Chapter 40 : Predictive Microbiology

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in

Predictive Microbiology, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818463/9781555816261_Chap40-1.gif /docserver/preview/fulltext/10.1128/9781555818463/9781555816261_Chap40-2.gif


Predictive microbiology focuses on the quantitative description and prediction of the behavior (growth, survival, and inactivation) of pathogenic and spoilage microorganisms in food products. A first section of this chapter focuses on modeling trends up to now. The classical primary and secondary model approach, used to describe growth and inactivation, as well as probabilistic models used to describe the growth/no growth (G/NG) boundary, are discussed. In the following section, contemporary and future modeling trends are listed and the extension of existing models is discussed, including (i) the trend for the incorporation of multiple environmental factors and (ii) the incorporation of the specific aspect of food structure. To move from the macroscopic to the meso- and microscopic levels, the concepts of metabolic networks and individual-based models (IbM) have been introduced. The chapter provides a short overview of mesoscopic models, i.e., models that describe the dynamics of the population as a combination of different compartments. The last section deals with the transfer of predictive microbiology as a tool for food safety and food quality from academia to industry. Specifically, a series of software tools is listed. In this context, lactic acid bacteria are increasingly being investigated, not only because of their ability to inhibit outgrowth of pathogens and spoilage microorganisms in fermented foods but also for their potential to act as protective cultures in minimally processed foods.

Citation: Van Derlinden E, Mertens L, Van Impe J. 2013. Predictive Microbiology, p 997-1022. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch40
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 40.1
Figure 40.1

Schematic representation of the stoichiometric modeling framework ( ). doi:10.1128/9781555818463.ch40f1

Citation: Van Derlinden E, Mertens L, Van Impe J. 2013. Predictive Microbiology, p 997-1022. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch40
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abou-Zeid, K. A.,, T. P. Oscar,, J. G. Schwarz,, F. M. Hashem,, R. C. Whiting,, and K. Yoon. 2009. Development and validation of a predictive model for Listeria monocytogenes Scott A as a function of temperature, pH, and commercial mixture of potassium lactate and sodium diacetate. J. Microbiol. Biotechnol. 19:718726.
2. Adams, M. R.,, C. L. Little,, and M. C. Easter. 1991. Modeling the effect of pH, acidulant and temperature on the growth rate of Yersinia enterocolitica. J. Appl. Bacteriol. 71:6571.
3. Adekunte, A.,, V. P. Valdramidis,, B. K. Tiwari,, N. Slone,, P. J. Cullen,, C. P. O’Donnell,, and A. Scanell. 2010. Resistance of Cronobacter sakazakii in reconstituted powdered infant formula during ultrasound at controlled temperatures: a quantitative approach on microbial responses. Int. J. Food Microbiol. 142:5359.
4. Agresti, A. 2002. Categorical Data Analysis. John Wiley & Sons, New York, NY.
5. Alber, S. A.,, and D. W. Schaffner. 1992. Evaluation of data transformations used with the square root and Schoolfield models for predicting bacterial growth rate. Appl. Environ. Microbiol. 58:33373342.
6. Albert, I.,, and P. Mafart. 2005. A modified Weibull model for bacterial inactivation. Int. J. Food Microbiol. 100:197211.
7. Antwi, M.,, A. H. Geeraerd,, K. M. Vereecken,, R. Jenné,, K. Bernaerts,, and J. F. Van Impe. 2006. Influence of a gel microstructure as modified by gelatin concentration on Listeria innocua growth. Innov. Food Sci. Emerg. Technol. 7:124131.
8. Antwi, M.,, K. Bernaerts,, J. F. Van Impe,, and A. H. Geeraerd. 2007. Modelling the combined effects of structured food model system and lactic acid on Listeria innocua and Lactococcus lactis growth in mono- and coculture. Int. J. Food Microbiol. 120:7184.
9. Arroyo López, F. N.,, M. C. Durán Quintana,, and A. Garrido Fernández. 2007. Modelling of the growth-no growth interface of Issatchenkia occidentalis, an olive spoiling yeast, as a function of the culture media, NaCl, citric and sorbic acid concentrations: study of its inactivation in the no growth region. Int. J. Food Microbiol. 117:150159.
10. Arsène, F.,, T. Tomoyasu,, and B. Bukaua. 2000. The heat shock response of Escherichia coli. Int. J. Food Microbiol. 55:39.
11. Augustin, J. C.,, and V. Carlier. 2000. Mathematical modelling of the growth rate and lag time for Listeria monocytogenes. Int. J. Food Microbiol. 56:2951.
12. Augustin, J. C.,, and V. Carlier. 2000. Modelling the growth rate of Listeria monocytogenes with a multiplicative type model including interactions between environmental factors. Int. J. Food. Microbiol. 56:5370.
13. Augustin, J. C.,, V. Zuliani,, M. Cornu,, and L. Guillier. 2005. Growth rate and growth probability of Listeria monocytogenes in dairy, meat and seafood products in suboptimal conditions. J. Appl. Microbiol. 99:10191042.
14. Babbar, S. B.,, and R. Jain. 2006. Xanthan gum: an economical partial substitute for agar in microbial culture media. Curr. Microbiol. 52:287292.
15. Bajard, S.,, L. Rosso,, G. Fardel,, and J. P. Flandrois. 1996. The particular behaviour of Listeria monocytogenes under sub-optimal conditions. Int. J. Food Microbiol. 29:201211.
16. Baker, D. A.,, and C. Genigeorgis. 1990. Predicting the safe storage of fresh fish under modified atmospheres with respect to Clostridium botulinum toxigenicity by modeling length of the lag phase of growth. J. Food Prot. 53:131140.
17. Bang, W. S.,, H. J. Chung,, S. S. Jin,, T. Ding,, I. G. Hwang,, G. J. Woo,, S. D. Ha,, G. J. Bahk,, and D. H. Oh. 2008. Prediction of Listeria monocytogenes growth kinetics in sausages formulated with antimicrobials as a function of temperature and concentrations. Food Sci. Biotechnol. 17:13161321.
18. Baranyi, J. 1998. Comparison of stochastic and deterministic concepts of bacterial lag. J. Theor. Biol. 192:403408.
19. Baranyi, J.,, S. M. George,, and Z. Kutalik. 2009. Parameter estimation for the distribution of single cell lag times. J. Theor. Biol. 259:2430.
20. Baranyi, J.,, and T. A. Roberts. 1994. A dynamic approach to predicting bacterial growth in food. Int. J. Food Microbiol. 23:277294.
21. Baranyi, J.,, and T. A. Roberts. 1995. Mathematics of predictive food microbiology. Int. J. Food Microbiol. 26:199218.
22. Baranyi, J.,, T. Ross,, T. A. McMeekin,, and T. A. Roberts. 1996. Effects of parametrization on the performance of empirical models used in ‘predictive microbiology’. Food Microbiol. 13:8391.
23. Baranyi, J.,, and M. Tamplin. 2004. ComBase: a common database on microbial responses to food environments. J. Food Prot. 67:19671971.
24. Basheer, I. A.,, and M. Hajmeer. 2000. Artificial neural networks: fundamentals, computing, design, and application. J. Microbiol. Methods 43:331.
25. Bermúdez, J.,, D. López,, J. Valls,, and J. Wagensberg. 1989. On the analysis of microbiological processes by Monte Carlo simulation techniques. Comput. Appl. Biosci. 5:305312.
26. Bernaerts, K.,, E. Dens,, K. Vereecken,, A. H. Geeraerd,, A. R. Standaert,, F. Devlieghere,, J. Debevere,, and J. F. Van Impe. 2004. Concepts and tools for predictive modeling of microbial dynamics. J. Food Prot. 67:20412052.
27. Bidlas, E.,, and R. J. W. Lambert. 2008. Quantification of hurdles: predicting the combination of effects—interaction vs. non-interaction. Int. J. Food Microbiol. 128:7888.
28. Bover-Cid, S.,, N. Belletti,, M. Garriga,, and T. Aymerich. 2011. Model for Listeria monocytogenes inactivation on dry-cured ham by high hydrostatic pressure processing. Food Microbiol. 28:804809.
29. Boyle, N. R.,, and J. A. Morgan. 2009. Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii. BMC Syst. Biol. 3:4.
30. Braun, P.,, and J. P. Sutherland. 2004. Predictive modelling of growth and enzymatic synthesis and activity by a cocktail of Yarrowia lipolytica, Zygosaccharomyces bailii and Pichia anomala. Food Microbiol. 21:459467.
31. Brocklehurst, T. F.,, G. A. Mitchell,, and A. C. Smith. 1997. A model experimental surface for the growth of bacteria on foods. Food Microbiol. 14:303311.
32. Brul, S.,, F. I. C. Mensonides,, K. J. Hellingwerf,, and M. J. Teixeira de Mattos. 2008. Microbial systems biology: new frontiers open to predictive microbiology. Int. J. Food Microbiol. 128:1621.
33. Buchanan, R. L.,, R. C. Whiting,, and W. C. Damert. 1997. When is simple good enough: a comparison of the Gompertz, Baranyi, and three-phase linear models for fitting bacterial growth curves. Food Microbiol. 14:313326.
34. Buchanan, R. L.,, L. K. Bagi,, R. V. Goins,, and J. G. Philips. 1993. Response surface models for the growth kinetics of Escherichia coli O157:H7. Food Microbiol. 10:303315.
35. Buchanan, R. L.,, and J. G. Philips. 2000. Updated models for the effects of temperature, initial pH, NaCl, and NaNO2 on the aerobic and anaerobic growth of Listeria monocytogenes. Quant. Microbiol. 2:103128.
36. Burgard, A.,, and C. Maranas. 2002. Optimization-based framework for inferring and testing hypothesized metabolic objective functions. Biotechnol. Bioeng. 82:670677.
37. Cerf, O.,, L. R. Davey,, and A. K. Sadoudi. 1996. Thermal inactivation of bacteria—a new predictive model for the combined effect of three environmental factors: temperature, pH and water activity. Food Res. Int. 29:219226.
38. Chorin, E.,, D. Thuault,, J. J. Cléret,, and C. M. Bourgeois. 1997. Modelling Bacillus cereus growth. Int. J. Food Microbiol. 38:229334.
39. Chung, H.,, W. Bang,, and M. Drake. 2006. Stress response of Escherichia coli. Compr. Rev. Food Sci. F 5:5264.
40. Cole, M. B.,, M. V. Jones,, and C. Holyoak. 1990. The effect of pH, salt concentration and temperature on the survival and growth of Listeria monocytogenes. J. Appl. Bacteriol. 69:6372.
41. Coroller, L.,, V. Guerrot,, V. Huchet,, Y. Le Marc,, P. Mafart,, D. Sohier,, and D. Thuault. 2005. Modelling the influence of single acid and mixture on bacterial growth. Int. J. Food Microbiol. 100:167178.
42. Covert, M.,, C. Schilling,, and B. Palsson. 2001. Regulation of gene expression in flux balance models of metabolism. J. Theor. Biol. 213:309325.
43. Cuppers, H. G. A. M.,, S. Oomes,, and S. Brul. 1997. A model for the combined effects of temperature and salt concentration on growth rate of food spoilage molds. Appl. Environ. Microbiol. 63:37643769.
44. Dalgaard, P. 1995. Modelling of microbial activity and prediction of shelf life for packed fresh fish. Int. J. Food Microbiol. 26:305317.
45. Dalgaard, P.,, O. Mejlholm,, and H. H. Huss. 1997. Application of an iterative approach for development of a microbial model predicting the shelf-life of packed fish. Int. J. Food Microbiol. 38:169179.
46. Dantigny, P.,, and M. Bensoussan. 2008. The logarithmic transformation should be avoided for stabilising the variance of mould growth rate. Int. J. Food Microbiol. 121:225228.
47. Daughtry, G. J.,, K. R. Davey,, and K. D. King. 1997. Temperature dependence of growth kinetics of food bacteria. Food Microbiol. 14:2130.
48. Davey, K. R. 1993. Extension of the generalized chart for combined temperature and pH. LWT Food Sci. Technol. 26:476479.
49. Delignette-Muller, M. L.,, M. Cornu,, R. Pouillot,, and J. B. Denis. 2006. Use of Bayesian modelling in risk assessment: application to growth of Listeria monocytogenes and food flora in cold-smoked salmon. Int. J. Food Microbiol. 106:195208.
50. denBesten, H. M. W.,, C. J. Ingham,, J. E. T. van Hylckama Vlieg,, M. M. Beerthuyzen,, M. H. Zwietering,, and T. Abee. 2007. Quantitative analysis of population heterogeneity of the adaptive salt stress response and growth capacity of Bacillus cereus ATCC 14579. Appl. Environ. Microbiol. 73:47974804.
51. Dens, E.,, and J. Van Impe. 2001. On the need for another type of predictive models in structured foods. Int. J. Food Microbiol. 64:247260.
52. Dens, E. J.,, K. Bernaerts,, A. R. Standaert,, J.-U. Kreft,, and J. F. Van Impe. 2005. Cell division theory and individual-based modeling of microbial lag. Part II. Modeling lag phenomena induced by temperature shifts. Int. J. Food Microbiol. 101:319332.
53. Dens, E. J.,, K. Bernaerts,, A. R. Standaert,, and J. F. Van Impe. 2005. Cell division theory and individual-based modeling of microbial lag. Part I. The theory of cell division. Int. J. Food Microbiol. 101:303318.
54. Devlieghere, F.,, A. H. Geeraerd,, K. J. Versyck,, H. Bernaert,, J. F. Van Impe,, and J. Debevere. 2000. Shelf life of modified atmosphere packed cooked meat products: addition of Na-lactate as a fourth shelf life determinative factor in a model and product validation. Int. J. Food Microbiol. 58:93106.
55. Dhar, N.,, and J. D. McKinney. 2007. Microbial phenotypic heterogeneity and antibiotic tolerance. Curr. Opin. Microbiol. 10:3038.
56. Ding, T.,, Q. L. Dong,, S. M. E. Rahman,, and D. H. Oh. 2011. Response surface modeling of Listeria monocytogenes inactivation on lettuce treated with electrolyzed oxidizing water. J. Food Process Eng. 34:17291745.
57. Dodds, K. L. 1989. Combined effect of water activity and pH on inhibition of toxin production by Clostridium botulinum in cooked, vacuum-packed potatoes. Appl. Environ. Microbiol. 55:656660.
58. Dong, Q.,, K. Tu,, L. Guo,, H. Li,, and Y. Zhao. 2007. Response surface model for prediction of growth parameters from spores of Clostridium sporogenes under different experimental conditions. Food Microbiol. 24:624632.
59. Donsì, G.,, G. Ferrari,, and P. Maresca. 2003. On the modelling of the inactivation kinetics of Saccharomyces cerevisiae by means of combined temperature and high pressure treatments. Innov. Food Sci. Emerg. Technol. 4:3544.
60. Esnoz, A.,, P. M. Periago,, R. Conesa,, and A. Palop. 2006. Application of artificial neural networks to describe the combined effect of pH and NaCl on the heat resistance of Bacillus stearothermophilus. Int. J. Food Microbiol. 106:153158.
61. Fernández-Navarro F.,, A. Valero,, C. Hervás-Martínez,, P. A. Gutiérrez,, R. A. García-Gimeno,, and G. Zurera-Cosano. 2010. Development of a multi-classification neural network model to determine the microbial growth/no growth interface. Int. J. Food Microbiol. 141:203212.
62. Ferrer, J.,, C. Prats,, D. Lopez,, and J. Vives-Rego. 2009. Mathematical modelling methodologies in predictive food microbiology: a SWOT analysis. Int. J. Food Microbiol. 134:28.
63. Francois, K.,, F. Devlieghere,, M. Uyttendaele,, A. R. Standaert,, A. H. Geeraerd,, P. Nadal,, J. F. Van Impe,, and J. Debevere. 2006. Single cell variability of L. monocytogenes grown on liver paté and cooked ham at 7°C: comparing challenge test data to predictive simulations. J. Appl. Microbiol. 100:800812.
64. Fujikawa, H.,, and T. Itoh. 1996. Tailing of thermal inactivation curve of Aspergillus niger spores. Appl. Environ. Microbiol. 62:37453749.
65. Gaillard, S.,, I. Leguérinel,, and P. Mafart. 1998. Model for combined effects of temperature, pH and water activity on thermal inactivation of Bacillus cereus spores. J. Food Sci. 63:887889.
66. Garcia, D.,, A. J. Ramos,, V. Sanchis,, and S. Marín. 2009. Predicting mycotoxins in foods: a review. Food Microbiol. 26:757769.
67. García-Gimeno, R. M.,, C. Hervás-Martínez,, E. Barco-Alcalá,, G. Zurera-Cosano,, and E. Sanz-Tapia. 2003. An artificial neural network approach to Escherichia coli O157:H7 growth estimation. J. Food Sci. 68:639645.
68. García-Gimeno, R. M.,, C. Hervás-Martínez,, R. Rodríguez-Pérez,, and G. Zurera-Cosano. 2005. Modelling the growth of Leuconostoc mesenteroides by artificial neural networks. Int. J. Food Microbiol. 105:317332.
69. Geeraerd, A.,, C. Herremans,, C. Cenens,, and J. F. Van Impe. 1998. Application of artificial neural networks as a non-linear modular modeling technique to describe bacterial growth in chilled food products. Int. J. Food Microbiol. 44:4968.
70. Geeraerd, A. H.,, C. H. Herremans,, and J. F. Van Impe. 2000. Structural model requirements to describe microbial inactivation during a mild heat treatment. Int. J. Food Microbiol. 59:185209.
71. Geeraerd, A. H.,, V. P. Valdramidis,, F. Devlieghere,, H. Bernaert,, J. Debevere,, and J. F. Van Impe. 2004. Development of a novel approach for secondary modelling in predictive microbiology: incorporation of microbiological knowledge in black box polynomial modelling. Int. J. Food Microbiol. 91:229244.
72. Geeraerd, A. H.,, V. P. Valdramidis,, and J. F. Van Impe. 2005. GInaFiT, a freeware tool to assess non-log-linear microbial survivor curves. Int. J. Food Microbiol. 102:95105.
73. Ghanou Besse, N.,, N. Audinet,, L. Barre,, A. Cauquil,, M. Cornu,, and P. Colin. 2006. Effect of the inoculum size on Listeria monocytogenes growth in structured media. Int. J. Food Microbiol. 110:4351.
74. Gil, M. M.,, T. R. S. Brandão,, and C. L. M. Silva. 2006. A modified Gompertz model to predict microbial inactivation under time-varying temperature conditions. J. Food Eng. 76:8994.
75. Ginovart, M.,, and J. C. Canadas. 2008. INDISIM-YEAST: an individual-based simulator on a website for experimenting and investigating diverse dynamics of yeast populations in liquid media. J. Ind. Microbiol. Biot. 35:13591366.
76. Ginovart, M.,, D. López,, and A. Gras. 2005. Individual-based modelling of microbial activity study mineralization of C and N and nitrification process in soil. Nonlinear Anal. Real World Appl. 6:773795.
77. Ginovart, M.,, D. López,, and J. Valls. 2002. INDISIM, an individual-based discrete simulation model to study bacterial cultures. J. Theor. Biol. 214:305319.
78. Ginovart, M.,, C. Prats,, X. Portell,, and M. Silbert. 2011. Exploring the lag phase and growth initiation of a yeast culture by means of an individual-based model. Food Microbiol. 28:810817.
79. Giuffrida, A.,, D. Valenti,, G. Ziino,, B. Spagnolo,, and A. Panebianco. 2009. A stochastic interspecific competition model to predict the behaviour of Listeria monocytogenes in the fermentation process of a traditional Sicilian salami. Eur. Food Res. Technol. 228:767775.
80. Grijspeerdt, K.,, J.-U. Kreft,, and W. Messens. 2005. Individual-based modelling of growth and migration of Salmonella enteritidis in hens’ eggs. Int. J. Food Microbiol. 100:323333.
81. Grimm, V.,, T. Wyszomirski,, D. Aikman,, and J. Uchmanski. 1999. Individual based modelling and ecological theory: synthesis of a workshop. Ecol. Model. 115:275282.
82. Guillier, L.,, V. Stahl,, B. Hezard,, E. Notz,, and R. Briandet. 2008. Modelling the competitive growth between Listeria monocytogenes and biofilm microflora of smear cheese wooden shelves. Int. J. Food Microbiol. 128:5157.
83. Gunvig, A.,, J. Blom-Hanssen,, T. Jacobsen,, F. Hansen,, and C. Borggaard. 2007. A predictive model for growth of Listeria monocytogenes in meat products with seven hurdle variables, p. 197200. In Proceedings of the 5th International Conference on Predictive Modelling in Foods. Agricultural University of Athens, Athens, Greece.
84. Gysemans, K. P. M.,, K. Bernaerts,, A. Vermeulen,, A. H. Geeraerd,, J. Debevere,, F. Devlieghere,, and J. F. Van Impe. 2007. Exploring the performance of logistic regression model types on growth/no growth data of Listeria monocytogenes. Int. J. Food Microbiol. 114:316331.
85. Hajmeer, M. N.,, and I. A. Basheer. 2003. A hybrid Bayesian-neural network approach for probabilistic modeling of bacterial growth/no-growth interface. Int. J. Food Microbiol. 82:233243.
86. Hajmeer, M.,, and I. Basheer. 2002. A probabilistic neural network approach for modeling and classification of bacterial growth/no-growth data. J. Microbiol. Methods 51:217226.
87. Hajmeer, M.,, I. Basheer,, and D. O. Cliver. 2006. Survival curves of Listeria monocytogenes in chorizos modeled with artificial neural networks. Food Microbiol. 23:561570.
88. Härdin, H.,, and J. van Schuppen. 2006. System reduction ofnonlinear positive systems by linearization and truncation, p. 431438. In Positive Systems—Proceedings of the Second International Multidisciplinary Symposium on Positive Systems: Theory and Applications. Lecture Notes in Control and Information Sciences, vol. 341. Springer, Berlin, Germany.
89. Hills, B.,, and K. Wright. 1994. A new model for bacterial growth in heterogeneous systems. J. Theor. Biol. 168:3141.
90. Hinshelwood, C. N. 1947. The Chemical Kinetics of the Bacterial Cell. Clarendon Press, Oxford, England.
91. Ho, S. Y.,, and G. S. Mittal. 2001. Non-thermal microbial inactivation in waste brine using high-voltage low-energy electrical pulses. Innov. Food Sci. Emerg. Technol. 2:251259.
92. Holzhütter, H.-G. 2004. The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks. Eur. J. Biochem. 271:29052922.
93. Hom, L. W. 1972. Kinetics of chlorine disinfection in an ecosystem. J. Sanitary Eng. Div. 98:183194.
94. Hotchin, J. E. 1955. Use of methyl cellulose as substitute for agar in tissue-culture overlays. Nature 175:352355.
95. Houtsma, P. C.,, M. L. Kant-Muermans,, F. M. Rombouts,, and M. H. Zwietering. 1996. Model for the combined effects of temperature, pH, and sodium lactate on growth rates of Listeria innocua in broth and bologna-type sausages. Appl. Environ. Microbiol. 62:16161622.
96. Hülsheger, H.,, J. Potel,, and E.-G. Niemann. 1981. Killing of bacteria with electric pulses of high field strength. Radiat. Environ. Biophys. 20:5365.
97. Hwang, C. A.,, and M. L. Tamplin. 2005. Modeling the lag phase and growth rate of Listeria monocytogenes in ground ham containing sodium lactate and sodium diacetate at various storage temperatures. J. Food Sci. 72:M246M253.
98. Janssen, M.,, A. H. Geeraerd,, F. Logist,, Y. De Visscher,, K. M. Vereecken,, J. Debevere,, F. Devlieghere,, and J. F. Van Impe. 2006. Modelling Yersinia enterocolitica inactivation in coculture experiments with Lactobacillus sakei as based on pH and lactic acid profiles. Int. J. Food Microbiol. 111:5972.
99. Jeanson, S.,, J. Chadoeuf,, M. N. Madec,, S. Aly,, J. Floury,, T. F. Brocklehurst,, and S. Lortal. 2011. Spatial distribution of bacterial colonies in a model cheese. Appl. Environ. Microbiol. 77:14931500.
100. Jeyamkondan, S.,, D. S. Jayas,, and R. A. Holley. 2001. Microbial growth modelling with artificial neural networks. Int. J. Food Microbiol. 64:343354.
101. Koutsoumanis, K. P.,, P. A. Kendall,, and J. N. Sofos. 2004. A comparative study on growth limits of Listeria monocytogenes as affected by temperature, pH and aw when grown in suspension or on a solid surface. Food Microbiol. 21:415422.
102. Kreft, J.-U.,, G. Booth,, and J. W. T. Wimpenny. 1998. BacSim, a simulator for individual-based modelling of bacterial colony growth. Microbiology 144:32753287.
103. Kreft, J. U.,, C. Picioreanu,, J. W. T. Wimpenny,, and M. C. M. Van Loosdrecht. 2001. Individual-based modeling of biofilm. Microbiology 147:28972912.
104. Leistner, L. 2000. Basic aspects of food preservation by hurdle technology. Int. J. Food Microbiol. 55:181186.
105. Le Marc, Y.,, V. Huchet,, C. M. Bourgeois,, J. P. Guyonnet,, P. Mafart,, and D. Thuault. 2002. Modelling the growth kinetics of Listeria as a function of temperature, pH and organic acid concentration. Int. J. Food Microbiol. 73:219237.
106. Le Marc, Y.,, L. Valik,, and A. Medvedova. 2009. Modelling the effect of the starter culture on the growth of Staphylococcus aureus in milk. Int. J. Food Microbiol. 129:306311.
107. Leporq, B.,, J.-M. Membré,, C. Dervin,, P. Buche,, and J. P. Guyonnet. 2005. The ‘Sym’Previus’ software, a tool to support decisions to the foodstuff safety. Int. J. Food Microbiol. 100:231237.
108. Leroy, F.,, B. Degeest,, and L. De Vuyst. 2002. A novel area of predictive modelling: describing the functionality of beneficial microorganisms in foods. Int. J. Food Microbiol. 73:251259.
109. Li, H.,, G. Xie,, and A. Edmondson. 2007. Evolution and limitations of primary mathematical models in predictive microbiology. Br. Food J. 109:608626.
110. Liebermeister, W.,, U. Bauer,, and E. Klipp. 2005. Biochemical network models simplified by balanced truncation. FEBS J. 272:40344043.
111. Lindroth, S. E.,, and C. A. Genigeorgis. 1986. Probability of growth and toxin production by nonproteolytic Clostridium botulinum in rockfish stored under modified atmospheres. Int. J. Food Microbiol. 3:167181.
112. Llaneras, F.,, and J. Picó. 2008. Stoichiometric modelling of cell metabolism. J. Biosci. Bioeng. 105:111.
113. Mafart, P.,, and I. Leguérinel. 1998. Modeling combined effects of temperature and pH on heat resistance of spores by a linear-Bigelow equation. J. Food Sci. 63:68.
114. Malakar, P. K.,, G. C. Barker,, M. H. Zwietering,, and K. van ’t Riet. 2003. Relevance of microbial interactions to predictive microbiology. Int. J. Food Microbiol. 84:263272.
115. McClure, P. J.,, T. M. Kelly,, and T. A. Roberts. 1991. The effects of temperature, pH, sodium chloride and sodium nitrite on the growth of Listeria monocytogenes. Int. J. Food Microbiol. 14:7792.
116. McKellar, R. 2001. Development of a dynamic continuous-discrete-continuous model describing the lag phase of individual bacterial cells. J. Appl. Microbiol. 90:407413.
117. McKellar, R. C. 1997. A heterogeneous population model for the analysis of bacterial growth kinetics. Int. J. Food Microbiol. 36:179186.
118. McMeekin, T. A.,, J. Bowman,, O. McQuestin,, L. Mellefont,, T. Ross,, and M. Tamplin. 2008. The future of predictive microbiology: strategic research, innovative applications and great expectations. Int. J. Food Microbiol. 128:29.
119. McMeekin, T. A.,, R. E. Chandler,, and P. E. Doe. 1987. Model for combined effect of temperature and salt concentration/water activity on the growth rate of Staphylococcus xylosus. J. Appl. Bacteriol. 62:543550.
120. McMeekin, T. A.,, J. N. Olley,, T. Ross,, and D. A. Ratkowsky. 1993. Predictive Microbiology: Theory and Application. Research Studies Press Ltd., Baldock, England.
121. McMeekin, T. A.,, J. Olley,, D. A. Ratkowsky,, and T. Ross. 2002. Predictive microbiology: towards the interface and beyond. Int. J. Food Microbiol. 73:395407.
122. McMeekin, T. A.,, and T. Ross. 2002. Predictive microbiology: providing a knowledge-based framework for change management. Int. J. Food Microbiol. 78:133153.
123. Mejlholm, O.,, and P. Dalgaard. 2007. Modeling and predicting the growth of lactic acid bacteria in lightly preserved seafood and their inhibiting effect on Listeria monocytogenes. J. Food Prot. 70:24852497.
124. Mejlholm, O.,, and P. Dalgaard. 2009. Development and validation of an extensive growth and growth boundary model for Listeria monocytogenes in lightly preserved and ready-to-eat shrimp. J. Food Prot. 72:21322143.
125. Mejlholm, O.,, A. Gunvig,, C. Borggaard,, J. Blom-Hanssen,, L. Mellefont,, T. Ross,, F. Leroi,, T. Else,, D. Visser,, and P. Dalgaard. 2010. Predicting growth rates and growth boundary of Listeria monocytogenes—an international validation study with focus on processed and ready-to-eat meat and seafood. Int. J. Food Microbiol. 141:137150.
126. Meldrum, R. J.,, T. F. Brocklehurst,, D. R. Wilson,, and P. D. G. Wilson. 2003. The effects of cell immobilization, pH, and sucrose on the growth of Listeria monocytogenes Scott A at 10°C. Food Microbiol. 20:97103.
127. Membré, J. M.,, and R. J. W. Lambert. 2008. Application of predictive modelling techniques in industry: from food design up to risk assessment. Int. J. Food Microbiol. 128:1015.
128. Mertens, L.,, A. H. Geeraerd,, T. D. T. Dang,, A. Vermeulen,, K. Serneels,, E. Van Derlinden,, A. M. Cappuyns,, P. Moldenaers,, J. Debevere,, F. Devlieghere,, and J. F. Van Impe. 2009. Design of an experimental viscoelastic food model system for studying Zygosaccharomyces bailii spoilage in acidic sauces. Appl. Environ. Microbiol. 75:70607069.
129. Mertens, L.,, E. Van Derlinden,, T. D. T. Dang,, A. M. Cappuyns,, A. Vermeulen,, J. Debevere,, P. Moldenaers,, F. Devlieghere,, A. H. Geeraerd,, and J. F. Van Impe. 2011. On the critical evaluation of growth/no growth assessment of Zygosaccharomyces bailii with optical density measurements: liquid versus structured media. Food Microbiol. 28:736745.
130. Métris, A.,, Y. Le Marc,, A. Elfwing,, A. Ballagi,, and J. Baranyi. 2005. Modelling the variability of lag times and the first generation times of single cells of E. coli. Int. J. Food Microbiol. 100:1319.
131. Miles, D. W.,, T. Ross,, J. Olley,, and T. A. McMeekin. 1997. Development and evaluation of a predictive model for the effect of temperature and water activity on the growth rate of Vibrio parahaemolyticus. Int. J. Food Microbiol. 38:133142.
132. Molina, M.,, and L. Giannuzzi. 1999. Combined effect of temperature and propionic acid concentration on the growth of Aspergillus parasiticus. Food Res. Int. 32:677682.
133. Murphy, J. T.,, and R. Walshe. 2007. Micro-gen: an agent-based model of bacteria-antibiotic interactions in batch culture, p. 239242. In Proceedings of the Annual European Simulation and Modelling (ESM 2007). Eurosis, Ostend, Belgium.
134. Nene, Y. L.,, V. K. Sheila,, and J. P. Moss. 1996. Tapioca—a potential substitute for agar in tissue culture media. Curr. Sci. 70:493494.
135. Nikolaou, M.,, and V. H. Tam. 2005. A new modeling approach to the effect of antimicrobial agents on heterogeneous microbial populations. J. Math. Biol. 52:154182.
136. Nilsson, L.,, and Y. Chen,, M. L. Chikindas,, H. H. Huss,, L. Gram,, and T. J. Montville. 2000. Carbon dioxide and nisin act synergistically on Listeria monocytogenes. Appl. Environ. Microbiol. 66:769774.
137. Noma, S.,, D. Kajiyama,, N. Igura,, M. Shimoda,, and I. Hayakawa. 2006. Mechanisms behind tailing in the pressure inactivation curve of a clinical isolate of Escherichia coli O157:H7. Int. J. Food Microbiol. 109:103108.
138. Noriega, E.,, A. Laca,, and M. Díaz. 2009. Listeria growth under diffusional limitations in synthetic meats. Int. J. Food Sci. Technol. 44:725734.
139. Nyström, T. 2004. Stationary-phase physiology. Annu. Rev. Microbiol. 58:161181.
140. Parente, E.,, M. A. Giglio,, A. Ricciardi,, and F. Clementi. 1998. The combined effect of nisin, leucocin F10, pH, NaCl and EDTA on the survival of Listeria monocytogenes in broth. Int. J. Food Microbiol. 40:6575.
141. Park, S. Y.,, J. W. Choi,, J. Yeon,, M. Jeong Lee,, D. H. Chung,, M. G. Kim,, K. H. Lee,, K. S. Kim,, D. H. Lee,, G. J. Bahk,, D. H. Bae,, K. Y. Kim,, C. H. Kim,, and S. D. Ha. 2009. Predictive modeling for the growth of Listeria monocytogenes as a function of temperature, NaCl and pH. J. Microbiol. Biotechnol. 15:13231329.
142. Peck, S. L. 2004. Simulation as experiment: a philosophical reassessment for biological modeling. Trends Ecol. Evol. 19:530534.
143. Peleg, M. 1995. A model for microbial survival after exposure to pulsed electric field. J. Sci. Food Agric. 67:9399.
144. Peleg, P.,, M. D. Normand,, and E. Damru. 1997. Mathematical interpretation of dose-response curves. Bull. Math. Biol. 59:747761.
145. Pin, C.,, J. Sutherland,, and J. Baranyi. 1999. Validating predictive models of food spoilage organisms. J. Appl. Microbiol. 87:491499.
146. Poschet, F.,, K. M. Vereecken,, A. H. Geeraerd,, B. M. Nicolaï,, and J. F. Van Impe. 2005. Analysis of a novel class of predictive microbial growth models and application to coculture growth. Int. J. Food Microbiol. 100:107124.
147. Prats, C.,, D. López,, A. Giró,, J. Ferrer,, and J. Valls. 2006. Individual-based modelling of bacterial cultures to study the microscopic causes of the lag phase. J. Theor. Biol. 241:939953.
148. Prats, C.,, A. Giró,, J. Ferrer,, D. López,, and J. Vives-Rego. 2008. Analysis and IbM simulation of the stages in bacterial lag phase: basis for an updated definition. J. Theor. Biol. 252:5668.
149. Presser, K. A.,, D. A. Ratkowsky,, and T. Ross. 1997. Modelling the growth rate of Escherichia coli as a function of pH and lactic acid concentration. Appl. Environ. Microbiol. 63:23552360.
150. Presser, K. A.,, T. Ross,, and D. A. Ratkowsky. 1998. Modelling the growth limits (growth/no growth interface) of Escherichia coli as a function of temperature, pH, lactic acid concentration, and water activity. Appl. Environ. Microbiol. 64:17731779.
151. Ramakrishna, R.,, J. S. Edwards,, A. Mcculluch,, and B. O. Palsson. 2001. Flux balance analysis of mitochondrial energy metabolism: consequences of systemic stoichiometric constraints. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280:R695R704.
152. Ratkowsky, D. A.,, R. K. Lowry,, T. A. McMeekin,, A. N. Stokes,, and E. Chandler. 1983. Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J. Bacteriol. 154:12221226.
153. Ratkowsky, D. A.,, J. Olley,, T. A. McMeekin,, and A. Ball. 1982. Relationship between temperature and growth rate of bacterial cultures. J. Bacteriol. 149:15.
154. Ratkowsky, D. A.,, and T. Ross. 1995. Modelling the bacterial growth/no growth interface. Lett. Appl. Microbiol. 20:2933.
155. Razavilar, V.,, and C. Genigeorgis. 1998. Prediction of Listeria spp. growth as affected by various levels of chemicals, pH, temperature and storage time in a model broth. Int. J. Food Microbiol. 40:149157.
156. Ross, T.,, D. A. Ratkowsky,, L. A. Mellefont,, and T. A. McMeekin. 2003. Modelling the effects of temperature, water activity, pH and lactic acid concentration on the growth rate of Escherichia coli. Int. J. Food Microbiol. 82:3343.
157. Ross, T.,, and J. Sumner. 2002. A simple, spreadsheet-based, food safety risk assessment tool. Int. J. Food Microbiol. 77:3953.
158.Rosso, L. 1995. Modélisation et microbiologie prévisionnelle: elaboration d’un nouvel outil pour l’agroalimentaire. Ph.D. thesis. Université Claude Bernard, Lyon, France.
159. Rosso, L.,, J. R. Lobry,, S. Bajard,, and J. P. Flandrois. 1995. Convenient model to describe the combined effects of temperature and pH on microbial growth. Appl. Environ. Microbiol. 61:610616.
160. Rosso, L.,, J. R. Lobry,, and J. P. Flandrois. 1993. An unexpected correlation between cardinal temperatures of microbial growth highlighted by a new model. J. Theor. Biol. 162:447463.
161. Rosso, L.,, and T. Robinson. 2001. A cardinal model to describe the effect of water activity on the growth of moulds. Int. J. Food Microbiol. 63:265273.
162. Salter, M. A.,, D. A. Ratkowsky,, T. Ross,, and T. A. McMeekin. 2000. Modelling the combined temperature and salt (NaCl) limits for growth of a pathogenic Escherichia coli strain using nonlinear logistic regression. Int. J. Food Microbiol. 61:159167.
163. Sautour, M.,, P. Dantigny,, C. Divies,, and M. Bensoussan. 2001. A temperature type model for describing the relationship between fungal growth and water activity. Int. J. Food Microbiol. 67:6369.
164. Schaffner, D. W.,, W. H. Ross,, and T. J. Montville. 1998. Analysis of the influence of environmental parameters on Clostridium botulinum time-to-toxicity by using three modeling approaches. Appl. Environ. Microbiol. 64:44164422.
165. Schilling, C.,, M. Covert,, I. Famili,, G. Church,, J. Edwards,, and B. Palsson. 2002. Genome-scale metabolic model of Helicobacter pylori 26695. J. Bacteriol. 184:45824593.
166. Schoolfield, R. M.,, P. J. H. Sharpe,, and C. E. Magnuson. 1981. Non linear regression of biological temperature-dependent rate models based on absolute reaction rate theory. J. Theor. Biol. 88:719731.
167. Schuetz, R.,, L. Kuepfer,, and U. Sauer. 2007. Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol. Syst. Biol. 3:119.
168. Schuytser, M. A.,, J. Straatsma,, P. M. Keijzer,, M. Verschueren,, and P. De Jong. 2008. A new web-based modelling tool (Websim-MILQ) aimed at optimisation of thermal treatments in the dairy industry. Int. J. Food Microbiol. 128:153157.
169. Schvartzman, M. S.,, X. Belessi,, F. Butler,, P. Skandamis,, and K. Jordan. 2010. Comparison of growth limits of Listeria monocytogenes in milk, broth and cheese. J. Appl. Microbiol. 109:17901799.
170. Shamsi, K.,, C. Versteeg,, F. Sherkat,, and J. Wan. 2008. Alkaline phosphatase and microbial inactivation by pulsed electric field in bovine milk. Innov. Food Sci. Emerg. Technol. 9:217233.
171. Shimizu, H.,, Y. Shinfuku,, M. Sono,, C. Furusawa,, and T. Hirasawa. 2008. Metabolic flux balance analysis of an industrially useful microorganism Corynebacterium glutamicum by a genome-scale reconstructed model. In Proceedings of the 3rd International Conference on Bio-Inspired Models of Network, Information and Computing Systems, article no. 17. ICST, Brussels, Belgium.
172. Skandamis, P. N.,, and G. J. E. Nychas. 2000. Development and evaluation of a model predicting the survival of Escherichia coli O157:H7 NCTC 12900 in homemade eggplant salad at various temperatures, pHs, and oregano essential oil concentrations. Appl. Environ. Microbiol. 66:16461653.
173. Skandamis, P. N.,, K. W. Davies,, P. J. McClure,, K. Koutsoumanis,, and C. Tassou. 2002. A vitalistic approach for non-thermal inactivation of pathogens in traditional greek salads. Food Microbiol. 19:405421.
174. Skandamis, P. N.,, T. F. Brocklehurst,, E. Z. Panagou,, and G. J. E. Nychas. 2007. Image analysis as a mean to model growth of Escherichia coli O157:H7 in gel cassettes. J. Appl. Microbiol. 103:937947.
175. Standaert, A. R.,, F. Poschet,, A. H. Geeraerd,, F. V. Uylbak,, J. U. Kreft,, and J. F. Van Impe. 2004. A novel class of predictive microbial growth models: implementation in an individual-based framework, p. 183188. In Proceedings of the 9th International Symposium on Computer Applications in Biotechnology (CAB9).
176. Stecchini, M. L.,, M. Del Torre,, I. Sarais,, O. Saro,, M. Messina,, and E. Maltini. 1998. Influence of structural properties and kinetic constraints on Bacillus cereus growth. Appl. Environ. Microbiol. 64:10751078.
177. Swinnen, I. A. M.,, K. Bernaerts,, K. Gysemans,, and J. F. Van Impe. 2005. Quantifying microbial lag phenomena due to a sudden rise in temperature: a systematic macroscopic study. Int. J. Food Microbiol. 100:8596.
178. Tapia deDaza, M. S.,, Y. Villegas,, and A. Martinez. 1991. Minimal water activity for growth of Listeria monocytogenes as affected by solute and temperature. Int. J. Food Microbiol. 14:333337.
179. Theys, T. E.,, A. H. Geeraerd,, A. Verhulst,, K. Poot,, F. Van Bree,, F. Devlieghere,, P. Moldenaers,, D. Wilson,, T. Brocklehurst,, and J. F. Van Impe. 2008. Effect of pH, water activity and gel microstructure including oxygen profiles and rheological characterization, on the growth kinetics of Salmonella Typhimurium. Int. J. Food Microbiol. 128:6777.
180. Theys, T. E.,, A. H. Geeraerd,, and J. F. Van Impe. 2009. Evaluation of a mathematical model structure describing the effect of (gel) structure on the growth of Listeria innocua, Lactococcus lactis and Salmonella Typhimurium. J. Appl. Microbiol. 107:775784.
181. Theys, T. E.,, A. H. Geeraerd,, F. Devlieghere,, and J. F. Van Impe. 2009. Extracting information on the evolution of living- and dead-cell fractions of Salmonella Typhimurium colonies in gelatin gels based on microscopic images and plate-count data. Lett. Appl. Microbiol. 49:3945.
182. Theys, T. E.,, A. H. Geeraerd,, F. Devlieghere,, and J. F. Van Impe. 2010. On the selection of relevant environmental factors to predict microbial dynamics in solidified media. Food Microbiol. 27:220228.
183. Tienungoon, S.,, D. A. Ratkowsky,, T. A. McMeekin,, and T. Ross. 2000. Growth limits of Listeria monocytogenes as a function of temperature, pH, NaCl, and lactic acid. Appl. Environ. Microbiol. 66:49794987.
184. Tsigarida, E.,, I. Boziaris,, and G. J. E. Nychas. 2003. Bacterial synergism or antagonism in a gel cassette system. Appl. Environ. Microbiol. 69:72047209.
185. Valdramidis, V. P.,, A. H. Geeraerd,, and J. F. Van Impe. 2007. Stress-adaptive responses by heat under the microscope of predictive microbiology. J. Appl. Microbiol. 103:19221930.
186. Valero, A.,, E. Carrasco,, F. Pérez-Rodriguez,, R. M. García-Gimeno,, and G. Zurera. 2006. Growth/no growth model of Listeria monocytogenes as a function of temperature, pH, citric acid and ascorbic acid. Eur. Food Res. Technol. 224:91100.
187. VanBreusegem, V.,, and G. Bastin. 1991. Reduced order dynamical modelling of reaction systems: a singular perturbation approach, p. 10491054. In Proceedings of the 30th IEEE conference on decision and control. IEEE, Washington, DC.
188. Van Derlinden, E.,, K. Bernaerts,, and J. F. Van Impe. 2009. Unraveling E. coli dynamics close to the maximum growth temperature through heterogeneous modeling. Lett. Appl. Microbiol. 49:659665.
189. Van Derlinden, E.,, K. Bernaerts,, and J. F. Van Impe. 2010. Quantifying the heterogeneous heat response of E. coli under dynamic temperatures. J. Appl. Microbiol. 108:11231135.
190. Van Impe, J. F.,, A. M. Cappuyns,, and E. Van Derlinden. 2009. Towards a next generation of predictive models based on systems biology tools. In Proceedings of the 6th International Conference on Predictive Modelling in Foods. ICPMF, Dublin, Ireland.
191. Van Impe, J. F.,, F. Poschet,, A. H. Geeraerd,, and K. M. Vereecken. 2005. Towards a novel class of predictive microbial growth models. Int. J. Food Microbiol. 100:97105.
192. Varma, A.,, B. Boesch,, and B. Palsson. 1993. Biochemical production capabilities of Escherichia coli. Biotechnol. Bioeng. 42:5973.
193. Vereecken, K. M.,, and J. F. Van Impe. 2002. Analysis and practical implementation of a model for combined growth and metabolite production of lactic acid bacteria. Int. J. Food Microbiol. 73:239250.
194. Vereecken, K. M.,, F. Devlieghere,, A. Bockstaele,, J. Debevere,, and J. F. Van Impe. 2003. A model for lactic acid-induced inhibition of Yersinia enterocolitica in mono- and coculture with Lactobacillus sakei. Food Microbiol. 20:701713.
195. Vermeulen, A.,, K. P. M. Gysemans,, K. Bernaerts,, A. H. Geeraerd,, J. Debevere,, F. Devlieghere,, and J. F. Van Impe. 2009. Modelling the influence of the inoculation level on the growth/no growth interface of Listeria monocytogenes as a function of pH, aw and acetic acid. Int. J. Food Microbiol. 135:8389.
196. Virto, R.,, D. Sanz,, I. Álvarez,, S. Condón,, and J. Raso. 2006. Application of the Weibull model to describe inactivation of Listeria monocytogenes and Escherichia coli by citric and lactic acid at different temperatures. J. Sci. Food Agric. 86:865870.
197. Watson, H. E. 1908. A note on the variation of the rate of disinfection with change in the concentration of the disinfectant. J. Hyg. 8:536542.
198. Wilson, P. D. G.,, T. F. Brocklehurst,, S. Arino,, D. Thuault,, M. Jakobsen,, M. Lange,, J. Farkas,, J. W. T. Wimpenny,, and J. F. Van Impe. 2002. Modelling microbial growth in structured foods: towards a unified approach. Int. J. Food Microbiol. 73:275289.
199. Whiting, R. 1993. Modeling bacterial survival in unfavorable environments. J. Ind. Microbiol. 12:240246.
200. Xavier, J. B.,, M. K. De Kreuk,, C. Picioreanu,, and M. C. M. van Loosdrecht. 2007. Multi-scale individual-based model of microbial and bioconversion dynamics in aerobic granular sludge. Environ. Sci. Technol. 41:64106417.
201. Ye, S.-Y.,, Y.-X. Qiu,, X.-L. Song,, and S.-C. Luo. 2009. Optimization of process parameters for the inactivation of Lactobacillus sporogenes in tomato paste with ultrasound and 60Co-γ irradiation using response surface methodology. Radiat. Phys. Chem. 78:227233.
202. Yuk, H.-G.,, and D. L. Marshall. 2003. Heat adaptation alters Escherichia coli O157:H7 membrane lipid composition and verotoxin production. Appl. Environ. Microbiol. 69:51155119.
203. Zagaris, A.,, H. Kaper,, and T. Kaper. 2004. Analysis of the computational singular perturbation reduction method for chemical kinetics. J. Nonlinear Sci. 14:5991.
204. Zaika, L. L.,, E. Moulden,, L. Weimer,, J. G. Phillips,, and R. L. Buchanan. 1994. Model for the combined effects of temperature, initial pH, sodium chloride and sodium nitrite concentrations on anaerobic growth of Shigella flexneri. Int. J. Food Microbiol. 23:345358.
205. Zheng, H.,, H. Zhou,, T. Shen,, and B. Rui. 2009. Flux balance analysis within physiologically feasible region, p. 14. In Proceedings of the 3rd Conference on Bioinformatics and Biomedical Engineering. IEEE, Washington, DC.
206. Zobeley, J.,, D. Lebiedz,, J. Kammerer,, A. Ishmurzin,, and U. Kummer. 2005. A new time dependent complexity reduction method for biochemical systems. Trans. Comput. Syst. Biol. 3880:90110.
207. Zwietering, M.,, I. Jongenburger,, F. Rombouts,, and K. van ’t Riet. 1990. Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 56:18751881.
208. Zwietering, M. H.,, H. G. A. M. Cuppers,, J. C. de Wit,, and K. van ’t Riet. 1994. Evaluation of data transformations and validation of a model for the effect of temperature on bacterial growth. Appl. Environ. Microbiol. 60:195203.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error