Chapter 10 : Regulation of Pneumococcal Surface Proteins and Capsule

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Regulation of Pneumococcal Surface Proteins and Capsule, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818524/9781555816766_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555818524/9781555816766_Chap10-2.gif


Vaccination represents the best prospect for managing pneumococcal disease in the 21st century. Polyvalent purified capsular polysaccharide (CPS) vaccines introduced in the 1980s confer strictly serotype-specific protection and are poorly immunogenic in young children. Consequently, current global efforts are now focused on accelerating the development of alternative pneumococcal vaccines based on proteins that contribute to pathogenesis and are common to all serotypes. Bioinformatic analysis suggests that catabolite control protein A (CcpA) can potentially regulate expression of other pneumococcal surface proteins, including StrH (an N-acetylglucosaminidase), GlpO (alpha-glycerophosphate oxidase), and MalX (a maltose/maltodextrin ABC transporter). The majority of CPS serotypes are highly charged at physiological pH, and electrostatic repulsion may directly interfere with interactions with phagocytes. The prospect of developing vaccines targeted at pneumococcal surface proteins increases the importance of understanding their role in pathogenesis, their relative expression levels in various host compartments, and the mechanism(s) whereby their expression in vivo is regulated. Current knowledge on regulatory mechanisms operating on various classes of pneumococcal surface proteins is provided in this chapter. is a highly successful, human-adapted pathogen, responsible for more than a million deaths each year. The complexity of these regulatory networks makes the task of identifying the principal determinants of virulence gene expression a challenging one. Nevertheless, a thorough dissection of the critical regulatory pathways employed by in discrete in vivo niches will undoubtedly provide an improved understanding of pneumococcal pathogenesis and possibly identify novel targets for intervention.

Citation: Ogunniyi A, Paton J. 2013. Regulation of Pneumococcal Surface Proteins and Capsule, p 190-208. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch10
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Simple schematic representation of multiple regulatory circuits impacting expression of surface proteins of . Selected surface proteins are shown in purple, and their respective or putative regulators are depicted in green. Positive regulation is shown by black arrows, while negative regulation (repression) is indicated in red. doi:10.1128/9781555818524.ch10f1

Citation: Ogunniyi A, Paton J. 2013. Regulation of Pneumococcal Surface Proteins and Capsule, p 190-208. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abeyta, M.,, G. G. Hardy,, and J. Yother. 2003. Genetic alteration of capsule type but not PspA type affects accessibility of surface-bound complement and surface antigens of Streptococcus pneumoniae. Infect. Immun. 71:218225.
2. Adamou, J. E.,, J. H. Heinrichs,, A. L. Erwin,, W. Walsh,, T. Gayle,, M. Dormitzer,, R. Dagan,, Y. A. Brewah,, P. Barren,, R. Lathigra,, S. Langermann,, S. Koenig,, and S. Johnson. 2001. Identification and characterization of a novel family of pneumococcal proteins that are protective against sepsis. Infect. Immun. 69:949958.
3. Aranda, J.,, M. E. Garrido,, N. Fittipaldi,, P. Cortes,, M. Llagostera,, M. Gottschalk,, and J. Barbe. 2010. The cation-uptake regulators AdcR and Fur are necessary for full virulence of Streptococcus suis. Vet. Microbiol. 144:246249.
4. Austrian, R. 1981. Some observations onthe pneumococcus and on the current status of pneumococcal disease and itsprevention. Rev. Infect. Dis. 3(Suppl.):S1S17.
5. Barocchi, M. A.,, J. Ries,, X. Zogaj,, C. Hemsley,, B. Albiger,, A. Kanth,, S. Dahlberg,, J. Fernebro,, M. Moschioni,, V. Masignani,, K. Hultenby,, A. R. Taddei,, K. Beiter,, F. Wartha,, A. von Euler,, A. Covacci,, D. W. Holden,, S. Normark,, R. Rappuoli,, and B. Henriques-Normark. 2006. A pneumococcal pilus influences virulence and host inflammatory responses. Proc. Natl. Acad. Sci. USA 103:28572862.
6. Bartilson, M.,, A. Marra,, J. Christine,, J. S. Asundi,, W. P Schneider,, and A. E. Hromockyj. 2001. Differential fluorescence induction reveals Streptococcus pneumoniae loci regulated by competence stimulatory peptide. Mol. Microbiol. 39:126135.
7. Bassler, B. L. 1999. How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr. Opin. Microbiol. 2:582587.
8. Belland, R. J.,, S. G. Morrison,, P. vander Ley,, and J. Swanson. 1989. Expression and phase variation of gonococcal P.II genes in Escherichia coli involves ribosomal frameshifting and slipped-strand mispairing. Mol. Microbiol. 3:777786.
9. Bender, M. H.,, R. T. Cartee,, and J. Yother. 2003. Positive correlation between tyrosine phosphorylation of CpsD and capsular polysaccharide production in Streptococcus pneumoniae. J. Bacteriol. 185:60576066.
10. Bender, M. H.,, and J. N. Weiser. 2006. The atypical amino-terminal LPNTG-containing domain of the pneumococcal human IgA1-specific protease is required for proper enzyme localization and function. Mol. Microbiol. 61:526543.
11. Bender, M. H.,, and J. Yother. 2001. CpsB is a modulator of capsule-associated tyrosine kinase activity in Streptococcus pneumoniae. J. Biol. Chem. 276:4796647974.
12. Berntsson, R. P.,, S. H. Smits,, L. Schmitt,, D. J. Slotboom,, and B. Poolman. 2010. A structural classification of substrate-binding proteins. FEBS Lett. 584:26062617.
13. Berry, A. M.,, and J. C. Paton. 2000. Additive attenuation of virulence of Streptococcus pneumoniae by mutation of the genes encoding pneumolysin and other putative pneumococcal virulence proteins. Infect. Immun. 68:133140.
14. Berry, A. M.,, and J. C. Paton. 1996. Sequence heterogeneity of PsaA, a 37-kilodalton putative adhesin essential for virulence of Streptococcus pneumoniae. Infect. Immun. 64:52555262.
15. Blue, C. E.,, and T. J. Mitchell. 2003. Contribution of a response regulator to the virulence of Streptococcus pneumoniae is strain dependent. Infect. Immun. 71:44054413.
16. Brenot, A.,, B. F. Weston,, and M. G. Caparon. 2007. A PerR-regulated metal transporter (PmtA) is an interface between oxidative stress and metal homeostasis in Streptococcus pyogenes. Mol. Microbiol. 63:11851196.
17. Briles, D. E.,, S. K. Hollingshead,, J. C. Paton,, E. W. Ades,, L. Novak,, F. W. van Ginkel,, and W. H. Benjamin, Jr. 2003. Immunizations with pneumococcal surface protein A and pneumolysin are protective against pneumonia in a murine model of pulmonary infection with Streptococcus pneumoniae. J. Infect. Dis. 188:339348.
18. Briles, D. E.,, L. Novak,, M. Hotomi,, F. W. van Ginkel,, and J. King. 2005. Nasal colonization with Streptococcus pneumoniae includes subpopulations of surface and invasive pneumococci. Infect. Immun. 73:69456951.
19. Briles, D. E.,, J. Yother,, and L. S. McDaniel. 1988. Role of pneumococcal surface protein A in the virulence of Streptococcus pneumoniae. Rev. Infect. Dis. 10(Suppl. 2):S372S374.
20. Brown, J. S.,, S. M. Gilliland,, and D. W. Holden. 2001a. A Streptococcus pneumoniae pathogenicity island encoding an ABC transporter involved in iron uptake and virulence. Mol. Microbiol. 40:572585.
21. Brown, J. S.,, A. D. Ogunniyi,, M. C. Woodrow,, D. W. Holden,, and J. C. Paton. 2001b. Immunization with components of two iron uptake ABC transporters protects mice against systemic Streptococcus pneumoniae infection. Infect. Immun. 69:67026706.
22. Brown, J. S.,, S. M. Gilliland,, J. Ruiz-Albert,, and D. W. Holden. 2002. Characterization of Pit, a Streptococcus pneumoniae iron uptake ABC transporter. Infect. Immun. 70:43894398.
23. Brueggemann, A. B.,, R. Pai,, D. W. Crook,, and B. Beall. 2007. Vaccine escape recombinants emerge after pneumococcal vaccination in the United States. PLoS Pathog. 3:e168.
24. Burnaugh, A. M.,, L. J. Frantz,, and S. J. King. 2008. Growth of Streptococcus pneumoniae on human glycoconjugates is dependent upon the sequential activity of bacterial exoglycosidases. J. Bacteriol. 190:221230.
25. Byrne, J. P.,, J. K. Morona,, J. C. Paton,, and R. Morona. 2011. Identification of Streptococcus pneumoniae Cps2C residues that affect capsular polysaccharide polymerization, cell wall ligation, and Cps2D phosphorylation. J. Bacteriol. 193:23412346.
26. Camara, M.,, G. J. Boulnois,, P. W. Andrew,, and T. J. Mitchell. 1994. A neuraminidase from Streptococcus pneumoniae has the features of a surface protein. Infect. Immun. 62:36883695.
27. Caymaris, S.,, H. J. Bootsma,, B. Martin,, P. W. Hermans,, M. Prudhomme,, and J. P. Claverys. 2010. The global nutritional regulator CodY is an essential protein in the human pathogen Streptococcus pneumoniae. Mol. Microbiol. 78:344360.
28. Chapuy-Regaud, S.,, A. D. Ogunniyi,, N. Diallo,, Y. Huet,, J. F. Desnottes,, J. C. Paton,, S. Escaich,, and M. C. Trombe. 2003. RegR, a global LacI/GalR family regulator, modulates virulence and competence in Streptococcus pneumoniae. Infect. Immun. 71:26152625.
29. Chuck, A. W.,, P. Jacobs,, G. Tyrrell,, and J. D. Kellner. 2010. Pharmacoeconomic evaluation of 10- and 13-valent pneumococcal conjugate vaccines. Vaccine 28:54855490.
30. Cieslewicz, M. J.,, D. L. Kasper,, Y. Wang,, and M. R. Wessels. 2001. Functional analysis in type Ia group B Streptococcus of a cluster of genes involved in extracellular polysaccharide production by diverse species of streptococci. J. Biol. Chem. 276:139146.
31. Claverys, J. P. 2001. A new family of high-affinity ABC manganese and zinc permeases. Res. Microbiol. 152:231243.
32. Corbin, B. D.,, E. H. Seeley,, A. Raab,, J. Feldmann,, M. R. Miller,, V. J. Torres,, K. L. Anderson,, B. M. Dattilo,, P. M. Dunman,, R. Gerads,, R. M. Caprioli,, W. Nacken,, W. J. Chazin,, and E. P. Skaar. 2008. Metal chelation and inhibition of bacterial growth in tissue abscesses. Science 319:962965.
33. Crum, N. F.,, C. P. Barrozo,, F. A. Chapman,, M. A. Ryan,, and K. L. Russell. 2004. An outbreak of conjunctivitis due to a novel unencapsulated Streptococcus pneumoniae among military trainees. Clin. Infect. Dis. 39:11481154.
34. Dalia, A. B.,, A. J. Standish,, and J. N. Weiser. 2010. Three surface exoglycosidases from Streptococcus pneumoniae, NanA, BgaA, and StrH, promote resistance to opsonophagocytic killing by human neutrophils. Infect. Immun. 78:21082116.
35. Dintilhac, A.,, G. Alloing,, C. Granadel,, and J. P. Claverys. 1997. Competence and virulence of Streptococcus pneumoniae: Adc and PsaA mutants exhibit a requirement for Zn and Mn resulting from inactivation of putative ABC metal permeases. Mol. Microbiol. 25:727739.
36. Dintilhac, A.,, and J. P. Claverys. 1997. The adc locus, which affects competence for genetic transformation in Streptococcus pneumoniae, encodes an ABC transporter with a putative lipoprotein homologous to a family of streptococcal adhesins. Res. Microbiol. 148:119131.
37. Douglas, R. M.,, J. C. Paton,, S. J. Duncan,, and D. J. Hansman. 1983. Antibody response to pneumococcal vaccination in children younger than five years of age. J. Infect. Dis. 148:131137.
38. Dziejman, M.,, and J. J. Mekalanos,. 1995. Two-component signal transduction and its role in the expression of bacterial virulence factors, p. 305317. In J. A. Hoch, and T. J. Silhavy (ed.), Two-Component Signal Transduction. ASM Press, Washington, DC.
39. Eldholm, V.,, O. Johnsborg,, D. Straume,, H. S. Ohnstad,, K. H. Berg,, J. A. Hermoso,, and L. S. Havarstein. 2010. Pneumococcal CbpD is a murein hydrolase that requires a dual cell envelope binding specificity to kill target cells during fratricide. Mol. Microbiol. 76:905917.
40. Garcia, J. L.,, A. R. Sanchez-Beato,, F. J. Medrano,, and R. Lopez. 1998. Versatility of choline-binding domain. Microb. Drug Resist. 4:2536.
41. Garcia, P.,, J. L. Garcia,, E. Garcia,, and R. Lopez. 1986. Nucleotide sequence and expression of the pneumococcal autolysin gene from its own promoter in Escherichia coli. Gene 43:265272.
42. Giammarinaro, P.,, and J. C. Paton. 2002. Role of RegM, a homologue of the catabolite repressor protein CcpA, in the virulence of Streptococcus pneumoniae. Infect. Immun. 70:54545461.
43. Giffard, P. M.,, and N. A. Jacques. 1994. Definition of a fundamental repeating unit in streptococcal glucosyltransferase glucan-binding regions and related sequences. J. Dent. Res. 73:11331141.
44. Glucksmann, M. A.,, T. L. Reuber,, and G. C. Walker. 1993. Genes needed for the modification, polymerization, export, and processing of succinoglycan by Rhizobium meliloti: a model for succinoglycan biosynthesis. J. Bacteriol. 175:70457055.
45. Gosink, K. K.,, E. R. Mann,, C. Guglielmo,, E. I. Tuomanen,, and H. R. Masure. 2000. Role of novel choline binding proteins in virulence of Streptococcus pneumoniae. Infect. Immun. 68:56905695.
46. Guidolin, A.,, J. K. Morona,, R. Morona,, D. Hansman,, and J. C. Paton. 1994. Nucleotide sequence analysis of genes essential for capsular polysaccharide biosynthesis in Streptococcus pneumoniae type 19F. Infect. Immun. 62:53845396.
47. Halfmann, A.,, M. Kovacs,, R. Hakenbeck,, and R. Bruckner. 2007. Identification of the genes directly controlled by the response regulator CiaR in Streptococcus pneumoniae: five out of 15 promoters drive expression of small non-coding RNAs. Mol. Microbiol. 66:110126.
48. Hamel, J.,, N. Charland,, I. Pineau,, C. Ouellet,, S. Rioux,, D. Martin,, and B. R. Brodeur. 2004. Prevention of pneumococcal disease in mice immunized with conserved surface-accessible proteins. Infect. Immun. 72:26592670.
49. Hammerschmidt, S.,, S. Wolff,, A. Hocke,, S. Rosseau,, E. Muller,, and M. Rohde. 2005. Illustration of pneumococcal polysaccharide capsule during adherence and invasion of epithelial cells. Infect. Immun. 73:46534667.
50. Hardy, G. G.,, A. D. Magee,, C. L. Ventura,, M. J. Caimano,, and J. Yother. 2001. Essential role for cellular phosphoglucomutase in virulence of type 3 Streptococcus pneumoniae. Infect. Immun. 69:23092317.
51. Hava, D. L.,, and A. Camilli. 2002. Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Mol. Microbiol. 45:13891406.
52. Hava, D. L.,, C. J. Hemsley,, and A. Camilli. 2003. Transcriptional regulation in the Streptococcus pneumoniae rlrA pathogenicity islet by RlrA. J. Bacteriol. 185:413421.
53. Hemsley, C.,, E. Joyce,, D. L. Hava,, A. Kawale,, and A. Camilli. 2003. MgrA, an orthologue of Mga, Acts as a transcriptional repressor of the genes within the rlrA pathogenicity islet in Streptococcus pneumoniae. J. Bacteriol. 185:66406647.
54. Hendriksen, W. T.,, H. J. Bootsma,, A. van Diepen,, S. Estevao,, O. P. Kuipers,, R. de Groot,, and P. W. Hermans. 2009. Strain-specific impact of PsaR of Streptococcus pneumoniae on global gene expression and virulence. Microbiology 155:15691579.
55. Hendriksen, W. T.,, T. G. Kloosterman,, H. J. Bootsma,, S. Estevao,, R. de Groot,, O. P. Kuipers,, and P. W. Hermans. 2008. Site-specific contributions of glutamine-dependent regulator GlnR and GlnR-regulated genes to virulence of Streptococcus pneumoniae. Infect. Immun. 76:12301238.
56. Hendriksen, W. T.,, N. Silva,, H. J. Bootsma,, C. E. Blue,, G. K. Paterson,, A. R. Kerr,, A. de Jong,, O. P. Kuipers,, P. W. Hermans,, and T. J. Mitchell. 2007. Regulation of gene expression in Streptococcus pneumoniae by response regulator 09 is strain dependent. J. Bacteriol. 189:13821389.
57. Hicks, L. A.,, L. H. Harrison,, B. Flannery,, J. L. Hadler,, W. Schaffner,, A. S. Craig,, D. Jackson,, A. Thomas,, B. Beall,, R. Lynfield,, A. Reingold,, M. M. Farley,, and C. G. Whitney. 2007. Incidence of pneumococcal disease due to non-pneumococcal conjugate vaccine (PCV7) serotypes in the United States during the era of widespread PCV7 vaccination, 1998-2004. J. Infect. Dis. 196:1346-1354.
58. Hilleringmann, M.,, F. Giusti,, B. C. Baudner,, V. Masignani,, A. Covacci,, R. Rappuoli,, M. A. Barocchi,, and I. Ferlenghi. 2008. Pneumococcal pili are composed of protofilaments exposing adhesive clusters of Rrg A. PLoS Pathog. 4:e1000026.
59. Hilleringmann, M.,, P. Ringler,, S. A. Muller,, G. De Angelis,, R. Rappuoli,, I. Ferlenghi,, and A. Engel. 2009. Molecular architecture of Streptococcus pneumoniae TIGR4 pili. EMBO J. 28:39213930.
60. Hoskins, J.,, W. E. Alborn, Jr.,, J. Arnold,, L. C. Blaszczak,, S. Burgett,, B. S. DeHoff,, S. T. Estrem,, L. Fritz,, D. J. Fu,, W. Fuller,, C. Geringer,, R. Gilmour,, J. S. Glass,, H. Khoja,, A. R. Kraft,, R. E. Lagace,, D. J. LeBlanc,, L. N. Lee,, E. J. Lefkowitz,, J. Lu,, P. Matsushima,, S. M. McAhren,, M. McHenney,, K. McLeaster,, C. W. Mundy,, T. I. Nicas,, F. H. Norris,, M. O’Gara,, R. B. Peery,, G. T. Robertson,, P. Rockey,, P. M. Sun,, M. E. Winkler,, Y. Yang,, M. Young-Bellido,, G. Zhao,, C. A. Zook,, R. H. Baltz,, S. R. Jaskunas,, P. R. Rosteck, Jr.,, P. L. Skatrud,, and J. I. Glass. 2001. Genome of the bacterium Streptococcus pneumoniae strain R6. J. Bacteriol. 183:57095717.
61. Hostetter, M. K. 1999. Opsonic and nonopsonic interactions of C3 with Streptococcus pneumoniae. Microb. Drug Resist. 5:8589.
62. Ibrahim, Y. M.,, A. R. Kerr,, J. McCluskey,, and T. J. Mitchell. 2004. Control of virulence by the two-component system CiaR/H is mediated via HtrA, a major virulence factor of Streptococcus pneumoniae. J. Bacteriol. 186:52585266.
63. Iyer, R.,, N. S. Baliga,, and A. Camilli. 2005. Catabolite control protein A (CcpA) contributes to virulence and regulation of sugar metabolism in Streptococcus pneumoniae. J. Bacteriol. 187:83408349.
64. Jacobsen, F. E.,, K. M. Kazmierczak,, J. P. Lisher,, M. E. Winkler,, and D. P. Giedroc. 2011. Interplay between manganese and zinc homeostasis in the human pathogen Streptococcus pneumoniae. Metallomics 3:3841.
65. Jedrzejas, M. J. 2001. Pneumococcal virulence factors: structure and function. Microbiol. Mol. Biol. Rev. 65:187207.
66. Jennings, M. P.,, Y. N. Srikhanta,, E. R. Moxon,, M. Kramer,, J. T. Poolman,, B. Kuipers,, and P. van der Ley. 1999. The genetic basis of the phase variation repertoire of lipopolysaccharide immunotypes in Neisseria meningitidis. Microbiology 145(Pt. 11):30133021.
67. Johnsborg, O.,, and L. S. Håvarstein. 2009. Regulation of natural genetic transformation and acquisition of transforming DNA in Streptococcus pneumoniae. FEMS Microbiol. Rev. 33:627642.
68. Johnston, J. W.,, D. E. Briles,, L. E. Myers,, and S. K. Hollingshead. 2006. Mn2+-dependent regulation of multiple genes in Streptococcus pneumoniae through PsaR and the resultant impact on virulence. Infect. Immun. 74:11711180.
69. Joyce, E. A.,, A. Kawale,, S. Censini,, C. C. Kim,, A. Covacci,, and S. Falkow. 2004. LuxS is required for persistent pneumococcal carriage and expression of virulence and biosynthesis genes. Infect. Immun. 72:29642975.
70. Kadioglu, A.,, J. Echenique,, S. Manco,, M. C. Trombe,, and P. W. Andrew. 2003. The MicAB two-component signaling system is involved in virulence of Streptococcus pneumoniae. Infect. Immun. 71:66766679.
71. Kaufman, G. E. 2007. Characterization of a global regulatory pathway in Streptococcus pneumoniae. Ph.D. thesis. The University of Alabama at Birmingham.
72. Kaufman, G. E.,, and J. Yother. 2007. CcpA-dependent and -independent control of beta-galactosidase expression in Streptococcus pneumoniae occurs via regulation of an upstream phosphotransferase system-encoding operon. J. Bacteriol. 189:51835192.
73. Kausmally, L.,, O. Johnsborg,, M. Lunde,, E. Knutsen,, and L. S. Havarstein. 2005. Choline-binding protein D (CbpD) in Streptococcus pneumoniae is essential for competence-induced cell lysis. J. Bacteriol. 187:43384345.
74. Kharat, A. S.,, and A. Tomasz. 2003. Inactivation of the srtA gene affects localization of surface proteins and decreases adhesion of Streptococcus pneumoniae to human pharyngeal cells in vitro. Infect. Immun. 71:27582765.
75. Kim, J. O.,, and J. N. Weiser. 1998. Association of intrastrain phase variation in quantity of capsular polysaccharide and teichoic acid with the virulence of Streptococcus pneumoniae. J. Infect. Dis. 177:368377.
76. King, S. J.,, K. R. Hippe,, J. M. Gould,, D. Bae,, S. Peterson,, R. T. Cline,, C. Fasching,, E. N. Janoff,, and J. N. Weiser. 2004. Phase variable desialylation of host proteins that bind to Streptococcus pneumoniae in vivo and protect the airway. Mol. Microbiol. 54:159171.
77. King, S. J.,, K. R. Hippe,, and J. N. Weiser. 2006. Deglycosylation of human glycoconjugates by the sequential activities of exoglycosidases expressed by Streptococcus pneumoniae. Mol. Microbiol. 59:961974.
78. Kloosterman, T. G.,, W. T. Hendriksen,, J. J. Bijlsma,, H. J. Bootsma,, S. A. van Hijum,, J. Kok,, P. W. Hermans,, and O. P. Kuipers. 2006. Regulation of glutamine and glutamate metabolism by GlnR and GlnA in Streptococcus pneumoniae. J. Biol. Chem. 281:2509725109.
79. Kloosterman, T. G.,, R. M. Witwicki,, M. M. van der Kooi-Pol,, J. J. Bijlsma,, and O. P. Kuipers. 2008. Opposite effects of Mn2+ and Zn2+ on PsaR-mediated expression of the virulence genes pcpA, prtA, and psaBCA of Streptococcus pneumoniae. J. Bacteriol. 190:53825393.
80. Lange, R.,, C. Wagner,, A. de Saizieu,, N. Flint,, J. Molnos,, M. Stieger,, P. Caspers,, M. Kamber,, W. Keck,, and K. E. Amrein. 1999. Domain organization and molecular characterization of 13 two-component systems identified by genome sequencing of Streptococcus pneumoniae. Gene 237:223234.
81. Lau, G. W.,, S. Haataja,, M. Lonetto,, S. E. Kensit,, A. Marra,, A. P. Bryant,, D. McDevitt,, D. A. Morrison,, and D. W. Holden. 2001. A functional genomic analysis of type 3 Streptococcus pneumoniae virulence. Mol. Microbiol. 40:555571.
82. Lawrence, M. C.,, P. A. Pilling,, V. C. Epa,, A. M. Berry,, A. D. Ogunniyi,, and J. C. Paton. 1998. The crystal structure of pneumococcal surface antigen PsaA reveals a metal-binding site and a novel structure for a putative ABC-type binding protein. Structure 6:15531561.
83. Lee, C. J.,, S. D. Banks,, and J. P. Li. 1991. Virulence, immunity, and vaccine related to Streptococcus pneumoniae. Crit. Rev. Microbiol. 18:89114.
84. LeMessurier, K. S.,, A. D. Ogunniyi,, and J. C. Paton. 2006. Differential expression of key pneumococcal virulence genes in vivo. Microbiology 152:305311.
85. LeMieux, J.,, D. L. Hava,, A. Basset,, and A. Camilli. 2006. RrgA and RrgB are components of a multisubunit pilus encoded by the Streptococcus pneumoniae rlrA pathogenicity islet. Infect. Immun. 74:24532456.
86. Lipsitch, M.,, J. K. Dykes,, S. E. Johnson,, E. W. Ades,, J. King,, D. E. Briles,, and G. M. Carlone. 2000. Competition among Streptococcus pneumoniae for intranasal colonization in a mouse model. Vaccine 18:28952901.
87. Loisel, E.,, S. Chimalapati,, C. Bougault,, A. Imberty,, B. Gallet,, A. M. Di Guilmi,, J. Brown,, T. Vernet,, and C. Durmort. 2011. Biochemical characterization of the histidine triad protein PhtD as a cell surface zinc-binding protein of pneumococcus. Biochemistry 50:35513558.
88. Loisel, E.,, L. Jacquamet,, L. Serre,, C. Bauvois,, J. L. Ferrer,, T. Vernet,, A. M. Di Guilmi,, and C. Durmort. 2008. AdcAII, a new pneumococcal Zn-binding protein homologous with ABC transporters: biochemical and structural analysis. J. Mol. Biol. 381:594606.
89. Magee, A. D.,, and J. Yother. 2001. Requirement for capsule in colonization by Streptococcus pneumoniae. Infect. Immun. 69:37553761.
90. Mahdi, L. K.,, A. D. Ogunniyi,, K. S. LeMessurier,, and J. C. Paton. 2008. Pneumococcal virulence gene expression and host cytokine profiles during pathogenesis of invasive disease. Infect. Immun. 76:646657.
91. Marra, A.,, S. Lawson,, J. S. Asundi,, D. Brigham,, and A. E. Hromockyj. 2002a. In vivo characterization of the psa genes from Streptococcus pneumoniae in multiple models of infection. Microbiology 148:14831491.
92. Marra, A.,, J. Asundi,, M. Bartilson,, S. Lawson,, F. Fang,, J. Christine,, C. Wiesner,, D. Brigham,, W. P. Schneider,, and A. E. Hromockyj. 2002b. Differential fluorescence induction analysis of Streptococcus pneumoniae identifies genes involved in pathogenesis. Infect. Immun. 70:14221433.
93. Marraffini, L. A.,, A. C. Dedent,, and O. Schneewind. 2006. Sortases and the art of anchoring proteins to the envelopes of gram-positive bacteria. Microbiol. Mol. Biol. Rev. 70:192221.
94. Martin, M.,, J. H. Turco,, M. E. Zegans,, R. R. Facklam,, S. Sodha,, J.A. Elliott,, J. H. Pryor,, B. Beall,, D. D. Erdman,, Y. Y. Baumgartner,, P. A. Sanchez,, J. D. Schwartzman,, J. Montero,, A. Schuchat,, and C. G. Whitney. 2003. An outbreak of conjunctivitis due to atypical Streptococcus pneumoniae. N. Engl. J. Med. 348:11121121.
95. Maruvada, R.,, N. V. Prasadarao,, and C. E. Rubens. 2009. Acquisition of factor H by a novel surface protein on group B Streptococcus promotes complement degradation. FASEB J. 23:39673977.
96. McAllister, L. J.,, H. J. Tseng,, A. D. Ogunniyi,, M. P. Jennings,, A. G. McEwan,, and J. C. Paton. 2004. Molecular analysis of the psa permease complex of Streptococcus pneumoniae. Mol. Microbiol. 53:889901.
97. McCluskey, J.,, J. Hinds,, S. Husain,, A. Witney,, and T. J. Mitchell. 2004. A two-component system that controls the expression of pneumococcal surface antigen A (PsaA) and regulates virulence and resistance to oxidative stress in Streptococcus pneumoniae. Mol. Microbiol. 51:16611675.
98. McDevitt, C.A.,, A. D. Ogunniyi,, E. Valkov,, M. C. Lawrence,, B. Kobe,, A. G. McEwan,, and J. C. Paton. 2011. A molecular mechanism for bacterial susceptibility to zinc. PLoS Pathog. 7:e1002357.
99. McKessar, S. 2003. The characterisation of phase variation and a novel fimbrial protein in Streptococcus pneumoniae. Ph.D. thesis. The University of Adelaide, Adelaide, Australia.
100. Melin, M.,, E. Di Paolo,, L. Tikkanen,, H. Jarva,, C. Neyt,, H. Kayhty,, S. Meri,, J. Poolman,, and M. Vakevainen. 2010. Interaction of pneumococcal histidine triad proteins with human complement. Infect. Immun. 78:20892098.
101. Mollerach, M.,, R. Lopez,, and E. Garcia. 1998. Characterization of the galU gene of Streptococcus pneumoniae encoding a uridine diphosphoglucose pyrophosphorylase: a gene essential for capsular polysaccharide biosynthesis. J. Exp. Med. 188:20472056.
102. Morona, J. K.,, D. C. Miller,, R. Morona,, and J. C. Paton. 2004. The effect that mutations in the conserved capsular polysaccharide biosynthesis genes cpsA, cpsB and cpsD have on virulence of Streptococcus pneumoniae. J. Infect. Dis. 189:19051913.
103. Morona, J. K.,, R. Morona,, D. C. Miller,, and J. C. Paton. 2002. Streptococcus pneumoniae capsule biosynthesis protein CpsB is a novel manganese-dependent phosphotyrosine-protein phosphatase. J. Bacteriol. 184:577583.
104. Morona, J. K.,, R. Morona,, D. C. Miller,, and J. C. Paton. 2003. Mutational analysis of the carboxy-terminal (YGX)4 repeat domain of CpsD, an autophosphorylating tyrosine kinase required for capsule biosynthesis in Streptococcus pneumoniae. J. Bacteriol. 185:30093019.
105. Morona, J. K.,, R. Morona,, and J. C. Paton. 2006. Attachment of capsular polysaccharide to the cell wall of Streptococcus pneumoniae type 2 is required for invasive disease. Proc. Natl. Acad. Sci. USA 103:85058510.
106. Morona, J. K.,, J. C. Paton,, D. C. Miller,, and R. Morona. 2000a. Tyrosine phosphorylation of CpsD negatively regulates capsular polysaccharide biosynthesis in Streptococcus pneumoniae. Mol. Microbiol. 35:14311442.
107. Morona, R.,, L. Van Den Bosch,, and C. Daniels. 2000b. Evaluation of Wzz/MPA1/MPA2 proteins based on the presence of coiled-coil regions. Microbiology 146:14.
108. Moscoso, M.,, and E. Garcia. 2009. Transcriptional regulation of the capsular polysaccharide biosynthesis locus of Streptococcus pneumoniae: a bioinformatic analysis. DNA Res. 16:177186.
109. Musher, D. M. 1992. Infections caused by Streptococcus pneumoniae: clinical spectrum, pathogenesis, immunity, and treatment. Clin. Infect. Dis. 14:801807.
110. Nan, R.,, J. Gor,, I. Lengyel,, and S. J. Perkins. 2008. Uncontrolled zinc- and copper-induced oligomerisation of the human complement regulator factor H and its possible implications for function and disease. J. Mol. Biol. 384:13411352.
111. Nelson, A. L.,, J. Ries,, F. Bagnoli,, S. Dahlberg,, S. Falker,, S. Rounioja,, J. Tschop,, E. Morfeldt,, I. Ferlenghi,, M. Hilleringmann,, D. W. Holden,, R. Rappuoli,, S. Normark,, M. A. Barocchi,, and B. Henriques-Normark. 2007a. RrgA is a pilus-associated adhesin in Streptococcus pneumoniae. Mol. Microbiol. 66:329340.
112. Nelson, A. L.,, A. M. Roche,, J. M. Gould,, K. Chim,, A. J. Ratner,, and J. N. Weiser. 2007b. Capsule enhances pneumococcal colonization by limiting mucus-mediated clearance. Infect. Immun. 75:8390.
113. Ng, W. L.,, H. C. Tsui,, and M. E. Winkler. 2005. Regulation of the pspA virulence factor and essential pcsB murein biosynthetic genes by the phosphorylated VicR (YycF) response regulator in Streptococcus pneumoniae. J. Bacteriol. 187:74447459.
114. O'Brien, K. L.,, L. J. Wolfson,, J. P. Watt,, E. Henkle,, M. Deloria-Knoll,, N. McCall,, E. Lee,, K. Mulholland,, O. S. Levine,, and T. Cherian. 2009. Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. Lancet 374:893902.
115. Ogunniyi, A. D.,, R. L. Folland,, D. E. Briles,, S. K. Hollingshead,, and J. C. Paton. 2000. Immunization of mice with combinations of pneumococcal virulence proteins elicits enhanced protection against challenge with Streptococcus pneumoniae. Infect. Immun. 68:30283033.
116. Ogunniyi, A. D.,, P. Giammarinaro,, and J. C. Paton. 2002. The genes encoding virulence-associated proteins and the capsule of Streptococcus pneumoniae are upregulated and differentially expressed in vivo. Microbiology 148:20452053.
117. Ogunniyi, A. D.,, M. Grabowicz,, D. E. Briles,, J. Cook,, and J. C. Paton. 2007a. Development of a vaccine against invasive pneumococcal disease based on combinations of virulence proteins of Streptococcus pneumoniae. Infect. Immun. 75:350357.
118. Ogunniyi, A. D.,, K. S. LeMessurier,, R. M. Graham,, J. M. Watt,, D. E. Briles,, U. H. Stroeher,, and J. C. Paton. 2007b. Contributions of pneumolysin, pneumococcal surface protein A (PspA), and PspC to pathogenicity of Streptococcus pneumoniae D39 in a mouse model. Infect. Immun. 75:18431851.
119. Ogunniyi, A. D.,, M. Grabowicz,, L. K. Mahdi,, J. Cook,, D. L. Gordon,, T. A. Sadlon,, and J. C. Paton. 2009. Pneumococcal histidine triad proteins are regulated by the Zn2+-dependent repressor AdcR and inhibit complement deposition through the recruitment of complement factor H. FASEB J. 23:731738.
120. Ogunniyi, A. D.,, L. K. Mahdi,, M. P. Jennings,, A. G. McEwan,, C.A. McDevitt,, M. B. Van der Hoek,, C. J. Bagley,, P. Hoffmann,, K. A. Gould,, and J. C. Paton. 2010. Central role of manganese in regulation of stress responses, physiology, and metabolism in Streptococcus pneumoniae. J. Bacteriol. 192:44894497.
121. Ogunniyi, A. D.,, M. C. Woodrow,, J. T. Poolman,, and J. C. Paton. 2001. Protection against Streptococcus pneumoniae elicited by immunization with pneumolysin and CbpA. Infect. Immun. 69:59976003.
122. Orihuela, C. J.,, J. N. Radin,, J. E. Sublett,, G. Gao,, D. Kaushal,, and E. I. Tuomanen. 2004. Microarray analysis of pneumococcal gene expression during invasive disease. Infect. Immun. 72:55825596.
123. Overweg, K.,, C. D. Pericone,, G. G. Verhoef,, J. N. Weiser,, H. D. Meiring,, A. P. De Jong,, R. De Groot,, and P. W. Hermans. 2000. Differential protein expression in phenotypic variants of Streptococcus pneumoniae. Infect. Immun. 68:46044610.
124. Panina, E. M.,, A. A. Mironov,, and M. S. Gelfand. 2003. Comparative genomics of bacterial zinc regulons: enhanced ion transport, pathogenesis, and rearrangement of ribosomal proteins. Proc. Natl. Acad. Sci. USA 100:99129917.
125. Paterson, G. K.,, C. E. Blue,, and T. J. Mitchell. 2006. Role of two-component systems in the virulence of Streptococcus pneumoniae. J. Med. Microbiol. 55:355363.
126. Paterson, G. K.,, and T. J. Mitchell. 2006. The role of Streptococcus pneumoniae sortase A in colonisation and pathogenesis. Microbes Infect. 8:145153.
127. Paton, J. C., 2004. New pneumococcalvaccines: basic science developments, p. 382402. In E. I. Tuomanen,, T. J. Mitchell,, D. A. Morrison,, and B. G. Spratt (ed.), The Pneumococcus. ASM Press, Washington, DC.
128. Paton, J. C. 1998. Novel pneumococcalsurface proteins: role in virulence and vaccine potential. TrendsMicrobiol. 6:8587; discussion, 87-88.
129. Paton, J. C.,, P. W. Andrew,, G. J. Boulnois,, and T. J. Mitchell. 1993. Molecular analysis of the pathogenicity of Streptococcus pneumoniae: the role of pneumococcal proteins. Annu. Rev. Microbiol. 47:89115.
130. Paton, J. C.,, A. M. Berry,, and R. A. Lock. 1997. Molecular analysis of putative pneumococcal virulence proteins. Microb. Drug Resist. 3:110.
131. Peak, I. R.,, M. P. Jennings,, D. W. Hood,, M. Bisercic,, and E. R. Moxon. 1996. Tetrameric repeat units associated with virulence factor phase variation in Haemophilus also occur in Neisseria spp. and Moraxella catarrhalis. FEMS Microbiol. Lett. 137:109114.
132. Pericone, C. D.,, D. Bae,, M. Shchepetov,, T. McCool,, and J. N. Weiser. 2002. Short-sequence tandem and nontandem DNA repeats and endogenous hydrogen peroxide production contribute to genetic instability of Streptococcus pneumoniae. J. Bacteriol. 184:43924399.
133. Polissi, A.,, A. Pontiggia,, G. Feger,, M. Altieri,, H. Mottl,, L. Ferrari,, and D. Simon. 1998. Large-scale identification of virulence genes from Streptococcus pneumoniae. Infect. Immun. 66:56205629.
134. Rajam, G.,, J. M. Anderton,, G. M. Carlone,, J. S. Sampson,, and E. W. Ades. 2008. Pneumococcal surface adhesin A (PsaA): a review. Crit. Rev. Microbiol. 34:131142.
135. Reinert, R. R. 2009. The public health ramifications of pneumococcal resistance. Clin. Microbiol. Infect. 15(Suppl. 3):13.
136. Reinert, R. R. 2009b. The antimicrobialresistance profile of Streptococcus pneumoniae. Clin. Microbiol. Infect. 15(Suppl. 3):711.
137. Reyes-Caballero, H.,, A. J. Guerra,, F. E. Jacobsen,, K. M. Kazmierczak,, D. Cowart,, U. M. Koppolu,, R. A. Scott,, M. E. Winkler,, and D. P. Giedroc. 2010. The metalloregulatory zinc site in Streptococcus pneumoniae AdcR, a zinc-activated MarR family repressor. J. Mol. Biol. 403:197216.
138. Riboldi-Tunnicliffe, A.,, N. W. Isaacs,, and T. J. Mitchell. 2005. 1.2 Å crystal structure of the S. pneumoniae PhtA histidine triad domain a novel zinc binding fold. FEBS Lett. 579:53535360.
139. Rioux, S.,, C. Neyt,, E. Di Paolo,, L. Turpin,, N. Charland,, S. Labbe,, M. C. Mortier,, T. J. Mitchell,, C. Feron,, D. Martin,, and J. T. Poolman. 2011. Transcriptional regulation, occurrence and putative role of the Pht family of Streptococcus pneumoniae. Microbiology 157:336348.
140. Rosch, J. W.,, B. Mann,, J. Thornton,, J. Sublett,, and E. Tuomanen. 2008. Convergence of regulatory networks on the pilus locus of Streptococcus pneumoniae. Infect. Immun. 76:31873196.
141. Rosenow, C.,, M. Maniar,, and J. Trias. 1999. Regulation of the alpha-galactosidase activity in Streptococcus pneumoniae: characterization of the raffinose utilization system. Genome Res. 9:11891197.
142. Rosenow, C.,, P. Ryan,, J. N. Weiser,, S. Johnson,, P. Fontan,, A. Ortqvist,, and H. R. Masure. 1997. Contribution of novel choline-binding proteins to adherence, colonization and immunogenicity of Streptococcus pneumoniae. Mol. Microbiol. 25:819829.
143. Russell, H.,, J. A. Tharpe,, D. E. Wells,, E. H. White,, and J. E. Johnson. 1990. Monoclonal antibody recognizing a species-specific protein from Streptococcus pneumoniae. J. Clin. Microbiol. 28:21912195.
144. Saluja, S. K.,, and J. N. Weiser. 1995. The genetic basis of colony opacity in Streptococcus pneumoniae: evidence for the effect of box elements on the frequency of phenotypic variation. Mol. Microbiol. 16:215227.
145. Sanchez-Beato, A. R.,, R. Lopez,, and J. L. Garcia. 1998. Molecular characterization of PcpA: a novel choline-binding protein of Streptococcus pneumoniae. FEMS Microbiol. Lett. 164:207214.
146. Sebert, M. E.,, L. M. Palmer,, M. Rosenberg,, and J. N. Weiser. 2002. Microarray-based identification of htrA, a Streptococcus pneumoniae gene that is regulated by the CiaRH two-component system and contributes to nasopharyngeal colonization. Infect. Immun. 70:40594067.
147. Shafeeq, S.,, T. G. Kloosterman,, and O. P. Kuipers. 2011. Transcriptional response of Streptococcus pneumoniae to Zn2+ limitation and the repressor/activator function of AdcR. Metallomics 3:609618.
148. Song, X. M.,, W. Connor,, K. Hokamp,, L. A. Babiuk,, and A. A. Potter. 2009. The growth phase-dependent regulation of the pilus locus genes by two-component system TCS08 in Streptococcus pneumoniae. Microb. Pathog. 46:2835.
149. Spratt, B. G.,, and B. M. Greenwood. 2000. Prevention of pneumococcal disease by vaccination: does serotype replacement matter? Lancet 356:12101211.
150. Standish, A. J.,, U. H. Stroeher,, and J. C. Paton. 2007. The pneumococcal two-component signal transduction system RR/HK06 regulates CbpA and PspA by two distinct mechanisms. J. Bacteriol. 189:55915600.
151. Standish, A. J.,, U. H. Stroeher,, and J. C. Paton. 2005. The two-component signal transduction system RR06/HK06 regulates expression of cbpA in Streptococcus pneumoniae. Proc. Natl. Acad. Sci. USA 102:77017706.
152. Stroeher, U. H.,, A. W. Paton,, A. D. Ogunniyi,, and J. C. Paton. 2003. Mutation of luxS of Streptococcus pneumoniae affects virulence in a mouse model. Infect. Immun. 71:32063212.
153. Tai, S. S.,, C. J. Lee,, and R. E. Winter. 1993. Hemin utilization is related to virulence of Streptococcus pneumoniae. Infect. Immun. 61:54015405.
154. Tai, S. S.,, T. R. Wang,, and C. J. Lee. 1997. Characterization of hemin binding activity of Streptococcus pneumoniae. Infect. Immun. 65:10831087.
155. Talbot, U. M.,, A. W. Paton,, and J. C. Paton. 1996. Uptake of Streptococcus pneumoniae by respiratory epithelial cells. Infect. Immun. 64:37723777.
156. Tettelin, H.,, K. E. Nelson,, I. T. Paulsen,, J. A. Eisen,, T. D. Read,, S. Peterson,, J. Heidelberg,, R. T. DeBoy,, D. H. Haft,, R. J. Dodson,, A. S. Durkin,, M. Gwinn,, J. F. Kolonay,, W. C. Nelson,, J. D. Peterson,, L. A. Umayam,, O. White,, S. L. Salzberg,, M. R. Lewis,, D. Radune,, E. Holtzapple,, H. Khouri,, A. M. Wolf,, T. R. Utterback,, C. L. Hansen,, L. A. McDonald,, T. V. Feldblyum,, S. Angiuoli,, T. Dickinson,, E. K. Hickey,, I. E. Holt,, B. J. Loftus,, F. Yang,, H. O. Smith,, J. C. Venter,, B. A. Dougherty,, D. A. Morrison,, S. K. Hollingshead,, and C. M. Fraser. 2001. Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293:498506.
157. Throup, J. P.,, K. K. Koretke,, A. P. Bryant,, K. A. Ingraham,, A. F. Chalker,, Y. Ge,, A. Marra,, N. G. Wallis,, J. R. Brown,, D. J. Holmes,, M. Rosenberg,, and M. K. Burnham. 2000. A genomic analysis of two-component signal transduction in Streptococcus pneumoniae. Mol. Microbiol. 35:566576.
158. Tomasz, A. 1965. Control of the competent state in Pneumococcus by a hormone-like cell product: an example for a new type of regulatory mechanism in bacteria. Nature 208:155159.
159. Tomasz, A. 1966. Model for the mechanism controlling the expression of competent state in Pneumococcus cultures. J. Bacteriol. 91:10501061.
160. Trappetti, C.,, A. D. Ogunniyi,, M. R. Oggioni,, and J. C. Paton. 2011a. Extracellular matrix formation enhances the ability of Streptococcus pneumoniae to cause invasive disease. PLoS One 6:e19844.
161. Trappetti, C.,, A. J. Potter,, A. W. Paton,, M. R. Oggioni,, and J. C. Paton. 2011b. LuxS mediates iron-dependent biofilm formation, competence, and fratricide in Streptococcus pneumoniae. Infect. Immun. 79:45504558.
162. Tuomanen, E. I.,, and H. R. Masure. 1997. Molecular and cellular biology of pneumococcal infection. Microb. Drug Resist. 3:297308.
163. Ulijasz, A. T.,, D. R. Andes,, J. D. Glasner,, and B. Weisblum. 2004. Regulation of iron transport in Streptococcus pneumoniae by RitR, an orphan response regulator. J. Bacteriol. 186:81238136.
164. Ulijasz, A. T.,, S. P. Falk,, and B. Weisblum. 2009. Phosphorylation of the RitR DNA-binding domain by a Ser-Thr phosphokinase: implications for global gene regulation in the streptococci. Mol. Microbiol. 71:382390.
165. van Opijnen, T.,, K. L. Bodi,, and A. Camilli. 2009. Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat. Methods 6:767772.
166. Ventura, C. L.,, R. T. Cartee,, W. T. Forsee,, and J. Yother. 2006. Control of capsular polysaccharide chain length by UDP-sugar substrate concentrations in Streptococcus pneumoniae. Mol. Microbiol. 61:723733.
167. Wagner, C.,, A. de Saizieu,, H.-J. Schönfeld,, M. Kamber,, R. Lange,, C. J. Thompson,, and M. G. Page. 2002. Genetic analysis and functional characterization of the Streptococcus pneumoniae vic operon. Infect. Immun. 70:61216128.
168. Waite, R. D.,, D. W. Penfold,, J. K. Struthers,, and C. G. Dowson. 2003. Spontaneous sequence duplications within capsule genes cap8E and tts control phase variation in Streptococcus pneumoniae serotypes 8 and 37. Microbiology 149:497504.
169. Waite, R. D.,, J. K. Struthers,, and C. G. Dowson. 2001. Spontaneous sequence duplication within an open reading frame of the pneumococcal type 3 capsule locus causes high-frequency phase variation. Mol. Microbiol. 42:12231232.
170. Wani, J. H.,, J. V. Gilbert,, A. G. Plaut,, and J. N. Weiser. 1996. Identification, cloning, and sequencing of the immunoglobulin A1 protease gene of Streptococcus pneumoniae. Infect. Immun. 64:39673974.
171. Wartha, F.,, K. Beiter,, B. Albiger,, J. Fernebro,, A. Zychlinsky,, S. Normark,, and B. Henriques-Normark. 2007. Capsule and D-alanylated lipoteichoic acids protect Streptococcus pneumoniae against neutrophil extracellular traps. Cell. Microbiol. 9:11621171.
172. Weickert, M. J.,, and S. Adhya. 1992. A family of bacterial regulators homologous to Gal and Lac repressors. J. Biol. Chem. 267:1586915874.
173. Weickert, M. J.,, and G. H. Chambliss. 1990. Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 87:62386242.
174. Weiser, J. N. 1998. Phase variation in colony opacity by Streptococcus pneumoniae. Microb. Drug Resist. 4:129135.
175. Weiser, J. N., 2004. Mechanisms of carriage, p. 169182. In E. I. Tuomanen,, T. J. Mitchell,, D. A. Morrison,, and B. G. Spratt (ed.), The Pneumococcus. ASM Press, Washington, DC.
176. Weiser, J. N.,, R. Austrian,, P. K. Sreenivasan,, and H. R. Masure. 1994. Phase variation in pneumococcal opacity: relationship between colonial morphology and nasopharyngeal colonization. Infect. Immun. 62:25822589.
177. Weiser, J. N.,, D. Bae,, H. Epino,, S. B. Gordon,, M. Kapoor,, L. A. Zenewicz,, and M. Shchepetov. 2001. Changes in availability of oxygen accentuate differences in capsular polysaccharide expression by phenotypic variants and clinical isolates of Streptococcus pneumoniae. Infect. Immun. 69:54305439.
178. Weiser, J. N.,, J. M. Love,, and E. R. Moxon. 1989. The molecular mechanism of phase variation of H. influenzae lipopolysaccharide. Cell 59:657665.
179. Weiser, J. N.,, Z. Markiewicz,, E. I. Tuomanen,, and J. H. Wani. 1996. Relationship between phase variation in colony morphology, intrastrain variation in cell wall physiology, and nasopharyngeal colonization by Streptococcus pneumoniae. Infect. Immun. 64:22402245.
180. Whitfield, C.,, and A. Paiment. 2003. Biosynthesis and assembly of group 1 capsular polysaccharides in Escherichia coli and related extracellular polysaccharides in other bacteria. Carbohydr. Res. 338:24912502.
181. Whitfield, C.,, and I. S. Roberts. 1999. Structure, assembly and regulation of expression of capsules in Escherichia coli. Mol. Microbiol. 31:13071319.
182. Winkelstein, J. A. 1981. The role of complement in the host’s defense against Streptococcus pneumoniae. Rev. Infect. Dis. 3:289298.
183. Wizemann, T. M.,, J. H. Heinrichs,, J. E. Adamou,, A. L. Erwin,, C. Kunsch,, G. H. Choi,, S. C. Barash,, C. A. Rosen,, H. R. Masure,, E. Tuomanen,, A. Gayle,, Y. A. Brewah,, W. Walsh,, P. Barren,, R. Lathigra,, M. Hanson,, S. Langermann,, S. Johnson,, and S. Koenig. 2001. Use of a whole genome approach to identify vaccine molecules affording protection against Streptococcus pneumoniae infection. Infect. Immun. 69:15931598.
184. Yamaguchi, M.,, Y. Minamide,, Y. Terao,, R. Isoda,, T. Ogawa,, S. Yokota,, S. Hamada,, and S. Kawabata. 2009. Nrc of Streptococcus pneumoniae suppresses capsule expression and enhances anti-phagocytosis. Biochem. Biophys. Res. Commun. 390:155160.
185. Yang, Q. L.,, and E. C. Gotschlich. 1996. Variation of gonococcal lipooligosaccharide structure is due to alterations in poly-G tracts in lgt genes encoding glycosyl transferases. J. Exp. Med. 183:323327.
186. Yother, J.,, and D. E. Briles. 1992. Structural properties and evolutionary relationships of PspA, a surface protein of Streptococcus pneumoniae, as revealed by sequence analysis. J. Bacteriol. 174:601609.
187. Zähner, D.,, and R. Hakenbeck. 2000. The Streptococcus pneumoniae beta-galactosidase is a surface protein. J. Bacteriol. 182:59195921.


Generic image for table
Table 1

Pneumococcal TCSTSs and their roles in virulence

Citation: Ogunniyi A, Paton J. 2013. Regulation of Pneumococcal Surface Proteins and Capsule, p 190-208. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch10
Generic image for table
Table 2

Pneumococcal surface proteins and their known or putative regulators

Citation: Ogunniyi A, Paton J. 2013. Regulation of Pneumococcal Surface Proteins and Capsule, p 190-208. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch10

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error