1887

Chapter 38 : Probiotics and Prebiotics

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Probiotics and Prebiotics, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818463/9781555816261_Chap38-1.gif /docserver/preview/fulltext/10.1128/9781555818463/9781555816261_Chap38-2.gif

Abstract:

Probiotic bacteria have long been believed to influence general health and well-being through their association with the gastrointestinal tract (GIT) and its normal microbiota. The microbiotas of humans, animals, and fowl vary considerably with the architecture of their GITs. Species of microorganisms are located at different locations throughout the GIT and include strains that are either harmful or beneficial to the host depending on the circumstances and specific strains involved. Probiotic microorganisms typically designed for delivery in dairy foods are most often members of the or genus. This chapter discusses the effects of probiotics on GIT ecology, and deals with the appropriateness, technological suitability, competitiveness, and performance and functionality, as the criteria for selection of probiotic cultures. Prebiotics stimulate the growth and activity of beneficial bacteria in an individual’s intestinal microbiota. The best-known prebiotics are fructo-oligosaccharides derived from food sources. Production of designer prebiotics can offer multiple activities in retarding undesirable microorganisms, better promoting the native desirable microbiota, or stimulating the growth or activity of synbiotic cultures. Expansion of avenues for incorporation into appropriate food vehicles and improved stimulation of beneficial microfloras are some of the aspects that are good targets for development of prebiotics.

Citation: Pfeiler E, Klaenhammer T. 2013. Probiotics and Prebiotics, p 949-971. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch38
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 38.1
Figure 38.1

Probiotic pioneers: (A) Elie Metchnikoff (1845–1916), (B) strain Shirota, and (C) species. doi:10.1128/9781555818463.ch38f1

Citation: Pfeiler E, Klaenhammer T. 2013. Probiotics and Prebiotics, p 949-971. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch38
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 38.2
Figure 38.2

Relations among the most abundant bacterial species. The network was deduced from the analysis of 155 bacterial species present in at least one individual at a genome coverage of ≥1%. Size of the nodes (circles) indicates species abundance over the cohort; width of the edges (lines connecting the circles) indicates the value of the Pearson correlation coefficient (only the 342 values above 0.4 or below –0.4 out of a total of 11,935 were used for the network). Red arrows identify common lactobacilli also used as probiotic cultures. Adapted from reference with permission from Macmillan Publishers Ltd. doi:10.1128/9781555818463.ch38f2

Citation: Pfeiler E, Klaenhammer T. 2013. Probiotics and Prebiotics, p 949-971. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch38
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 38.3
Figure 38.3

Differences in species of bacteria in human feces of different ages. From reference . doi:10.1128/9781555818463.ch38f3

Citation: Pfeiler E, Klaenhammer T. 2013. Probiotics and Prebiotics, p 949-971. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch38
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 38.4
Figure 38.4

Predominant colonic microorganisms categorized into potentially harmful or beneficial groups. Adapted from reference . doi:10.1128/9781555818463.ch38f4

Citation: Pfeiler E, Klaenhammer T. 2013. Probiotics and Prebiotics, p 949-971. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch38
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 38.5
Figure 38.5

Heath benefits and suspected mechanisms of probiotics versus abiotics. IgE and IgA, immunoglobulins E and A. doi:10.1128/9781555818463.ch38f5

Citation: Pfeiler E, Klaenhammer T. 2013. Probiotics and Prebiotics, p 949-971. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch38
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 38.6
Figure 38.6

Phylogenetic relationships among members of the complex, representing nine variable regions in the 16S rRNA gene used for phylogenetic identification and analysis. Adapted from references and . doi:10.1128/9781555818463.ch38f6

Citation: Pfeiler E, Klaenhammer T. 2013. Probiotics and Prebiotics, p 949-971. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch38
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 38.7
Figure 38.7

DNA fingerprint of the predominant culture isolated from human feces before feeding with a probiotic, after feeding with , and 2 weeks after feeding was halted. SmaI-digested DNA fragments prepared from individual colonies were separated on a pulsed-field electrophoresis gel. doi:10.1128/9781555818463.ch38f7

Citation: Pfeiler E, Klaenhammer T. 2013. Probiotics and Prebiotics, p 949-971. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch38
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 38.8
Figure 38.8

Genome atlas of NCFM. The atlas represents a circular view of the complete genome sequence of NCFM. The key on the right describes the single circles in the top-down-outermost-innermost direction, as follows. Circle 1 (innermost), GC-skew. Circle 2, Clusters of Orthologous Groups (COG) classification. Predicted open reading frames (ORFs) were analyzed using the COG database and grouped into five major categories: 1, information storage and processing; 2, cellular processes and signaling; 3, metabolism; 4, poorly characterized; 5, ORFs with uncharacterized COGs or no COG assignment. Circle 3, ORF orientation. ORFs in the sense orientation (ORF+) are shown in blue; ORFs oriented in the antisense direction (ORF–) are shown in red. Circle 4, BLAST similarities. Deduced amino acid sequences compared against the nonredundant (nr) database using gapped BLASTP (4a). Regions in blue represent unique proteins in NCFM, whereas highly conserved features are shown in red. The degree of color saturation corresponds to the level of similarity. Circle 5, G+C content deviation. Deviations from the average G+C content are shown in either green (low-GC spike) or orange (high-GC spike). A boxfilter was applied to visualize contiguous regions of low or high deviations. Circle 6, ribosomal machinery. tRNAs, rRNAs, and ribosomal proteins are shown as green, cyan, and red lines, respectively. Clusters of proteins are represented as colored boxes to maintain readability. Circle 7, mobile elements. Predicted transposases are shown as light purple dots, and phage-related integrases are shown as orange dots. Circle 8, stress response. Genes involved in the general stress response, including chaperones, and genes involved in heat shock, DNA repair, and pH regulation are shown as dark purple dots. Circle 9, peptide and amino acid utilization. Proteases and peptidases are shown as green dots, and non-sugar-related transporters are shown as light blue dots. Circle 10 (outermost), two-component regulators (2CRS). Each 2CRS is represented as a brown dot, consisting of a response regulator and a histidine kinase. In circles 7 to 10 each full dot represents one predicted ORF and stacked dots represent clusters of ORFs. Selected features representing single ORFs and ORF clusters are shown outside of circle 10 with bars indicating their absolute size. The origin and terminus of DNA replication are identified in green and red, respectively. Other features: SlpA and SlpB (S-layer proteins), CdpA (cell division protein [ ]), sugar utilization (sucrose, fructo-oligosaccharide [FOS], trehalose, and raffinose), LacE (phosphotransferase system-sugar transporter), BshA and BshB (bile salt hydrolases), Mub-909 to Mub-1709 (mucus-binding proteins; the numbers correspond to the La numbering scheme), FbpA (fibronectin-binding protein), Cfa (cyclopropane fatty acid synthase), Fibronectin_binding (fibronectin-binding protein cluster), EPS_cluster (exopolysaccharides), Lactacin_B (bacteriocin), pauLA-I to pauLA-III (potential autonomous units), and prLA-I and prLA-II (phage remnants). Reprinted from reference . doi:10.1128/9781555818463.ch38f8

Citation: Pfeiler E, Klaenhammer T. 2013. Probiotics and Prebiotics, p 949-971. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch38
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818463.chap38
1. Alander, M.,, R. Satokari,, R. Korpela,, M. Saxelin,, T. Vilpponen-Salmela,, T. Mattila-Sandholm,, and A. von Wright. 1999. Persistence of colonization of human colonic mucosa by a probiotic strain, Lactobacillus rhamnosus GG, after oral consumption. Appl. Environ. Microbiol. 65:351354.
2. Alfaleh, K.,, and D. Bassler. 2008. Probiotics for prevention of necrotizing enterocolitis in preterm infants. Cochrane Database Syst. Rev. (1):CD005496.
3. Allen, S. J.,, B. Okoko,, E. Martinez,, G. Gregorio,, and L. F. Dans. 2004. Probiotics for treating infectious diarrhoea. Cochrane Database Syst. Rev. (2):CD003048.
3a. Altermann, E.,, L. B. Buck,, R. Cano,, and T. R. Klaenhammer. 2004. Identification and phenotypic characterization of the cell-division protein CdpA. Gene 342:189197.
4. Altermann, E.,, W. M. Russell,, M. A. Azcarate-Peril,, R. Barrangou,, B. L. Buck,, O. McAuliffe,, N. Souther,, A. Dobsen,, T. Doung,, M. Callanan,, S. Lick,, A. Hamrick,, R. Cano,, and T. R. Klaenhammer. 2005. Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc. Natl. Acad. Sci. USA 102:39063912.
4a. Altschul, S. F.,, T. L. Madden,, A. A. Schäffer,, J. Zhang,, Z. Zhang,, M. Miller,, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:33893402.
5. Arbeit, R. D.,, J. C. Arbique,, B. Beall,, I. A. Critchley,, F. J. Marsik,, S. Michaud,, C. Steward,, F. C. Tenover,, and D. L. Trees. 2007. Molecular methods for bacterial strain typing; approved guideline MM11-A. Clinical and Laboratory Standards Institute, Wayne, PA.
6.Association of American Feed Control Officials. 2010. AAFCO 2010 Official Publication. Association of American Feed Control Officials, Champaign, IL.
7. Azcarate-Peril, M. A.,, J. M. Bruno-Bárcena,, H. M. Hassan,, and T. R. Klaenhammer. 2006. Transcriptional and functional analysis of oxalyl-coenzyme A (CoA) decarboxylase and formyl-CoA transferase genes from Lactobacillus acidophilus. Appl. Environ. Microbiol. 72:18911899.
8. Barrangou, R.,, E. Altermann,, R. Hutkins,, R. Cano,, and T. R. Klaenhammer. 2003. Functional and comparative genomic analyses of an operon involved in fructooligosaccharide utilization by Lactobacillus acidophilus. Proc. Natl. Acad. Sci. USA 100:89578962.
9. Bernardeau, M.,, M. Guguen,, and J. P. Vernoux. 2006. Beneficial lactobacilli in food and feed: long-term use, biodiversity and proposals for specific and realistic safety assessments. FEMS Microbiol. Rev. 30:487513.
10. Bernardeau, M.,, J. P. Vernoux,, S. Henri-Dubernet,, and M. Guéguen. 2008. Safety assessment of dairy microorganisms: the Lactobacillus genus. Int. J. Food Microbiol. 126:278285.
11. Bibel, D. J. 1988. Elie Metchnikoff’s bacillus of long life. ASM News 54:661665.
12. Boekhorst, J.,, R. J. Siezen,, M. C. Zwahlen,, D. Vilanova,, R. D. Pridmore,, A. Mercenier,, M. Kleerebezem,, W. M. de Vos,, H. Brüssow,, and F. Desiere. 2004. The complete genomes of Lactobacillus plantarum and Lactobacillus johnsonii reveal extensive differences in chromosome organization and gene content. Microbiology 150:36013611.
13. Boyle, R. J.,, F. J. Bath-Hextall,, J. Leonardi-Bee,, D. F. Murrell,, and M. L. Tang. 2008. Probiotics for treating eczema. Cochrane Database Syst. Rev. (4):CD006135.
14. Braat, H.,, P. Rottiers,, D. W. Hommes,, N. Huyghebaert,, E. Remaut,, J. P. Remon,, S. J. van Deventer,, S. Neirynck,, M. P. Peppelenbosch,, and L. Steidler. 2006. A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease. Clin. Gastroenterol. Hepatol. 4:754759.
15. Buck, B. L.,, E. Altermann,, T. Svingerud,, and T. R. Klaenhammer. 2005. Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM. Appl. Environ. Microbiol. 71:83448351.
16. Butterworth, A. D.,, A. G. Thomas,, and A. K. Akobeng. 2008. Probiotics for induction of remission in Crohn’s disease. Cochrane Database Syst. Rev. (3):CD006634.
17. Cacas, I. A., 1998. Lactobacillus reuteri: an effective probiotic for poultry and other animals, p. 475516. In S. Salminen, and A. von Wright (ed.), Lactic Acid Bacteria: Microbiology and Functional Aspects. Marcel Dekker, New York, NY.
18. Chande, N.,, J. W. McDonald,, and J. K. Macdonald. 2008. Interventions for treating collagenous colitis. Cochrane Database Syst. Rev. (2):CD006096.
19. Charteris, W. P.,, P. M. Kelly,, L. Morelli,, and J. K. Collins. 1998. Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract. J. Appl. Bacteriol. 84:759768.
20. Corr, S. C.,, Y. Li,, C. U. Riedel,, P. W. O’Toole,, C. Hill,, and C. G. Gahan. 2007. Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc. Natl. Acad. Sci. USA 104:76177621.
21. Crittenden, R.G., 1999. Prebiotics, p. 141156. In G. W. Tannock (ed.), Probiotics: a Critical Review. Horizon Scientific Press, Norfolk, United Kingdom.
22. Doherty, G.,, G. Bennett,, S. Patil,, A. Cheifetz,, and A. C. Moss. 2009. Interventions for prevention of post-operative recurrence of Crohn’s disease. Cochrane Database Syst. Rev. (4):CD006873.
23. Doyle, M. P.,, and M. C. Erickson. 2006. Reducing the carriage of foodborne pathogens in livestock and poultry. Poultry Sci. 85:960973.
24. Dubos, R.,, R. W. Schaedler,, R. Costello,, and P. Hoet. 1965. Indigenous, normal and autochthonous flora of the gastrointestinal tract. J. Exp. Med. 122:6776.
25. Eckburg, P. B.,, E. M. Bik,, C. N. Bernstein,, E. Purdom,, L. Dethlefsen,, M. Sargent,, S. R. Gill,, K. E. Nelson,, and D. A. Relman. 2005. Diversity of the human intestinal microbial flora. Science 308:16351638.
26. Felis, G. E.,, and F. Dellaglio. 2007. Taxonomy of lactobacilli and bifidobacteria. Curr. Issues Intest. Microbiol. 8:4461.
27. Fuller, R., 1999. Probiotics for farm animals, p. 1522. In G. W. Tannock (ed.), Probiotics: a Critical Review. Horizon Scientific Press, Norfolk, United Kingdom.
28. Gibson, G. R. 1998. Dietary modulation of the human gut microflora using prebiotics. Br. J. Nutr. 80(Suppl. 2):S209S212.
29. Gibson, G. R.,, and M. B. Roberfroid. 1995. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr. 125:14011412.
30. Gomes, A. M. P.,, and F. X. Malcata. 1999. Bifidobacterium spp. and Lactobacillus acidophilus: biological, biochemical, technological and therapeutical properties relevant for use as probiotics. Trends Food Sci. Technol. 10:139157.
31. Grangette, G.,, S. Nutten,, E. Palumbo,, S. Morath,, C. Hermann,, J. Dewulf,, B. Pot,, T. Hartung,, P. Hols,, and A. Mercenier. 2005. Enhanced antiinflammatory capacity of a Lactobacillus plantarum mutant synthesizing modified teichoic acids. Proc. Natl. Acad. Sci. USA 102:1032110326.
32. Gurusamy, K. S.,, Y. Kumar,, and B. R. Davidson. 2008. Methods of preventing bacterial sepsis and wound complications for liver transplantation. Cochrane Database Syst. Rev. (4):CD006660.
33. Haller, D.,, J. M. Antoine,, S. Bengmark,, P. Enck,, G. T. Rijkers,, and I. Lenoir-Wijnkoop. 2010. Guidance for substantiating the evidence for beneficial effects of probiotics: probiotics in chronic inflammatory bowel disease and the functional disorder irritable bowel syndrome. J. Nutr. 140:690S697S.
34. Holubar, S. D.,, R. R. Cima,, W. J. Sandborn,, and D. S. Pardi. 2010. Treatment and prevention of pouchitis after ileal pouch-anal anastomosis for chronic ulcerative colitis. Cochrane Database Syst. Rev. (6):CD001176.
35. Holzapfel, W. H.,, P. Haberer,, R. Geisen,, J. Björkroth,, and U. Schillinger. 2001. Taxonomy and important features of probiotic microorganisms in food and nutrition. Am. J. Clin. Nutr. 73(2 Suppl.):365S373S.
36. Hosono, A.,, J. Lee,, A. Ametani,, M. Natsume,, M. Hirayama,, T. Adachi,, and S. Kaminogawa. 1997. Characterization of a water-soluble polysaccharide fraction with immunopotentiating activity from Bifidobacterium adolescentis M101-4. Biosci. Biotech. Biochem. 61:312316.
37. Huertas-Ceballos, A. A.,, S. Logan,, C. Bennett,, and C. Macarthur. 2009. Dietary interventions for recurrent abdominal pain (RAP) and irritable bowel syndrome (IBS) in childhood. Cochrane Database Syst. Rev. (1):CD003019.
38. Hume, M. E.,, D. E. Corrier,, D. J. Nisbet,, and J. R. DeLoach. 1998. Early Salmonella challenge time and reduction in chick cecal colonization following treatment with a characterized competitive exclusion culture. J. Food Prot. 61:673676.
39. Johnson, J. L.,, C. F. Phelps,, C. S. Cummins,, J. London,, and F. Gasser. 1980. Taxonomy of the Lactobacillus acidophilus group. Int. J. Syst. Bacteriol. 30:5368.
40. Johnston, B. C.,, A. L. Supina,, M. Ospina,, and S. Vohra. 2007. Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Cochrane Database Syst. Rev. (2):CD004827.
41.Joint FAO/WHO Working Group. 2002. Guidelines for the Evaluation of Probiotics in Food. Food and Agriculture Organization/World Health Organization, Rome, Italy and Geneva, Switzerland.
42. Kaplan, H.,, and R. W. Hutkins. 2000. Fermentation of fructooligosaccharides by lactic acid bacteria and bifidobacteria. Appl. Environ. Microbiol. 66:26822684.
43. Kataria, J.,, N. Li,, J. L. Wynn,, and J. Neu. 2009. Probiotic microbes: do they need to be alive to be beneficial? Nutr. Rev. 67:546550.
44. Klaenhammer, T. R. 1998. Functional activities of Lactobacillus probiotics: genetic mandate. Int. Dairy J. 8:497506.
45. Klaenhammer, T. R.,, and M. J. Kullen. 1999. Selection and design of probiotics. Int. J. Food Microbiol. 50:4558.
46. Klaenhammer, T. R.,, and W. M. Russell,. 2000. Species of the Lactobacillus acidophilus complex, p. 11511157. In R. K. Robinson,, C. Batt,, and P. D. Patel (ed.), Encyclopedia of Food Microbiology, vol. 2. Academic Press, San Diego, CA.
47. Klaenhammer, T. R.,, R. Barrangou,, B. L. Buck,, M. A. Azcarate-Peril,, and E. Altermann. 2005. Genomic features of lactic acid bacteria effecting bioprocessing and health. FEMS Microbiol. Rev. 29:393409.
48. Kleerebezem, M.,, J. Boekhorst,, R. van Kranenburg,, D. Molenaar,, O. P. Kuipers,, R. Leer,, R. Tarchini,, S. A. Peters,, H. M. Sandbrink,, M. W. Fiers,, W. Stiekema,, R. M. Lankhorst,, P. Bron,, S. M. Hoffer,, M. N. Groot,, R. Kerkhoven,, M. de Vries,, B. Ursing,, W. M. de Vos,, and R. Siezen. 2003. Complete genome sequence of Lactobacillus plantarum WCFS1 Proc. Natl. Acad. Sci. USA 100:19901995.
49. Konstantinov, S. R.,, H. Smidt,, W. M. de Vos,, S. C. Bruijns,, S. K. Singh,, F. Valence,, D. Molle,, S. Lortal,, E. Altermann,, T. R. Klaenhammer,, and Y. van Kooyk. 2008. S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. Proc. Natl. Acad. Sci. USA 105:1947419479.
50. Kullen, M. J.,, L. J. Brady,, and D. J. O’Sullivan. 1997. Evaluation of using a short region of the recA gene for rapid and sensitive speciation of dominant bifidobacteria in the human large intestine. FEMS Microbiol. Lett. 154:377383.
51. Kullen, M. J.,, R. B. Sanozky-Dawes,, D. C. Crowell,, and T. R. Klaenhammer. 2000. Use of DNA sequence of variable regions of the 16S rRNA gene for rapid and accurate identification of bacteria in the Lactobacillus acidophilus complex. J. Appl. Microbiol. 89:511518.
52. Lauer, E.,, C. Helming,, and O. Kandler. 1980. Heterogeneity of the species Lactobacillus acidophilus (Moro) Hansen and Moquot as revealed by biochemical characteristics and DNA-DNA hybridization. Zentbl. Bakteriol. Mikrobiol. Hyg. 1 Abt. Orig. C1:150168.
53. Lebeer, S.,, J. Vanderleyden,, and S. C. De Keersmaecker. 2008. Genes and molecules of lactobacilli supporting probiotic action. Microbiol. Mol. Biol. Rev. 72:728764.
54. Lebeer, S.,, J. Vanderleyden,, and S. C. De Keersmaecker. 2010. Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nature Rev. Microbiol. 8:171184.
55. Lewanika, T. R.,, S. J. Reid,, V. R. Abratt,, G. T. Macfarlane,, and S. Macfarlane. 2007. Lactobacillus gasseri Gasser AM63T degrades oxalate in a multistage continuous culture simulator of the human colonic microbiota. FEMS Microbiol. Ecol. 61:110120.
56. Ley, R. E. 2010. Obesity and the human microbiome. Curr. Opin. Gastroenterol. 26:511.
57. Lilly, D. M.,, and R. H. Stillwell. 1965. Probiotics: growth promoting factors produced by microorganisms. Science 147:747748.
58. Lirussi, F.,, E. Mastropasqua,, S. Orando,, and R. Orlando. 2007. Probiotics for non-alcoholic fatty liver disease and/or steatohepatitis. Cochrane Database Syst. Rev. (1):CD005165.
59. Makarova, K. S.,, and E. V. Koonin. 2007. Evolutionary genomics of lactic acid bacteria. J. Bacteriol. 189:11991208.
60. Mallon, P.,, D. McKay,, S. Kirk,, and K. Gardiner. 2007. Probiotics for induction of remission in ulcerative colitis. Cochrane Database Syst. Rev. (4):CD005573.
61. Marteau, P.,, M. Minekus,, R. Havenaar,, and J. H. H. Huis in’t Veld. 1997. Survival of lactic acid bacteria in a dynamic model of the stomach and small intestine: validation and the effect of bile. J. Dairy Sci. 80:10311037.
62. Mitsuoka, T., 1992. The human gastrointestinal tract, p. 69114. In B. J. B. Wood (ed.), The Lactic Acid Bacteria, vol. 1. The Lactic Acid Bacteria in Health and Disease. Elsevier Applied Science, London, United Kingdom.
63. Molenaar, D. F.,, F. H. Bringel,, W. M. Schuren,, W. M. de Vos,, R. J. Siezen,, and M. Kleerebezem. 2005. Exploring Lactobacillus plantarum genome diversity by using microarrays. J. Bacteriol. 187:61286136.
64. Nisbet, D. J.,, G. I. Tellez,, V. K. Lowry,, R. C. Anderson,, G. Garcia,, G. Nava,, M. H. Kogut,, D. E. Corrier,, and L. H. Stanker. 1998. Effect of a commercial competitive exclusion culture (Preempt) on mortality and horizontal transmission of Salmonella gallinarum in broiler chickens. Avian Dis. 42:651656.
65. Nurmi, E.,, and M. Rantala. 1973. New aspects of Salmonella infection in broiler production. Nature (London) 241:210211.
66. Oduyebo, O. O.,, R. I. Anorlu,, and F. T. Ogunsola. 2009. The effects of antimicrobial therapy on bacterial vaginosis in non-pregnant women. Cochrane Database Syst. Rev. (3):CD006055.
67. Osborn, D. A.,, and J. K. Sinn. 2007. Probiotics in infants for prevention of allergic disease and food hypersensitivity. Cochrane Database Syst. Rev. (4):CD006475.
68. O’Sullivan, D. J., 1999. Methods for the analysis of the intestinal microflora, p. 2344. In G. W. Tannock (ed.), Probiotics: a Critical Review. Horizon Scientific Press, Norfolk, United Kingdom.
69. Othman, M.,, J. P. Neilson,, and Z. Alfirevic. 2007. Probiotics for preventing preterm labor. Cochrane Database Syst. Rev. (1):CD005941.
70. O’Toole, P. W.,, and J. C. Cooney. 2008. Probiotic bacteria influence the composition and function of the intestinal microbiota. Interdiscip. Perspect. Infect. Dis. 2008:175285.
71. Pillai, A.,, and R. Nelson. 2008. Probiotics for treatment of Clostridium difficile-associated colitis in adults. Cochrane Database Syst. Rev. (1):CD004611.
72. Puhan, Z. 1999. Effect of probiotic fermented dairy products in human nutrition. Ind. Latte 35:311.
73. Qin, J.,, R. Li,, J. Raes,, M. Arumugam,, K. S. Burgdorf,, C. Manichanh,, T. Nielsen,, N. Pons,, F. Levenez,, T. Yamada,, D. R. Mende,, J. Li,, J. Xu,, S. Li,, D. Li,, J. Cao,, B. Wang,, H. Liang,, H. Zheng,, Y. Xie,, J. Tap,, P. Lepage,, M. Bertalan,, J. M. Batto,, T. Hansen,, D. Le Paslier,, A. Linneberg,, H. B. Nielsen,, E. Pelletier,, P. Renault,, T. Sicheritz-Ponten,, K. Turner,, H. Zhu,, C. Yu,, S. Li,, M. Jian,, Y. Zhou,, Y. Li,, X. Zhang,, S. Li,, N. Qin,, H. Yang,, J. Wang,, S. Brunak,, J. Doré,, F. Guarner,, K. Kristiansen,, O. Pedersen,, J. Parkhill,, J. Weissenbach,, MetaHIT Consortium, P. Bork,, S. D. Ehrlich,, and J. Wang. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:5965.
74. Radloff, J. 1998. Spray guards chicks from infections. Sci. News 153:196.
75. Rastall, R. A.,, G. R. Gibson,, H. S. Gill,, F. Guarner,, T. R. Klaenhammer,, B. Pot,, G. Reid,, I. R. Rowland,, and M. E. Sanders. 2005. Modulation of the microbial ecology of the human colon by probiotics, prebiotics and synbiotics to enhance human health: an overview of enabling science and potential applications. FEMS Microbiol. Ecol. 52:145152.
76. Rijkers, G. T.,, S. Bengmark,, P. Enck,, D. Haller,, U. Herz,, M. Kalliomaki,, S. Kudo,, I. Lenoir-Wijnkoop,, A. Mercenier,, E. Myllyluoma,, S. Rabot,, J. Rafter,, H. Szajewska,, B. Watzl,, J. Wells,, D. Wolvers,, and J. M. Antoine. 2010. Guidance for substantiating the evidence for beneficial effects of probiotics: current status and recommendations for future research. J. Nutr. 140:671S676S.
77. Rolfe, V. E.,, P. J. Fortun,, C. J. Hawkey,, and F. Bath-Hextall. 2009. Probiotics for maintenance of remission in Crohn’s disease. Cochrane Database Syst. Rev. (4):CD004826.
78. Salminen, S.,, M. Roberfroid,, P. Ramos,, and R. Fonden,. 1998. Prebiotic substrates and lactic acid bacteria, p. 343358. In S. Salminen, and A. von Wright (ed.), Lactic Acid Bacteria: Microbiology and Functional Aspects. Marcel Dekker, New York, NY.
79. Sanders, M. E. 1999. Probiotics—scientific status summary. Food Technol. 53:6777.
80. Sanders, M. E.,, and J. Huis in’t Veld. 1999. Bringing a probiotic-containing functional food to market: microbiological, product, regulatory, and labeling issues. Antonie van Leeuwenhoek 76:293315.
81. Sandholm, T. M.,, S. Blum,, J. K. Collins,, R. Crittenden,, W. de Vos,, C. Dunne,, R. Fonden,, G. Grenov,, E. Isolauri,, B. Kiely,, P. Marteau,, L. Morelli,, A. Ouwehand,, R. Reniero,, M. Saarela,, S. Salminen,, M. Saxelin,, E. Schiffrin,, F. Shanahan,, E. Vaughan,, and A. von Wright. 1999. Probiotics: towards demonstrating efficacy. Trends Food Sci. Technol. 10:393399.
82. Saxelin, M.,, S. Tynkkynen,, T. Mattila-Sandholm,, and W. M. de Vos. 2005. Probiotic and other functional microbes: from markets to mechanisms. Curr. Opin. Biotechnol. 16:204211.
83. Schell, M. A.,, M. Karmirantzou,, B. Snel,, D. Vilanova,, B. Berger,, G. Pessi,, M. C. Zwahlen,, F. Desiere,, P. Bork,, M. Delley,, R. D. Pridmore,, and F. Arigoni. 2002. The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc. Natl. Acad. Sci. USA 99:1442214427.
84. Sela, D. A.,, J. Chapman,, A. Adeuya,, J. H. Kim,, F. Chen,, T. R. Whitehead,, A. Lapidus,, D. S. Rokhsar,, C. B. Lebrilla,, J. B. German,, N. P. Price,, P. M. Richardson,, and D. A. Mills. 2008. The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc. Natl. Acad. Sci. USA 105:1896418969.
85. Sela, D. A.,, and D. A. Mills. 2010. Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides. Trends Microbiol. 18:298307.
86. Senok, A. C.,, H. Verstraelen,, M. Temmerman,, and G. A. Botta. 2009. Probiotics for the treatment of bacterial vaginosis. Cochrane Database Syst Rev. (4):CD006289.
87. Shida, K.,, and M. Nanno. 2008. Probiotics and immunology: separating the wheat from the chaff. Trends Immunol. 29:565573.
88. Shortt, C. 1998. Living it up for dinner. Chem. Ind. 20:300303.
89. Shortt, C. 1999. The probiotic century: historical and current perspectives. Trends Food Sci. Technol. 10:411417.
90. Steidler, L.,, W. Hans,, L. Schotte,, S. Neirynck,, F. Obermeier,, W. Falk,, W. Fiers,, and E. Remaut. 2000. Treatment of murine colitis by Lactococcus lactis secreting IL-10. Science 289:13521355.
91. Suau, A.,, R. Bonnet,, M. Sutren,, J.-J. Godon,, G. R. Gibson,, M. D. Collins,, and J. Dore. 1999. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species. Appl. Environ. Microbiol. 65:47994807.
92. Tamine, A. Y., 1997. Bifidobacteria—an overview of physiological, biochemical, and technological aspects, p. 9. In R. Harmink (ed.), Non-digestible Oligosaccharides: Healthy Food for the Colon. Krukkerij Modern, Bennekonm, The Netherlands.
93. Tannock, G. W. 1995. The Normal Microflora. Chapman and Hall, London, United Kingdom.
94. Tannock, G. W. 1999. Probiotics: a Critical Review. Horizon Scientific Press, Norfolk, United Kingdom.
95. Tannock, G. W. 1999. Analysis of the intestinal microflora: a renaissance. Antonie van Leeuwenhoek 76:265278.
96. Turnbaugh, P. J.,, R. E. Ley,, M. Hamady,, C. M. Fraser-Liggett,, R. Knight,, and J. I. Gordon. 2007. The human microbiome project. Nature 449:804810.
97. Turner, J. R. 2009. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 9:799809.
98. Vandamme, P.,, B. Pot,, M. Gillis,, P. de Vos,, K. Kersters,, and J. Swings. 1996. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol. Rev. 60:407438.
99. Vaughan, E. E.,, H. G. H. J. Heilig,, E. G. Zoetendal,, R. Satokari,, K. Collins,, A. D. L. Akkermans,, and W. M. de Vos. 1999. Molecular approaches to study probiotic bacteria. Trends Food Sci. Technol. 10:400404.
100. Vaughan, E. E.,, M. C. de Vries,, E. G. Zoetendal,, K. Ben-Amor,, A. D. Akkermans,, and W. M. de Vos. 2002. The intestinal LABs. Antonie van Leeuwenhoek 82:341352.
101. Veiga, P.,, C. A. Gallini,, C. Beal,, M. Michaud,, M. L. Delaney,, A. Dubois,, A. Khlebnikov,, J. E. van Hylckama Vlieg,, S. Punit,, J. N. Glickman,, A. Onderdonk,, L. H. Glimcher,, and W. S. Garrett. 2010. Bifidobacterium animalis subsp. lactis fermented milk product reduces inflammation by altering a niche for colitogenic microbes. Proc. Natl. Acad. Sci. USA 107:1813218137.
102. Ventura, M.,, D. van Sinderen,, G. F. Fitzgerald,, and R. Zink. 2004. Insights into the taxonomy, genetics and physiology of bifidobacteria. Antonie van Leeuwenhoek 86:205223.
103. Ventura, M.,, S. O’Flaherty,, M. J. Claesson,, F. Turroni,, T. R. Klaenhammer,, D. van Sinderen,, and P. W. O’Toole. 2009. Genome-scale analyses of health-promoting bacteria: probiogenomics. Nat. Rev. Microbiol. 7:6171.
104. Walter, J.,, G. W. Tannock,, A. Tilsala-Timisjarvi,, S. Rodtong,, D. M. Loach,, K. Munro,, and T. Alatossava. 2000. Detection and identification of gastrointestinal Lactobacillus species by using denaturing gradient gel electrophoresis and species-specific PCR primers. Appl. Environ. Microbiol. 66:297303.
105. Wang, H. H.,, M. Manuzon,, M. Lehman,, K. Wan,, H. Luo,, T. E. Wittum,, A. Yousef,, and L. O. Bakaletz. 2006. Food commensal microbes as a potentially important avenue in transmitting antibiotic resistance genes. FEMS Microbiol. Lett. 254:226231.
106. Wells, J. M.,, K. Robinson,, L. M. Chamberlain,, K. M. Schofield,, and R. W. LePage. 1996. Lactic acid bacteria as vaccine delivery vehicles. Antonie van Leeuwenhoek 70:317330.
107. Wells, J. M.,, and A. Mercenier. 2008. Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nat. Rev. Microbiol. 6:349362.
108. Wolvers, D.,, J. M. Antoine,, E. Myllyluoma,, J. Schrezenmeir,, H. Szajewska,, and G. T. Rijkers. 2010. Guidance for substantiating the evidence for beneficial effects of probiotics: prevention and management of infections by probiotics. J. Nutr. 140:698S712S.
109. Wynn, S. G. 2009. Probiotics in veterinary practice. J. Am. Vet. Med. Assoc. 234:606613.
110. Yan, F.,, and D. B. Polk. 2010. Probiotics: progress toward novel therapies for intestinal diseases. Curr. Opin. Gastroenterol. 26:95101.
111. Zhao, T.,, M. P. Doyle,, B. G. Harmon,, C. A. Brown,, P. O. Mueller,, and A. H. Parks. 1998. Reduction of carriage of enterohemorrhagic Escherichia coli O157:H7 in cattle by inoculation with probiotic bacteria. J. Clin. Microbiol. 36:641647.
112. Zoetendal, E. G.,, A. D. L. Akkermans,, and W. M. de Vos. 1998. Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals sand host-specific communities of active bacteria. Appl. Environ. Microbiol. 64:38543859.

Tables

Generic image for table
Table 38.1

Examples of human probiotic species and strains with research documentation

Citation: Pfeiler E, Klaenhammer T. 2013. Probiotics and Prebiotics, p 949-971. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch38
Generic image for table
Table 38.2

Microorganisms reviewed by the Food and Drug Administration Center for Veterinary Medicine that were found to present no safety concerns when used in direct-fed microbials

Citation: Pfeiler E, Klaenhammer T. 2013. Probiotics and Prebiotics, p 949-971. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch38
Generic image for table
Table 38.3

Proposed health benefits and mechanisms of probiotics

Citation: Pfeiler E, Klaenhammer T. 2013. Probiotics and Prebiotics, p 949-971. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch38
Generic image for table
Table 38.4

Compilation of Cochrane Collaboration reports on clinical uses of probiotics

Citation: Pfeiler E, Klaenhammer T. 2013. Probiotics and Prebiotics, p 949-971. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch38
Generic image for table
Table 38.5

Desirable selection criteria for probiotic strains

Citation: Pfeiler E, Klaenhammer T. 2013. Probiotics and Prebiotics, p 949-971. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch38
Generic image for table
Table 38.6

Prebiotic compounds influencing members of the intestinal microflora

Citation: Pfeiler E, Klaenhammer T. 2013. Probiotics and Prebiotics, p 949-971. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch38

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error