing practices having their origin in the Mediterranean region. This chapter talks about factors affecting color, texture, flavor, and appearance of fermented meats. Incorporation of sodium chloride, sodium or potassium nitrite and/or nitrate, glucose, and homofermentative lactic acid starter cultures in sausage formulas dramatically alters the ecology of the culture environment and chemical characteristics of finished products. The chapter also talks about chemical characteristics of fermented dry and semidry sausage products including cervelat, capicola and salami. Fish fermentation involves minimal bacterial conversion of carbohydrates to lactic acid but entails extensive tissue degradation by proteolytic and lipolytic enzymes derived from viscera and muscle tissues. Sauces have a predominantly salty taste and are derived from decanting or pressing fermented fish or shrimp after a 9-month to 1-year fermentation. The use of starter cultures in fermented meat products is a relatively recent practice compared with their use in fermented dairy foods and alcoholic beverages. More recent trends have been focused on starter cultures not only as fermentation tools but also for functional food purposes, to capitalize on their flavor-enhancing, bioprotective, and health-beneficial properties. The advantage of microbial activity is the reduction of nitrates, thus removing excess nitrate/ nitrite from the meat.

Citation: Ricke S, Koo O, Keeton J. 2013. Fermented Meat, Poultry, and Fish Products, p 857-880. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch34
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555818463.chap34
1. Acton, J. C. 1977. The chemistry of dry sausages. Proc. Recip. Meat Conf. 30:4962.
2. Alegre, M. T.,, M. C. Rodríguez,, and J. M. Mesas. 2004. Transformation of Lactobacillus plantarum by electroporation with in vitro modified plasmid DNA. FEMS Microbiol. Lett. 241:7377.
3. Al-Sheddy, I. A.,, D. Y. C. Fung,, and C. L. Kastner. 1995. Microbiology of fresh and restructured lamb meat: a review. Crit. Rev. Microbiol. 21:3152.
4.American Meat Institute Foundation. 1997. Good Manufacturing Practices for Fermented Dry and Semi-Dry Sausage Products. American Meat Institute Foundation, Washington, DC.
5. Ammor, M. S.,, M. Gueimonde,, M. Danielsen,, M. Zagorec,, A. H. A. M. van Hoek,, C. G. de los Reyes-Gavilán,, B. Mayo,, and A. Margolles. 2008. Two different tetracycline resistance mechanisms, plasmid-carried tet(L) and chromosomally located transposon-associated tet(M), coexist in Lactobacillus sakei Rits 9. Appl. Environ. Microbiol. 74:13941401.
6. Arihara, K.,, H. Kushida,, Y. Kondo,, M. Itoh,, J. B. Luchansky,, and R. G. Cassens. 1993. Conversion of metmyoglobin to bright red myoglobin derivatives by Chromobacterium violaceum, Kurthia sp., and Lactobacillus fermentum JCM1173. J. Food Sci. 58:3842.
7.AssociationofFoodandDrugOfficials. 1999. Safe Practices for Sausage Production—Distance Learning Course Manual, version 1. Food Safety and Inspection Service, U.S. Department of Agriculture, Washington, DC.
8. Axelsson, L.T., 2004. Lactic acid bacteria:classification and physiology, p. 166. In S. Salminen, and A. von Wright (ed.), Lactic Acid Bacteria: Microbiological and Functional Aspects. Marcel Dekker, Inc., New York, NY.
9. Bacus, J. N. 1986. Fermented meat and poultry products. Adv. Meat Res. 2:123164.
10. Bacus, J. N. 2005. Microbiology—shelf-stable dried meats. FoodSafety and Inspection Service, U.S. Department of Agriculture, Washington, DC. www.fsis.usda.gov/PDF/FSRE_SS_5MicrobiologyDried.pdf.
11. Bacus, J. N.,, and W. L. Brown. 1981. Use of microbial cultures: meat products. Food Technol. 35(1)7478, 83.
12. Bacus, J. N.,, and W. L. Brown,. 1985. The lactobacilli: meat products, p. 5871. In S. E. Gilliland (ed.), Bacterial Starter Cultures for Foods. CRC Press, Inc., Boca Raton, FL.
13. Bacus, J. N.,, and W. L. Brown,. 1985. The pediococci: meat products, p. 8695. In S. E. Gilliland (ed.), Bacterial Starter Cultures for Foods. CRC Press, Inc., Boca Raton, FL.
14. Bartholomew, D. R.,, and C. I. Osuala. 1986. Acceptability of flavor, texture, and appearance of mutton processed meat products made by smoking, curing, spicing, adding starter cultures and modifying fat source. J. Food Sci. 51:15601562.
15. Beddows, C. G., 1998. Fermented fish and fish products, p. 416440. In B. J. B. Wood (ed.), Microbiology of Fermented Foods, vol. II, 2nd ed. Elsevier Applied Science Publishing Co. Inc., London, United Kingdom.
16. Beddows, C. G.,, A. G. Ardeshir,, and W. Johari bin Daud. 1979. Biochemical changes occurring during the manufacture of budu. J. Sci. Food Agric. 30:10971103.
17. Beddows, C. G.,, A. G. Ardeshir,, and W. Johari bin Daud. 1980. Development and origin of the volatile fatty acids in budu. J. Sci. Food Agric. 31:8692.
18. Berdague, J. L.,, P. Monteil,, M. C. Montel,, and R. Talon. 1993. Effects of starter cultures on the formation of flavor compounds in dry sausage. Meat Sci. 35:275287.
19. Champomier-Vergès, M. C.,, S. Chaillou,, M. Cornet,, and M. Zagorec. 2002. Lactobacillus sakei: recent developments and future prospects. Res. Microbiol. 153:115123.
20. Chassy, B. M.,, E. Gibson,, and A. Giuffrida. 1976. Evidence for extrachromosomal elements in Lactobacillus. J. Bacteriol. 127:15761578.
21. Claesson, M. J.,, D. van Sinderen,, and P. W. O’Toole. 2008. Lactobacillus phylogenomics—towards a reclassification of the genus. Int. J. Syst. Evol. Microbiol. 58:29452954.
22. Crisan, E. V.,, and A. Sands. 1975. The microbiology of four fermented fish sauces. Appl. Microbiol. 29:106108.
23. Curtis, S. I. 1995. Personal communication.
24. Danielsen, M. 2002. Characterization of the tetracycline resistance plasmid pMD5057 from Lactobacillus plantarum 5057 reveals a composite structure. Plasmid 48:98103.
25. Deibel, R. H.,, and C. F. Niven, Jr. 1957. Pediococcus cerevisiae: a starter culture for summer sausage. Bacteriol. Proc. 1957:1415.
26. Deibel, R.H.,, G. D. Wilson,, and C. F. Niven, Jr. 1961. Microbiology of meat curing. IV. A lyophilized Pediococcus cerevisiae starter culture for fermented sausages. Appl. Microbiol. 9:239243.
27. Demeyer, D.,, and K. Samejima,. 1991. Animal biotechnology and meat processing, p. 127143. In L. O. Fiems,, B. G. Cottyn,, and D. I. Demeyer (ed.), Animal Biotechnology and the Quality of Meat Production. Elsevier, Amsterdam, The Netherlands.V
28. de Vries, W.,, W. M. C. Kapteijn,, E. G. van der Beek,, and A. H. Stouthamer. 1970. Molar growth yields and fermentation balance of Lactobacillus casei L3 in batch cultures and continuous cultures. J. Gen. Microbiol. 63:333345.
29. Dougan, J.,, and G. E. Howard. 1975. Some flavouring constituents of fermented fish sauces. J. Sci. Food Agric. 26:887894.
30. Egan, A. F. 1983. Lactic acid bacteria of meat and meat products. Antonie van Leeuwenhoek 49:327336.
31. Eguchi, T.,, K. Doi,, K. Nishiyama,, S. Ohmomo,, and S. Ogata. 2000. Characterization of a phage resistance plasmid, pLKS, of silage-making Lactobacillus plantarum NGRI0101. Biosci. Biotechnol. Biochem. 64:751756.
32. Everson, C. W.,, W. E. Danner,, and P. A. Hammes. 1970. Bacterial starter cultures in sausage products. J. Agric. Food Chem. 18:570571.
33. Everson, C. W.,, W. E. Danner,, and P. A. Hammes. 1974. Process for curing dry and semidry sausages. U.S. patent 3,814,817.
34. Fadda, S.,, C. Lopez,, and G. Vignolo. 2010. Role of lactic acid bacteria during meat conditioning and fermentation: peptides generated as sensorial and hygienic biomarkers. Meat Sci. 86:6679.
35. Felis, G. E.,, and F. Dellaglio. 2007. Taxonomy of lactobacilli and bifidobacteria. Curr. Issues Intest. Microbiol. 8:4461.
36. Fujii, T.,, S. D. Basuki,, and H. Tozawa. 1980. Microbiological studies on the ageing of fish sauce; chemical composition and microflora of fish sauce produced in the Philippines. Nippon Suissan Gakkaishi 46:12351240.
37. Garvie, E. I., 1994. Genus Pediococcus, p. 530. In D. H. Bergey, and J. G. Holt (ed.), Bergey’s Manual of Determinative Bacteriology, 9th ed. The Williams and Wilkins Co., Baltimore, MD.
38. Gasson, M. J. 1993. Progress and potential in the biotechnology of the lactic acid bacteria. FEMS Microbiol. Rev. 12:320.
39. Gevers, D.,, G. Huys,, and J. Swings. 2003. In vitro conjugal transfer of tetracycline resistance from Lactobacillus isolates to other Gram-positive bacteria. FEMS Microbiol. Lett. 225:125130.
40. Giacomini, A.,, A. Squartini,, and M. P. Nuti. 2000. Nucleotide sequence and analysis of plasmid pMD136 from Pediococcus pentosaceus FBB61 (ATCC43200) involved in Pediocin A production. Plasmid 43:111122.
41. Gonzalez, C.F.,, and B. S. Kunka. 1986. Evidence for plasmidlinkage of raffinose utilization and associated α-galactosidase and sucrose hydrolase activity in Pediococcus pentosaceus. Appl. Environ. Microbiol. 51:105109.
42. Gottschalk, G. 1986. Bacterial Metabolism, 2nd ed. Springer-Verlag, New York, NY.
43. Grazia, L.,, P. Romano,, A. Bagni,, D. Roggiani,, and G. Guglielmi. 1986. The role of moulds in the ripening process of salami. Food Microbiol. 3:1925.
44. Gruss, A.,, and S. D. Ehrlich. 1989. The family of highly interrelated single-stranded deoxyribonucleic acid plasmids. Microbiol. Rev. 53:231241.
45. Hammer, G. F. 1987. Meat processing: ripened products. Fleischwirtschaft 67:7174.
46. Hammes, W. P.,, A. Bantleon,, and S. Min. 1990. Lactic acid bacteria in meat fermentation. FEMS Microbiol. Lett. 87:165174.
47. Hammes, W. P.,, and H. J. Knauf. 1994. Starters in the processing of meat products. Meat Sci. 36:155168.
48. Hammes, W.P.,, and C. Hertel,. 2006. The genera Lactobacillus and Carnobacterium, p. 320403. In M. Dworkin,, S. Falkow,, E. Rosenberg,, K.-H. Schleifer,, and E. Stackebrandt (ed.), The Prokaryotes—a Handbook on the Biology of Bacteria: Bacteria, Firmicutes, Cyanobacteria, 3rd ed. Springer-Verlag, New York, NY.
49. Harlander, S.K. 1992. Genetic improvement of microbialstarter cultures, p. 2026. In National Research Council (ed.), Applications of Biotechnology to Traditional Fermented Foods. National Academy Press, Washington, DC.
50. Hols, P.,, T. Ferain,, D. Garmyn,, N. Bernard,, and J. Delcour. 1994. Use of homologousexpression-secretion signals and vector-free stable chromosomal integration in engineering of Lactobacillus plantarum for α-amylaseand levanase expression. Appl. Environ. Microbiol. 60:14011413.
51. Jacobsen, L.,, A. Wilcks,, K. Hammer,, G. Huys,, D. Gevers,, and S. R. Andersen. 2007. Horizontal transfer of tet(M) and erm(B) resistance plasmids from food strains of Lactobacillus plantarum to Enterococcus faecalis JH2-2 in the gastrointestinal tract of gnotobiotic rats. FEMS Microbiol. Ecol. 59:158166.
52. Jay, J. M. 2003. A review of recent taxonomic changes in seven genera of bacteria commonly found in foods. J. Food Prot. 66:13041309.
53. Jay, J. M.,, M. J. Loessner,, and D. A. Golden. 2005. Modern Food Microbiology, 7th ed., p. 175196. Springer, New York, NY.
54. Kagermeier, A. 1981. Taxonomie und Vorkommen von Milchsaurebakterien in Fleischprodukten. Dissertation. Fakultat fur Biologie, Ludwig-Maximilian-Universität München, Munich, Germany.
55. Kandler, O. 1983. Carbohydrate metabolism in lactic acid bacteria. Antonie von Leeuwenhoek 49:209224.
56. Kandler, O.,, and N. Weiss,. 1994. Regular, non-sporinggram-positive rods, p. 565570. In D. H. Bergey, and J. G. Holt (ed.), Bergey’s Manual of Determinative Bacteriology, 9th ed. The Williams and Wilkins Co., Baltimore, MD.
57. Klettner, P.-G.,, and D. List. 1980. Beitrag zum Einfluss der Kohlenhydratart auf den Verlauf der Rohwurstreifung. Fleischwirtschaft 60:15891593.
58. Knauf, H. J.,, R. F. Vogel,, and W. P. Hammes. 1989. Introduction of the transposon Tn919 into Lactobacillus curvatus. FEMS Microbiol. Lett. 65:101104.
59. Languer, H. J. 1972. Aromastoffe in der Rohwurst. Fleischwirtschaft 52:12991306.
60. Leer, R. J.,, N. van Luijk,, M. Posno,, and P. H. Pouwels. 1992. Structural and functional analysis of two cryptic plasmids from Lactobacillus pentosus MD353 and Lactobacillus plantarum ATCC 8014. Mol. Gen. Genet. 234:265274.
61. Leistner, L. 1986. Mould-ripened foods. Fleischwirtschaft 66:13851388.
62. Leroy, F.,, J. Verluyten,, and L. De Vuyst. 2006. Functional meat starter cultures for improved sausage fermentation. Int. J. Food Microbiol. 106:270285.
63. Liepe, H. U., 1983. Starter cultures in meat production, p. 400424. In H.-J. Rehm, and G. Reed (ed.), Biotechnology, Food and Feed Production with Microorganisms, vol. 5. Verlag Chemie, Weinheim, Germany.
64. Liu, M.-L.,, J. K. Kondo,, M. B. Barnes,, and D. T. Bartholomew. 1988. Plasmid-linked maltose utilization in Lactobacillus spp. Biochimie 70:351355.
65. London, J. 1990. Uncommon pathways of metabolism among lactic acid bacteria. FEMS Microbiol. Lett. 87:103112.
66. Luchansky, J. B.,, P. M. Muriana,, and T. R. Klaenhammer. 1988. Application of electroporation for transfer of plasmid DNA to Lactobacillus, Lactococcus, Leuconostoc, Listeria, Pediococcus, Bacillus, Staphylococcus, Enterococcus and Propionibacterium. Mol. Microbiol. 2:637646.
67. Lücke, F.-K., 1998. Fermented sausages, p. 441483. In B. J. B. Wood (ed.), Microbiology of Fermented Foods, vol. II, 2nd ed. Elsevier Applied Science Publishing Co., Inc., London, United Kingdom.
68. Makarova, K. S.,, and E. V. Koonin. 2007. Evolutionary genomics of lactic acid bacteria. J. Bacteriol. 189:11991208.
69. McQuestin, O. J.,, C. T. Shadbolt,, and T. Ross. 2009. Quantification of the relative effects of termperature, pH, and water activity on inactivation of Escherichia coli in fermented meat by meta-analysis. Appl. Environ. Microbiol. 75:69636972.
70. Michels, P. A. M.,, J. P. J. Michels,, J. Boonstra,, and W. N. Konings. 1979. Generation of electrochemical proton gradient in bacteria by the extrusion of metabolic end products. FEMS Microbiol. Lett. 5:357364.
71. Mogensen, G., 2004. Startercultures, p. 191210. In J. Smith (ed.), Technology of Reduced-Additive Foods, 2nd ed. Blackie Academic and Professional, Chapman and Hall, New York, NY.V
72.National Center for BiotechnologyInformation Taxonomy Database. Lactobacillustaxonomy. www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=1578. Accessed 13 August 2012
73.National ResearchCouncil (ed.). 1992. Applications of Biotechnology to Traditional Fermented Foods, p. 121149. National Academy Press, Washington, DC.
74. Niinivaara, F. P. 1955. The influence of pure cultures of bacteria on the maturing and reddening of raw sausage. Acta Agric. Fenn. 85:95101.
75. Niven, C. F., Jr. 1951. Sausage discolorations of bacterial origin. Bulletin no. 13. American Meat Institute Foundation, Chicago, IL.
76. Niven, C. F., Jr.,, R. H. Deibel,, and G. D. Wilson. 1958. The AMIF sausage starter culture. Circular no. 41. American Meat Institute Foundation, Chicago, IL.
77. Palumbo, S. A.,, and J. L. Smith. 1977. Lebanon bologna processing. Proc. Recip. Meat Conf. 30:6368.
78. Pearson, A. M.,, and W. F. Tauber. 1999. Processed Meats, 3rd ed. Chapman and Hall, New York, NY.
79. Pfeiler, E. A.,, and T. R. Klaenhammer. 2007. The genomics of lactic acid bacteria. Trends Microbiol. 15:546553.
80. Poolman, B. 1993. Energy transduction in lactic acid bacteria. FEMS Microbiol. 12:125148.
81. Posno, M.,, R. J. Leer,, N. van Luijk,, M. J. F. van Giezen,, P. T. H. M. Heuvelmans,, B. C. Lokman,, and P. H. Pouwels. 1991. Incompatibility of Lactobacillus vectors with replicons derived from small cryptic Lactobacillus plasmids and segregational instability of the introduced vectors. Appl. Environ. Microbiol. 57:18221828.
82. Raccach, M. 1984. Method for selection of lactic acid bacteria and determination of minimum temperature for meat fermentations. J. Food Prot. 47:670671.
83. Raccach, M. 1987. Pediococci and biotechnology. Crit. Rev. Microbiol. 14:291309.
84. Rattanachaikunsopon, P.,, and P. Phumkhachorn. 2009. Glass bead transformation method for Gram-positive bacteria. Braz. J. Microbiol. 40:923926.
85. Rodriguez, M. C.,, M. T. Alegre,, and J. M. Mesas. 2007. Optimization of technical conditions for the transformation of Pediococcus acidilactici P60 by electroporation. Plasmid 58:4450.
86. Rogosa, M.,, and M. E. Sharpe. 1959. An approach to the classification of the lactobacilli. J. Appl. Bacteriol. 22:329340.
87. Romans, J. R.,, W. J. Costello,, C. W. Carlson,, M. L. Greaser,, and K. W. Jones. 2000. The Meat We Eat, 14th ed., p. 773886. Interstate Publishers, Inc., Danville, IL.
88. Rossi, F.,, A. Capodaglio,, and F. Dellaglio. 2008. Genetic modification of Lactobacillus plantarum by heterologous gene integration in a not functional region of the chromosome. Appl. Microbiol. Biotechnol. 80:7986.
89. Rust, R. E. 1976. Sausage and Processed Meats Manufacturing. American Meat Institute, Washington, DC.V
90. Sameshima, T.,, C. Magome,, K. Takeshima,, K. Arihara,, M. Itoh,, and Y. Kondo. 1998. Effect of intestinal Lactobacillus starter cultures on the behavior of Staphylooccus aureus in fermented sausage. Int. J. Food Microbiol. 41:17.
91. Scheirlinck, T.,, J. Mahillon,, H. Joos,, P. Dhaese,, and F. Michiels. 1989. Integration and expression of ?- amylase and endoglucanase genes in the Lactobacillus plantarum chromosome. Appl. Environ. Microbiol. 55:21302137.
92. Schillinger, U.,, and F.-K. Lücke. 1987. Identification of lactobacilli from meat and meat products. Food Microbiol. 4:199208.
93. Schleifer, K.H., 1994. Gram-positivecocci, p. 527558. In D. H. Bergey, and J. G. Holt (ed.), Bergey’s Manual of Determinative Bacteriology, 9th ed. The Williams and Wilkins Co., Baltimore, MD.V
94. Shareck, J.,, Y. Choi,, B. Lee,, and C. B. Miguez. 2004. Cloning vectors based on cryptic plasmids isolated from lactic acid bacteria: their characteristics and potential applications in biotechnology. Crit. Rev. Biotechnol. 24:155208.
95. Sharpe, M.E., 1992. The genus Lactobacillus, p. 16531679. In M. P. Starr,, H. G. Trüper,, A. Balows,, and H. G. Schlegel (ed.), The Prokaryotes—a Handbook on Habitats, Isolation, and Identification of Bacteria, vol. II, 2nd ed. Springer-Verlag, New York, NY.
96. Sharpe, M. E.,, T. F. Fryer,, and D. G. Smith,. 1981. Identification of the lactic acid bacteria, p. 233259. In B. M. Gibbs, and F. A. Skinner (ed.), Identification Methods for Microbiologists, part A, 2nd ed. Academic Press, Ltd., London, United Kingdom.
97. Shay, B. J.,, A. F. Egan,, M. Wright,, and P. J. Rogers. 1988. Cysteine metabolism in an isolate of Lactobacillus sake: plasmid composition and cysteine transport. FEMS Microbiol. Lett. 56:183188.
98. Skaugen, M.,, E. L. Andersen,, V. H. Christie,, and I. F. Nes. 2002. Identification, characterization, and expression of a second, bicistronic, operon involved in the production of lactocin S in Lactobacillus sakei L45. Appl. Environ. Microbiol. 68:720727.
99. Skaugen, M.,, and I. F. Nes. 1994. Transposition in Lactobacilli sake and its abolition of lactocin S production by insertion of IS1163, a new member of the IS3 family. Appl. Environ. Microbiol. 60:28182825.
100. Slavica, V. M.,, D. Obradovic,, B. Velebit,, B. Branka,, S. Marija,, and L. Turubatovic. 2010. Antimicrobial properties of indigenous Lactobacillus sakei strain. Acta Vet. (Beogr.) 60:5966.
101. Stackebrandt, E.,, and M. Teuber. 1988. Molecular taxonomy and phylogenetic position of lactic acid bacteria. Biochimie 70:317324.
102. Stiles, M. E.,, and W. H. Holzapfel. 1997. Lactic acid bacteria of foods and their current taxonomy. Int. J. Food Microbiol. 36:129.
103. Sybesma, W.,, J. Hugenholtz,, W. M. de Vos,, and E. J. Smid. 2006. Safe use of genetically modified lactic acid bacteria in food. Bridging the gap between consumers, green groups, and industry. Electron. J. Biotechnol. 9:424448.
104. tenBrink, B., R. Otto,, U. P. Hansen,, and W. N. Konings. 1985. Energy recycling by lactate efflux in growing and nongrowing cells of Streptococcus cremoris. J. Bacteriol. 162:383390.
105. Terrell, R. N.,, G. C. Smith,, and Z. L. Carpenter. 1977. Practical manufacturing technology for dry and semi-dry sausage. Proc. Recip. Meat Conf. 30:3944.
106. Townsend, W. E.,, C. E. Davis,, and C. E. Lyon. 1978. Some properties of fermented dry sausage prepared from PSE and normal pork. In Kongressdocumentation. 24th Europäischer Fleischforscher-Kongress, Kulmbach, Germany.V
107. Tyopponen, S.,, E. Petäjä,, and T. Mattila-Sandholm. 2003. Bioprotectives and probiotics for dry sausages. Int. J. Food Microbiol. 83:233244.
108.U.S. Department ofAgriculture, Food Safety and Inspection Service. 1995. Prescribed treatment for pork and products containing pork to destroy trichinae. Code of Federal Regulations, Title 9, Part 318.10. Office of the Federal Register, Washington, DC.V
109.U.S. Department of Agriculture, Food Safety and Inspection Service. 1995. Requirements for the production of cooked beef, roast beef, and cooked corn beef. Code of Federal Regulations, Title 9, Part 318.17. Office of the Federal Register, Washington, DC.
110.U.S. Department ofAgriculture, Food Safety and Inspection Service. 1999. AppendixA. Compliance guidelines for meeting lethality performance standards for certain meat and poultryproducts. U.S. Department of Agriculture, Food Safety and InspectionService, Washington, DC. www.fsis.usda.gov/oa/fr/95033f-a.htm.
111.U.S. Department ofAgriculture, Food Safety and Inspection Service. 2005. Food Standards and LabelingPolicy Book. U.S. Department of Agriculture, Food Safety and InspectionService, Office of Policy, Program and Employee Development, Washington, DC. www.fsis.usda.gov/OPPDE/larc/Policies/Labeling_Policy_Book_082005.pdf.
112. Vandekerckhove, P.,, and D. Demeyer. 1975. Die Zusammernstzung belgischer Rohwurst (Salami). Fleischwirtschaft 55:680682.
113. Vogel, R. F.,, M. Becke-Schmid,, P. Entgens,, W. Gaier,, and W. P. Hammes. 1992. Plasmid transfer and segregation in Lactobacillus curvatus LTH1432 in vitro and during sausage fermentations. Syst. Appl Microbiol. 15:129136.
114. vonWright, A.,, and M. Sibakov,. 1993. Genetic modification of lactic acid bacteria, p. 161198. In S. Salminen, and A. von Wright (ed.), Lactic Acid Bacteria. Marcel Dekker, Inc., New York, NY.
115. Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51:221271.
116. Wolf, G.,, E. K. Aarendt,, U. Pfahler,, and W. P. Hammes. 1990. Heme-dependent and heme-independent nitrite reduction by lactic acid bacteria results in different N-containing products. Int. J. Food Microbiol. 10:323330.
117. Wu, W. J.,, D. C. Rule,, J. R. Busboom,, R. A. Field,, and B. Ray. 1991. Starter culture and time/temperature of storage influences on quality of fermented mutton sausage. J. Food Sci. 56:919925.
118. Zenitani, B. 1955. Studies on fermented fish products. I. On the aerobic bacteria in “Shiokara.” Bull. Jpn. Soc. Sci. Fish. 21:280283.
119. Zhou, X. X.,, W. F. Li,, G. X. Ma,, and Y. J. Pan. 2006. The nisin-controlled gene expression system: construction, application and improvements. Biotechnol. Adv. 24:285295.

Tables

Generic image for table
Table 34.1

Categories and origins of selected dry and semidry sausages

Citation: Ricke S, Koo O, Keeton J. 2013. Fermented Meat, Poultry, and Fish Products, p 857-880. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch34
Generic image for table
Table 34.2

Compositions of two types of fermented sausages

Citation: Ricke S, Koo O, Keeton J. 2013. Fermented Meat, Poultry, and Fish Products, p 857-880. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch34
Generic image for table
Table 34.3

Generic manufacturing scheme for dry and semidry fermented sausages with starter cultures

Citation: Ricke S, Koo O, Keeton J. 2013. Fermented Meat, Poultry, and Fish Products, p 857-880. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch34
Generic image for table
Table 34.4

Chemical characteristics of selected fermented sausage products

Citation: Ricke S, Koo O, Keeton J. 2013. Fermented Meat, Poultry, and Fish Products, p 857-880. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch34
Generic image for table
Table 34.5

Research needs for meat starter cultures

Citation: Ricke S, Koo O, Keeton J. 2013. Fermented Meat, Poultry, and Fish Products, p 857-880. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch34

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error