1887

Chapter 41 : Microbial Risk Assessment

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Microbial Risk Assessment, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818463/9781555816261_Chap41-1.gif /docserver/preview/fulltext/10.1128/9781555818463/9781555816261_Chap41-2.gif

Abstract:

This chapter introduces the basic concepts of microbial risk assessment and provides an overview of the methodology and applications to food safety. Risk analysis is used to develop an estimate of risks, to identify and implement measures to control the risks, and to communicate with stakeholders about the risks and measures applied. A distinct consideration when developing a microbial risk assessment model is the need to account for the changes in the concentration and prevalence of the hazard, as microbes grow and/or numbers decline throughout the food supply chain. Numerous papers and guidelines have described the basic approaches and methods for conducting microbial risk assessments. According to the Codex Alimentarius, the four steps of a risk assessment are hazard identification, exposure assessment, hazard characterization, and risk characterization. Risk assessments can be either qualitative or quantitative. Risk assessment also can focus on a specific segment(s) of the food chain or encompass the entire food continuum. The chapter focuses on stochastic sensitivity analysis; however, less detailed methods to conduct deterministic and worst-case sensitivity analysis are also described. The link between a deterministic risk assessment and food safety objective (FSO) is pretty straightforward but might not be entirely realistic because deterministic models do not account for uncertainty and variability, which are inevitable when conducting a microbial risk assessment.

Citation: Ruzante J, Whiting R, Dennis S, Buchanan R. 2013. Microbial Risk Assessment, p 1023-1037. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch41
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 41.1
Figure 41.1

Codex Alimentarius risk analysis framework. doi:10.1128/9781555818463.ch41f1

Citation: Ruzante J, Whiting R, Dennis S, Buchanan R. 2013. Microbial Risk Assessment, p 1023-1037. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch41
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 41.2
Figure 41.2

Schematic representation of the Monte Carlo analysis. doi:10.1128/9781555818463.ch41f2

Citation: Ruzante J, Whiting R, Dennis S, Buchanan R. 2013. Microbial Risk Assessment, p 1023-1037. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch41
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 41.3
Figure 41.3

Example of seven potential risk assessment outputs. doi:10.1128/9781555818463.ch41f3

Citation: Ruzante J, Whiting R, Dennis S, Buchanan R. 2013. Microbial Risk Assessment, p 1023-1037. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch41
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 41.4
Figure 41.4

Tornado graph of influential variability parameters on log risk of illness per serving of raw oysters from the Gulf Coast (Louisiana) winter harvest ( ). doi:10.1128/9781555818463.ch41f4

Citation: Ruzante J, Whiting R, Dennis S, Buchanan R. 2013. Microbial Risk Assessment, p 1023-1037. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch41
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 41.5
Figure 41.5

Example of the application of risk management metrics in a hypothetical food process. Trans., transportation. doi:10.1128/9781555818463.ch41f5

Citation: Ruzante J, Whiting R, Dennis S, Buchanan R. 2013. Microbial Risk Assessment, p 1023-1037. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch41
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818463.chap41
1. Abt, E.,, J. V. Rodricks,, J. I. Levy,, L. Zeise,, and T. A. Burke. 2010. Science and decisions: advancing risk assessment. Risk Anal. 30: 1028 1036.
2. Anderson, M.,, L. Jaykus,, S. Beaulie,, and S. Dennis. 2011. Pathogen-produce pair attribution risk ranking tool to prioritize fresh produce commodity and pathogen combinations for further evaluation (P 3ARRT). Food Control. 22: 1865 1872.
3. Buchanan, R. L.,, and S. B. Dennis. 2001. Microbial risk assessment—a tool for regulatory decision making. J. Assoc. Food Drug Officials 65: 36 46.
4. Buchanan, R. L.,, S. B. Dennis,, and M. Miliotis. 2004. Initiating and managing risk assessments within a risk analysis framework: FDA/CFSAN’s practical approach. J. Food Prot. 67: 2058 2062.
5. Buchanan, R. L.,, A. H. Havelaar,, M. A. Smith,, R. C. Whiting,, and E. Julien. 2009. The key events dose-response framework: its potential for application to foodborne pathogenic microorganism. Crit. Rev. Food Sci. Nutr. 49: 718 728.
6. Carrington, C. D.,, S. B. Dennis,, R. C. Whiting,, and R. L. Buchanan. 2004. Putting a risk assessment model to work: Listeria monocytogenes ‘what if’ scenarios. J. Assoc. Food Drug Officials 68: 5 19.
7. Codex AlimentariusCommission. 2010. Working principles for risk analysis for application in the framework of the Codex Alimentarius, p. 8593. In Codex Alimentarius Procedural Manual, 19th ed. Secretariat of the Joint FAO/WHO Food Standards Programme, FAO, Rome, Italy.
8. Cole, M. B.,, and R. B. Tompkin,. 2005. Microbiological performance objectives and criteria, p. 673 695. In J. N. Sofos (ed.), Improving the Safety of Fresh Meat. Woodhead Publishing, Cambridge, United Kingdom.
9. D’Aoust, J. 1977. Salmonella and the chocolate industry. J. Food Prot. 40: 718 727.
10. Delignette-Muller, M. L.,, M. Cornu,, R. Pouillot,, and J.-B. Denis. 2006. Use of Bayesian modeling in risk assessment: application to growth of Listeria monocytogenes and food flora in cold-smoked salmon. Int. J. Food Microbiol. 106: 195 208.
11. Dennis, S. B.,, J. Kause,, M. Losikoff,, D. L. Engeljohn,, and R. L. Buchanan,. 2008. Using risk analysis for microbial food safety regulatory decision making, p. 137 176. In D. W. Schaffner (ed.), Microbial Risk Analysis of Foods. ASM Press, Washington, DC.
12. Evers, E. G.,, and J. E. Chardon. 2010. A swift quantitative microbiological risk assessment (sQMRA) tool. Food Control 21: 319 330.
13. FAO/WHO. 1997. Risk Management and Food Safety. Report of a Joint FAO/WHO Consultation. FAO Food and Nutrition Paper No. 65. FAO, Rome, Italy.
14. FAO/WHO. 2002. Principles and Guidelines for Incorporating Microbiological Risk Assessment in the Development of Food Safety Standards, Guidelines and Related Texts. Report of a Joint FAO/WHO Consultation, Kiel, Germany. FAO, Rome, Italy.
15. FAO/WHO. 2002. Risk Assessment of Salmonella in Eggs and Broiler Chickens. Microbiological Risk Assessment Series No. 2. FAO, Rome, Italy.
16. FAO/WHO. 2003. Hazard Characterization for Pathogens in Food and Water. Microbiological Risk Assessment Series No. 3. FAO, Rome, Italy.
17. FAO/WHO. 2004. Risk Assessment of Listeria monocytogenes in Ready-To-Eat Foods. Microbiological Risk Assessment Series No. 5. FAO, Rome, Italy.
18. FAO/WHO. 2004. Enterobacter sakazakii and Other Microorganisms in Powdered Infant Formula. Microbiological Risk Assessment Series No. 6. FAO, Rome, Italy.
19. FAO/WHO. 2006. Food Safety Risk Analysis: a Guide for National Food Safety Authorities. FAO, Rome, Italy.
20. FDA. 2005. Quantitative Risk Assessment on the Public Health Impact ofPathogenic Vibrio parahaemolyticus in Raw Oysters. Foodand Drug Administration, Washington, DC. http://www.fda.gov/Food/ScienceResearch/ResearchAreas/RiskAssessmentSafetyAssessment/ucm050421.htm
21. FDA/Food Safety and InspectionService. 2003. Quantitative Assessment of Relative Risk to PublicHealth from Foodborne Listeria monocytogenes among Selected Categories ofReady-To-Eat Foods. Food and Drug Administration, Washington, DC. www.foodsafety.gov/~dms/lmr2-toc.html
22. Federal Register. 2009. Notice. June 9, 2009. Fed. Regist. 74: 72762727.
23. Gardner, I. A. 2004. An epidemiologic critique of current microbial risk assessment practices: the importance of prevalence and test accuracy data. J. Food. Prot. 67: 2000 2007.
24. Gorris, L. G. M. 2005. Food safety objective: an integral part of food chain management. Food Control 16: 801 809.
25. Haas, C. N.,, A. Thayyar-Madabusi,, J. B. Rose,, and C. P. Gerba. 2000. Development of a dose-response relationship for Escherichia coli O157:H7. Int. J. Food Microbiol. 56: 153 159.
26. Hallman, W. K., 2008. Communicating about microbial risks in foods, p. 205 262. In D. W. Schaffner (ed.), Microbial Risk Analysis of Foods. ASM Press, Washington, DC.
27. Havelaar, A. H.,, M. J. Nauta,, and J. T. Jansen. 2004. Fine-tuning food safety objectives and risk assessment. Int. J. Food Microbiol. 93: 11 29.
28. Holcomb, D. L.,, M. A. Smith,, G. O. Ware,, Y.-C. Hung,, R. E. Brackett,, and M. P. Doyle. 1999. Comparison of six dose-response models for use with food-borne pathogens. Risk Anal. 19: 1091 1100.
29. Hoornstra, E.,, and S. Notermans. 2001. Quantitative microbiological risk assessment. Int. J. Food Microbiol. 66: 21 29.
30. Horton, L. R. 2001. Risk analysis and the law: international law, the World Trade Organization, Codex Alimentarius and national legislation. Food Additives Contaminants 18: 1057 1067.
31. Ivanek, R.,, Y. T. Gröhn,, L. W. Tauer,, and M. Wiedmann. 2004. The cost and benefit of Listeria monocytogenes food safety measures. Crit. Rev. Food Sci. Nutr. 44: 513 523.
32. Joint Institute for Food Safety and Applied Nutrition. 2009. Quantitative Risk Assessment Methods. Joint Institute for Food Safety and Applied Nutrition, College Park, MD.
33. Jones, R. C.,, S. I. Gerber,, P. S. Diaz,, L. L. Williams,, S. B. Dennis,, E. S. Parish,, and W. S. Paul. 2004. Intensive investigation of bacterial foodborne disease outbreaks: proposed guidelines and tools for the collection of dose-response data by local health departments. J. Food Prot. 67: 616 623.
34. Kasemsuwan, S.,, C. Poolkhet,, T. Patanasatienkul,, N. Buameetoop,, M. Watanakul,, K. Chanachai,, K. Wongsathapornchai,, R. Métras,, C. Marcé,, A. Prakarnkamanant,, J. Otte,, and D. Pfeiffer. 2009. Qualitative risk assessment of the risk of introduction and transmission of H5N1 HPAI virus for 1-km buffer zones surrounding compartmentalised poultry farms in Thailand. http://www.hpai-research.net/docs/Working_papers/wp7_2009.pdf. Accessed April 2011.
35. Kothary, M. H.,, and U. S. Babu. 2001. Infective dose of foodborne pathogens in volunteers: a review. J. Food Saf. 21: 49 73.
36. Latimer, H. K.,, L. Jaykus,, R. A. Morales,, P. Cowen,, and D. Crawford-Brown. 2001. A weighted composite dose-response model for human salmonellosis. Risk Anal. 21: 295 305.
37. Lubran, M. B.,, R. Pouillot,, S. Bohm,, E. M. Calvey,, J. Meng,, and S. Dennis. 2010. Observational study of food safety practices in retail deli departments. J. Food Prot. 73: 1849 1857.
38. Lyytikäinen, O.,, T. Autio,, R. Maijala,, P. Ruutu,, T. Honkanen-Buzalski,, M. Miettinen,, M. Hatakka,, J. Mikkola,, V.-J. Anttila,, T. Johansson,, and L. Rantala. 2000. An outbreak of Listeria monocytogenes serotype 3a infections from butter in Finland. J. Infect. Dis. 181: 1838 1841.
39. Malakar, P. K.,, G. C. Barker,, and M. W. Peck. 2004. Modeling the prevalence of Bacillus cereus spores during the production of a cooked chilled vegetable product. J. Food Prot. 67: 939 946.
40. McKellar, R. C.,, and X. Lu,. 2004. Primary models, p. 21 62. In R. C. McKellar, and X. Lu (ed.), Modeling Microbial Responses in Food. CRC Press, Boca Raton, FL.
41. Moon, H.,, J. J. Chen,, D. W. Gaylor,, and R. L. Kodell. 2004. A comparison of microbial dose-response models fitted to human data. Regul. Toxicol. Pharmacol. 40: 177 184.
42. Nauta, M. J. 2002. Modelling bacterial growth in quantitative microbial risk assessment: is it possible? Int. J. Food Microbiol. 73: 297 304.
43. Oscar, T. 2004. Dose-response model for 13 strains of Salmonella. Risk Anal. 24: 41 49.
44. Powell, D. A. 2000. Food safety and the consumer—perils of poor risk communication. Can. J. Anim. Sci. 80: 393 404.
45. Powell, M. R.,, E. Ebel,, W. Schlosser,, M. Walderhaug,, and J. Kause. 2000. Dose-response envelope for Escherichia coli O157:H7. Quant. Microbiol. 2: 141 163.
46. Robertson, L. J.,, J. D. Greig,, B. Gjerde,, and A. Fazil. 2005. The potential for acquiring cryptosporidiosis or giardiosis from consumption of mung bean sprouts in Norway: a preliminary step-wise risk assessment. Int. J. Food Microbiol. 98: 291 300.
47. Ross, T.,, and J. Sumner. 2002. A simple, spreadsheet-based, food safety risk assessment tool. Int. J. Food Microbiol. 77: 39 53.
48. Ross, T.,, S. Rasmussen,, A. Fazil,, G. Paoli,, and J. Sumner. 2009. Quantitative risk assessment of Listeria monocytogenes in ready-to-eat meats in Australia. Int. J. Food Microbiol. 131: 128 137.
49. Schaffner, D. W., 2004. Models—what comes after the next generation?, p. 303 312. In R. C. McKellar, and X. Lu (ed.), Modeling Microbial Responses in Food. CRC Press, Boca Raton, FL.
50. Serra, J. A.,, E. Domenech,, I. Escriche,, and S. Martorell. 1999. Risk assessment and critical control points from the production perspective. Int. J. Food Microbiol. 46: 9 26.
51. Strachan, N. J. C.,, M. P. Doyle,, F. Kasuga,, O. Rotariu,, and I. D. Ogden. 2005. Dose response modeling of Escherichia coli O157 incorporating data from foodborne and environmental outbreaks. Int. J. Food Microbiol. 103: 35 47.
52. Stringer, M. 2005. Food safety objectives—role in microbiological food safety management. Food Control 16: 775 794.
53. Sumner, J.,, and T. Ross. 2002. A semi-quantitative seafood safety risk assessment. Int. J. Food Microbiol. 77: 55 59.
54. Teunis, P. F. M.,, and A. H. Havelaar. 2002. Risk assessment for protozoan parasites. Int. Biodeterioration Biodegradation 50: 185 193.
55. Van derFels-Klerx, H. J.,, R. M. Cooke,, M. N. Nauta,, L. H. Goossens,, and A. H. Havelaar. 2005. A structured expert judgment study for a model of Campylobacter transmission during broiler-chicken processing. Risk Anal. 25: 109 124.
56. vanGerwen, S. J. C.,, M. C. te Giffel,, K. van ‘t Riet,, R. R. Beumer,, and M. H. Zwietering. 2000. Stepwise quantitative risk assessment as a tool for characterization of microbiological food safety. J. Appl. Microbiol. 88: 938 951.
57. van Schothorst, M. 2005. A proposed framework for the use of FSOs. Food Control 16: 811 816.
58. Vose, D. 2008. Risk Analysis, 3rd ed. Wiley & Sons, New York, NY.
59. Voysey, P. A.,, and M. Brown. 2000. Microbiological risk assessment: a new approach to food safety control. Int. J. Food Microbiol. 58: 173 179.
60. Walls, I.,, and R. L. Buchanan. 2005. Use of food safety objectives as a tool for reducing foodborne listeriosis. Food Control 16: 795 799.
61. Whiting, R. C.,, and R. L. Buchanan,. 2007. Progress in microbial modeling and risk assessment, p. 953 969. In M. P. Doyle, and L. R. Beuchat (ed.), Food Microbiology: Fundamentals and Frontiers, 3rd ed. ASM Press, Washington, DC.
62. Whiting, R. C.,, A. Hogue,, W. D. Schlosser,, E. D. Ebel,, R. Morales,, A. Baker,, and R. McDowell. 2000. A risk assessment for Salmonella Enteritidis in shell eggs. J. Food Sci. 65: 864 869.
63. Williams, R. A.,, and K. M. Thompson. 2004. Integrated analysis: combining risk and economic assessments while preserving the separation of powers. Risk Anal. 24: 1613 1623.
64. Wooldridge, M., 2008. Qualitative risk assessment, p. 1 28. In D. W. Schaffner (ed.), Microbial Risk Analysis of Foods. ASM Press, Washington, DC.
65. Wooldridge, M. 1999. Qualitative risk assessment for antibiotic resistance. Case study: Salmonella typhimurium and the quinolone/fluoroquinolone class of antimicrobials (annex IV). In The European Agency for the Evaluation of Medicinal Products (EMEA) (ed.), Antibiotic Resistance in the European Union Associated with the Therapeutic Use of Veterinary Medicines: Report and Qualitative Risk Assessment by the Committee for Veterinary Medicinal Products. EMEA, London, United Kingdom.
66. World TradeOrganization. 2010. The WTO agreement series: sanitary andphytosanitary agreement. http://www.wto.org/english/res_e/booksp_e/agrmntseries4_sps_e.pdf. Accessed January 2010.
67. Zwietering, M. H.,, C. M. Stewart,, R. C. Whiting, and the International Commission on Microbiological Specifications for Foods. 2010. Validation of control measures in a food chain using the FSO concept.? Food Control 21: 1716 1722.
68. Zwietering, M. H.,, and S. J. C. van Gerwen. 2000. Sensitivity analysis in quantitative microbial risk assessment. Int. J. Food Microbiol. 58: 213 221.

Tables

Generic image for table
Table 41.1

Example of rules for assigning categorical probabilities from two-component probabilities

Citation: Ruzante J, Whiting R, Dennis S, Buchanan R. 2013. Microbial Risk Assessment, p 1023-1037. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch41
Generic image for table
Table 41.2

Individual and combined risk estimates for introduction and transmission of highly pathogenic avian influenza virus subtype H5N1 in 1-km buffer zones surrounding compartmentalized poultry farms in Thailand

Citation: Ruzante J, Whiting R, Dennis S, Buchanan R. 2013. Microbial Risk Assessment, p 1023-1037. In Doyle M, Buchanan R (ed), Food Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555818463.ch41

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error