Chapter 13 : Virulence Gene Regulation in and Other Group Species

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Virulence Gene Regulation in and Other Group Species, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818524/9781555816766_Chap13-1.gif /docserver/preview/fulltext/10.1128/9781555818524/9781555816766_Chap13-2.gif


The best-studied members of the group, , , and sensu stricto, are pathogens with common and unique features that facilitate their ability to cause disease. As the etiological agent of anthrax, is the most renowned member of the group. Inhalation or ingestion of spores can result in a lethal hemorrhagic septicemia. Anthrax toxin represents an interesting variation on the classic A-B toxin model: one binding/translocating B component, protective antigen (PA), and two enzymatic A components, edema factor (EF) and lethal factor (LF). Opportunistic infections caused by and sensu stricto are relatively uncommon, but they can have serious consequences whether local or systemic. The chromosomes of , , and sensu stricto reveal striking sequence similarity and gene synteny, but virulence-associated plasmid content can allow facile discrimination of the three species. A large number of virulence factors have been established for the pathogenic group species. Anthrax toxin is the best-studied and arguably the most important virulence factor produced by . The entomopathogenesis of is dependent upon the production of characteristic insecticidal parasporal crystals called cryotoxins (Cry) and cytolysins (Cyt). , , and senso stricto secrete pore-forming toxins of the cholesterol-dependent cytolysin (CDC) family.

Citation: Dale J, Koehler T. 2013. Virulence Gene Regulation in and Other Group Species, p 262-280. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch13
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Models for AtxA and PlcR control of virulence gene expression. (A) gene activation and AtxA function in . Multiple signals, including growth phase, redox potential, temperature, and carbohydrate availability, impact the transcription of . The growth phase transition state regulator AbrB binds directly to the promoter region to repress transcription. Predicted functional domains of AtxA are the winged helix (WH) and helix-turn-helix (HTH) for DNA binding, PTS domains (PRD1 and PRD2) for regulation of activity, and EIIB for multimerization. In the presence of elevated CO2/bicarbonate, AtxA positively affects transcription of the anthrax toxin genes and the biosynthetic operon for synthesis of PDGA capsule. (B) gene activation and PlcR-PapR function in group members. Signals that impact transcription include nutritional status and cell density. The master response regulator Spo0A binds directly to the promoter to repress transcription. PlcR contains a DNA-binding domain (HTH) and tetratricopeptide repeats (TPRs) that regulate activity. PapR is exported by the SecA machinery, proteolytically processed to a heptapeptide, and imported into the cell by the OppABCDF transport system. Mature processed PapR associates with PlcR, enabling dimerization and regulation of activity. The PlcR-PapR complex autogenously controls the bicistronic gene cluster in addition to multiple genes encoding secreted toxins and degradative enzymes, cell wall-associated proteins, and cytoplasmic regulatory proteins. doi:10.1128/9781555818524.ch13f1

Citation: Dale J, Koehler T. 2013. Virulence Gene Regulation in and Other Group Species, p 262-280. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Adams, L. F.,, K. L. Brown,, and H. R. Whiteley. 1991. Molecular cloning and characterization of two genes encoding sigma factors that direct transcription from a Bacillus thuringiensis crystal protein gene promoter. J. Bacteriol. 173:38463854.
2. Agaisse, H.,, M. Gominet,, O. A. Okstad,, A. B. Kolsto,, and D. Lereclus. 1999. PlcR is a pleiotropic regulator of extracellular virulence factor gene expression in Bacillus thuringiensis. Mol. Microbiol. 32:10431053.
3. Agaisse, H.,, and D. Lereclus. 1995. How does Bacillus thuringiensis produce so much insecticidal crystal protein? J. Bacteriol. 177:60276032.
4. Agaisse, H.,, and D. Lereclus. 1994. Structural and functional analysis of the promoter region involved in full expression of the cryIIIA toxin gene of Bacillus thuringiensis. Mol. Microbiol. 13:97107.
5. Agata, N.,, M. Mori,, M. Ohta,, S. Suwan,, I. Ohtani,, and M. Isobe. 1994. A novel dodecadepsipeptide, cereulide, isolated from Bacillus cereus causes vacuole formation in HEp-2 cells. FEMS Microbiol. Lett. 121:3134.
6. Agata, N.,, M. Ohta,, and M. Mori. 1996. Production of an emetic toxin, cereulide, is associated with a specific class of Bacillus cereus. Curr. Microbiol. 33:6769.
7. Agata, N.,, M. Ohta,, M. Mori,, and M. Isobe. 1995. A novel dodecadepsipeptide, cereulide, is an emetic toxin of Bacillus cereus. FEMS Microbiol. Lett. 129:1720.
8. Al-Abri, S. S.,, A. K. Al-Jardani,, M. S. Al-Hosni,, P. J. Kurup,, S. Al-Busaidi,, and N. J. Beeching. 2011. A hospital acquired outbreak of Bacillus cereus gastroenteritis, Oman. J. Infect. Public Health 4:180186.
9. Ash, C.,, and M. D. Collins. 1992. Comparative analysis of 23S ribosomal RNA gene sequences of Bacillus anthracis and emetic Bacillus cereus determined by PCR-direct sequencing. FEMS Microbiol. Lett. 73:7580.
10. Ash, C.,, J. A. Farrow,, M. Dorsch,, E. Stackebrandt,, and M. D. Collins. 1991. Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase sequencing of 16S rRNA. Int. J. Syst. Bacteriol. 41:343346.
11. Ashiuchi, M.,, C. Nawa,, T. Kamei,, J. J. Song,, S. P. Hong,, M. H. Sung,, K. Soda,, and H. Misono. 2001. Physiological and biochemical characteristics of poly gamma-glutamate synthetase complex of Bacillus subtilis. Eur. J. Biochem. 268:53215328.
12. Ashiuchi, M.,, K. Shimanouchi,, H. Nakamura,, T. Kamei,, K. Soda,, C. Park,, M. H. Sung,, and H. Misono. 2004. Enzymatic synthesis of high-molecular-mass poly-gamma-glutamate and regulation of its stereochemistry. Appl. Environ. Microbiol. 70:42494255.
13. Baldari, C. T.,, F. Tonello,, S. R. Paccani,, and C. Montecucco. 2006. Anthrax toxins: a paradigm of bacterial immune suppression. Trends Immunol. 27:434440.
14. Banks, D. J.,, S. C. Ward,, and K. A. Bradley. 2006. New insights into the functions of anthrax toxin. Expert Rev. Mol. Med. 8:118.
15. Barnes, J. M. 1947. The development of anthrax following the administration of spores by inhalation. Br. J. Exp. Pathol. 28:385394.
16. Bartkus, J. M.,, and S. H. Leppla. 1989. Transcriptional regulation of the protective antigen gene of Bacillus anthracis. Infect. Immun. 57:22952300.
17. Baum, J. A.,, and T. Malvar. 1995. Regulation of insecticidal crystal protein production in Bacillus thuringiensis. Mol. Microbiol. 18:112.
18. Beecher, D. J.,, and J. D. Macmillan. 1991. Characterization of the components of hemolysin BL from Bacillus cereus. Infect. Immun. 59:17781784.
19. Beecher, D. J.,, J. L. Schoeni,, and A. C. Wong. 1995. Enterotoxic activity of hemolysin BL from Bacillus cereus. Infect. Immun. 63:44234428.
20. Bernheimer, A. W.,, and P. Grushoff. 1967. Cereolysin: production, purification and partial characterization. J. Gen. Microbiol. 46:143150.
21. Bishop, B. L.,, J. P. Lodolce,, L. E. Kolodziej,, D. L. Boone,, and W.J. Tang. 2010. The role of anthrolysin O in gut epithelial barrier disruption during Bacillus anthracis infection. Biochem. Biophys. Res. Commun. 394:254259.
22. Blaustein, R. O.,, T. M. Koehler,, R. J. Collier,, and A. Finkelstein. 1989. Anthrax toxin: channel-forming activity of protective antigen in planar phospholipid bilayers. Proc. Natl. Acad. Sci. USA 86:22092213.
23. Bouillaut, L.,, S. Perchat,, S. Arold,, S. Zorrilla,, L. Slamti,, C. Henry,, M. Gohar,, N. Declerck,, and D. Lereclus. 2008. Molecular basis for group-specific activation of the virulence regulator PlcR by PapR heptapeptides. Nucleic Acids Res. 36:37913801.
24. Bouillaut, L.,, N. Ramarao,, C. Buisson,, N. Gilois,, M. Gohar,, D. Lereclus,, and C. Nielsen-Leroux. 2005. FlhA influences Bacillus thuringiensis PlcR-regulated gene transcription, protein production, and virulence. Appl. Environ. Microbiol. 71:89038910.
25. Bourdeau, R. W.,, E. Malito,, A. Chenal,, B. L. Bishop,, M. W. Musch,, M. L. Villereal,, E. B. Chang,, E. M. Mosser,, R. F. Rest,, and W. J. Tang. 2009. Cellular functions and X-ray structure of Anthrolysin O, a cholesterol-dependent cytolysin secreted by Bacillus anthracis. J. Biol. Chem. 284:1464514656.
26. Bourgogne, A.,, M. Drysdale,, S. G. Hilsenbeck,, S. N. Peterson,, and T. M. Koehler. 2003. Global effects of virulence gene regulators in a Bacillus anthracis strain with both virulence plasmids. Infect. Immun. 71:27362743.
27. Bravo, A.,, H. Agaisse,, S. Salamitou,, and D. Lereclus. 1996. Analysis of cryIAa expression in sigE and sigK mutants of Bacillus thuringiensis. Mol. Gen. Genet. 250:734741.
28. Bravo, A.,, S. Likitvivatanavong,, S. S. Gill,, and M. Soberon. 2011. Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem. Mol. Biol. 41:423431.
29. Brown, K. L.,, and H. R. Whiteley. 1988. Isolation of a Bacillus thuringiensis RNA polymerase capable of transcribing crystal protein genes. Proc. Natl. Acad. Sci. USA 85:41664170.
30. Brown, K. L.,, and H. R. Whiteley. 1990. Isolation of the second Bacillus thuringiensis RNA polymerase that transcribes from a crystal protein gene promoter. J. Bacteriol. 172:66826688.
31. Bruckner, V.,, J. Kovacs,, and G. Denes. 1953. Structure of poly-D-glutamic acid isolated from capsulated strains of B. anthracis. Nature 172:508.
32. Brunsing, R. L.,, C. La Clair,, S. Tang,, C. Chiang,, L. E. Hancock,, M. Perego,, and J. A. Hoch. 2005. Characterization of sporulation histidine kinases of Bacillus anthracis. J. Bacteriol. 187:69726981.
33. Cachat, E.,, M. Barker,, T. D. Read,, and F. G. Priest. 2008. A Bacillus thuringiensis strain producing a polyglutamate capsule resembling that of Bacillus anthracis. FEMS Microbiol. Lett. 285:220226.
34. Callegan, M. C.,, D. C. Cochran,, S. T. Kane,, M. S. Gilmore,, M. Gominet,, and D. Lereclus. 2002. Contribution of membrane-damaging toxins to Bacillus endophthalmitis pathogenesis. Infect. Immun. 70:53815389.
35. Callegan, M. C.,, S. T. Kane,, D. C. Cochran,, M. S. Gilmore,, M. Gominet,, and D. Lereclus. 2003. Relationship of plcR-regulated factors to Bacillus endophthalmitis virulence. Infect. Immun. 71:31163124.
36. Callegan, M. C.,, B. D. Novosad,, R. Ramirez,, E. Ghelardi,, and S. Senesi. 2006. Role of swarming migration in the pathogenesis of Bacillus endophthalmitis. Investig. Ophthalmol. Vis. Sci. 47:44614467.
37. Candela, T.,, and A. Fouet. 2005. Bacillus anthracis CapD, belonging to the gamma-glutamyltranspeptidase family, is required for the covalent anchoring of capsule to peptidoglycan. Mol. Microbiol. 57:717726.
38. Candela, T.,, and A. Fouet. 2006. Poly-gamma-glutamate in bacteria. Mol. Microbiol. 60:10911098.
39. Candela, T.,, M. Mock,, and A. Fouet. 2005. CapE, a 47-amino-acid peptide, is necessary for Bacillus anthracis polyglutamate capsule synthesis. J. Bacteriol. 187:77657772.
40. Cataldi, A.,, A. Fouet,, and M. Mock. 1992. Regulation of pag gene expression in Bacillus anthracis: use of a pag-lacZ transcriptional fusion. FEMS Microbiol. Lett. 77:8993.
41. Chiang, C.,, C. Bongiorni,, and M. Perego. 2011. Glucose-dependent activation of Bacillus anthracis toxin gene expression and virulence requires the carbon catabolite protein CcpA. J. Bacteriol. 193:5262.
42. Chitlaru, T.,, O. Gat,, Y. Gozlan,, N. Ariel,, and A. Shafferman. 2006. Differential proteomic analysis of the Bacillus anthracis secretome: distinct plasmid and chromosome CO2-dependent cross talk mechanisms modulate extracellular proteolytic activities. J. Bacteriol. 188:35513571.
43. Chu, F.,, D. B. Kearns,, S. S. Branda,, R. Kolter,, and R. Losick. 2006. Targets of the master regulator of biofilm formation in Bacillus subtilis. Mol. Microbiol. 59:12161228.V
44. Chu, F.,, D. B. Kearns,, A. McLoon,, Y. Chai,, R. Kolter,, and R. Losick. 2008. A novel regulatory protein governing biofilm formation in Bacillus subtilis. Mol. Microbiol. 68:11171127.
45. Chung, M.-C.,, T. G. Popova,, B. A. Millis,, D. V. Mukherjee,, W. Zhou,, L. A. Liotta,, E. F. Petricoin,, V. Chandhoke,, C. Bailey,, and S. G. Popov. 2006. Secreted neutral metalloproteases of Bacillus anthracis as candidate pathogenic factors. J. Biol. Chem. 281:3140831418.
46. Chung, M. C.,, S. C. Jorgensen,, T. G. Popova,, C. L. Bailey,, and S. G. Popov. 2008. Neutrophil elastase and syndecan shedding contribute to antithrombin depletion in murine anthrax. FEMS Immunol. Med. Microbiol. 54:309318.
47. Chung, M. C.,, S. C. Jorgensen,, T. G. Popova,, J. H. Tonry,, C. L. Bailey,, and S. G. Popov. 2009. Activation of plasminogen activator inhibitor implicates protease InhA in the acute-phase response to Bacillus anthracis infection. J. Med. Microbiol. 58:737744.
48. Chung, M. C.,, S. C. Jorgensen,, J. H. Tonry,, F. Kashanchi,, C. Bailey,, and S. Popov. 2011. Secreted Bacillus anthracis proteases target the host fibrinolytic system. FEMS Immunol. Med. Microbiol. 62:173181.
49. Clavel, T.,, F. Carlin,, D. Lairon,, C. Nguyen-The,, and P. Schmitt. 2004. Survival of Bacillus cereus spores and vegetative cells in acid media simulating human stomach. J. Appl. Microbiol. 97:214219.
50. Cleret, A.,, A. Quesnel-Hellmann,, A. Vallon-Eberhard,, B. Verrier,, S. Jung,, D. Vidal,, J. Mathieu,, and J. N. Tournier. 2007. Lung dendritic cells rapidly mediate anthrax spore entry through the pulmonary route. J. Immunol. 178:79948001.
51. Colpin, G. G.,, H. F. Guiot,, R. F. Simonis,, and F. E. Zwaan. 1981. Bacillus cereus meningitis in a patient under gnotobiotic care. Lancet ii:694695.
52. Cote, C. K.,, T. L. Dimezzo,, D. J. Banks,, B. France,, K. A. Bradley,, and S. L. Welkos. 2008. Early interactions between fully virulent Bacillus anthracis and macrophages that influence the balance between spore clearance and development of a lethal infection. Microbes Infect. 10:613619.
53. Cote, C. K.,, C. A. Rossi,, A. S. Kang,, P. R. Morrow,, J. S. Lee,, and S.L. Welkos. 2005. The detection of protective antigen (PA) associated with spores of Bacillus anthracis and the effects of anti-PA antibodies on spore germination and macrophage interactions. Microb. Pathog. 38:209225.
54. Craig, C. P.,, W. S. Lee,, and M. Ho. 1974. Letter: Bacillus cereus endocarditis in an addict. Ann. Intern. Med. 80:418419.
55. Crickmore, N. 2006. Beyond the spore—past and future developments of Bacillus thuringiensis as a biopesticide. J. Appl. Microbiol. 101:616619.
56. Dai, Z.,, and T. M. Koehler. 1997. Regulation of anthrax toxin activator gene (atxA) expression in Bacillus anthracis: temperature, not CO2/bicarbonate, affects AtxA synthesis. Infect. Immun. 65:25762582.
57. Dai, Z.,, J. C. Sirard,, M. Mock,, and T. M. Koehler. 1995. The atxA gene product activates transcription of the anthrax toxin genes and is essential for virulence. Mol. Microbiol. 16:11711181.
58. Damgaard, P. H.,, B. M. Hansen,, J. C. Pedersen,, and J. Eilenberg. 1997. Natural occurrence of Bacillus thuringiensis on cabbage foliage and in insects associated with cabbage crops. J. Appl. Microbiol. 82:253258.
59. Declerck, N.,, L. Bouillaut,, D. Chaix,, N. Rugani,, L. Slamti,, F. Hoh,, D. Lereclus,, and S. T. Arold. 2007. Structure of PlcR: insights into virulence regulation and evolution of quorum sensing in Gram-positive bacteria. Proc. Natl. Acad. Sci. USA 104:1849018495.
60. de Souza, M. T.,, M. M. Lecadet,, and D. Lereclus. 1993. Full expression of the cryIIIA toxin gene of Bacillus thuringiensis requires a distant upstream DNA sequence affecting transcription. J. Bacteriol. 175:29522960.
61. Deutscher, J.,, C. Francke,, and P. W. Postma. 2006. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol. Mol. Biol. Rev. 70:9391031.
62. Dixon, T. C.,, M. Meselson,, J. Guillemin,, and P. C. Hanna. 1999. Anthrax. N. Engl. J. Med. 341:815826.V
63. Dohmae, S.,, T. Okubo,, W. Higuchi,, T. Takano,, H. Isobe,, T. Baranovich,, S. Kobayashi,, M. Uchiyama,, Y. Tanabe,, M. Itoh,, and T. Yamamoto. 2008. Bacillus cereus nosocomial infection from reused towels in Japan. J. Hosp. Infect. 69:361367.
64. Dong, Y. H.,, A. R. Gusti,, Q. Zhang,, J. L. Xu,, and L. H. Zhang. 2002. Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl. Environ. Microbiol. 68:17541759.
65. Donovan, W. P.,, Y. Tan,, and A. C. Slaney. 1997. Cloning of the nprA gene for neutral protease A of Bacillus thuringiensis and effect of in vivo deletion of nprA on insecticidal crystal protein. Appl. Environ. Microbiol. 63:23112317.
66. Drobniewski, F. A. 1993. Bacillus cereus and related species. Clin. Microbiol. Rev. 6:324338.
67. Drysdale, M.,, A. Bourgogne,, S. G. Hilsenbeck,, and T. M. Koehler. 2004. atxA controls Bacillus anthracis capsule synthesis via acpA and a newly discovered regulator, acpB. J. Bacteriol. 186:307315.
68. Drysdale, M.,, A. Bourgogne,, and T. M. Koehler. 2005a. Transcriptional analysis of the Bacillus anthracis capsule regulators. J. Bacteriol. 187:51085114.
69. Drysdale, M.,, S. Heninger,, J. Hutt,, Y. Chen,, C. R. Lyons,, and T.M. Koehler. 2005b. Capsule synthesis by Bacillus anthracis is required for dissemination in murine inhalation anthrax. EMBO J. 24:221227.V
70. Duesbery, N. S.,, C. P. Webb,, S. H. Leppla,, V. M. Gordon,, K. R. Klimpel,, T. D. Copeland,, N. G. Ahn,, M. K. Oskarsson,, K. Fukasawa,, K. D. Paull,, and G. F. Vande Woude. 1998. Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science 280:734737.
71. Duport, C.,, S. Thomassin,, G. Bourel,, and P. Schmitt. 2004. Anaerobiosis and low specific growth rates enhance hemolysin BL production by Bacillus cereus F4430/73. Arch. Microbiol. 182:9095.
72. Duport, C.,, A. Zigha,, E. Rosenfeld,, and P. Schmitt. 2006. Control of enterotoxin gene expression in Bacillus cereus F4430/73 involves the redox-sensitive ResDE signal transduction system. J.Bacteriol. 188:66406651.
73. Ebrahimi, C. M.,, J. W. Kern,, T. R. Sheen,, M. A. Ebrahimi-Fardooee,, N. M. van Sorge,, O. Schneewind,, and K. S. Doran. 2009. Penetration of the blood-brain barrier by Bacillus anthracis requires the pXO1-encoded BslA protein. J. Bacteriol. 191:71657173.
74. Ehling-Schulz, M.,, M. Fricker,, H. Grallert,, P. Rieck,, M. Wagner,, and S. Scherer. 2006a. Cereulide synthetase gene cluster from emetic Bacillus cereus: structure and location on a mega virulence plasmid related to Bacillus anthracis toxin plasmid pXO1. BMC Microbiol. 6:20.
75. Ehling-Schulz, M.,, M. H. Guinebretiere,, A. Monthan,, O. Berge,, M. Fricker,, and B. Svensson. 2006b. Toxin gene profiling of enterotoxic and emetic Bacillus cereus. FEMS Microbiol. Lett. 260:232240.
76. Ehling-Schulz, M.,, M. Fricker,, and S. Scherer. 2004. Bacillus cereus, the causative agent of an emetic type of food-borne illness. Mol. Nutr. Food Res. 48:479487.
77. Ehling-Schulz, M.,, B. Svensson,, M. H. Guinebretiere,, T. Lindback,, M. Andersson,, A. Schulz,, M. Fricker,, A. Christiansson,, P. E. Granum,, E. Martlbauer,, C. Nguyen-The,, M. Salkinoja-Salonen,, and S. Scherer. 2005a. Emetic toxin formation of Bacillus cereus is restricted to a single evolutionary lineage of closely related strains. Microbiology 151:183197.
78. Ehling-Schulz, M.,, N. Vukov,, A. Schulz,, R. Shaheen,, M. Andersson,, E. Martlbauer,, and S. Scherer. 2005b. Identification and partial characterization of the nonribosomal peptide synthetase gene responsible for cereulide production in emetic Bacillus cereus. Appl. Environ. Microbiol. 71:105113.
79. Esbelin, J.,, J. Armengaud,, A. Zigha,, and C. Duport. 2009. ResDE-dependent regulation of enterotoxin gene expression in Bacillus cereus: evidence for multiple modes of binding for ResD and interaction with Fnr. J. Bacteriol. 191:44194426.
80. Esbelin, J.,, Y. Jouanneau,, J. Armengaud,, and C. Duport. 2008. ApoFnr binds as a monomer to promoters regulating the expression of enterotoxin genes of Bacillus cereus. J. Bacteriol. 190:42424251.
81. Estruch, J. J.,, G. W. Warren,, M. A. Mullins,, G. J. Nye,, J. A. Craig,, and M. G. Koziel. 1996. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc. Natl. Acad. Sci. USA 93:53895394.
82. Fagerlund, A.,, T. Lindback,, and P. E. Granum. 2010. Bacillus cereus cytotoxins Hbl, Nhe and CytK are secreted via the Sec translocation pathway. BMC Microbiol. 10:304.
83. Fagerlund, A.,, T. Lindback,, A. K. Storset,, P. E. Granum,, and S. P. Hardy. 2008. Bacillus cereus Nhe is a pore-forming toxin with structural and functional properties similar to the ClyA (HlyE, SheA) family of haemolysins, able to induce osmotic lysis in epithelia. Microbiology 154:693704.
84. Fedhila, S.,, T. Msadek,, P. Nel,, and D. Lereclus. 2002. Distinct clpP genes control specific adaptive responses in Bacillus thuringiensis. J. Bacteriol. 184:55545562.
85. Finlay, W. J.,, N. A. Logan,, and A. D. Sutherland. 2000. Bacillus cereus produces most emetic toxin at lower temperatures. Lett. Appl. Microbiol. 31:385389.
86. Flores-Diaz, M.,, and A. Alape-Giron. 2003. Role of Clostridium perfringens phospholipase C in the pathogenesis of gas gangrene. Toxicon 42:979986.
87. Fouet, A.,, and M. Mock. 1996. Differential influence of the two Bacillus anthracis plasmids on regulation of virulence gene expression. Infect. Immun. 64:49284932.
88. Friedlander, A. M. 1986. Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process. J. Biol. Chem. 261:71237126.
89. Fujita, Y.,, Y. Miwa,, A. Galinier,, and J. Deutscher. 1995. Specific recognition of the Bacillus subtilis gnt cis-acting catabolite-responsive element by a protein complex formed between CcpA and seryl-phosphorylated HPr. Mol. Microbiol. 17:953960.
90. Gekara, N. O.,, K. Westphal,, B. Ma,, M. Rohde,, L. Groebe,, and S. Weiss. 2007. The multiple mechanisms of Ca2+ signalling by listeriolysin O, the cholesterol-dependent cytolysin of Listeria monocytogenes. Cell. Microbiol. 9:20082021.
91. Ghelardi, E.,, F. Celandroni,, S. Salvetti,, M. Ceragioli,, D. J. Beecher,, S. Senesi,, and A. C. Wong. 2007. Swarming behavior of and hemolysin BL secretion by Bacillus cereus. Appl. Environ. Microbiol. 73:40894093.
92. Gilbert, R. J. 2010. Cholesterol-dependent cytolysins. Adv. Exp. Med. Biol. 677:5666.
93. Glatz, B. A.,, W. M. Spira,, and J. M. Goepfert. 1974. Alteration of vascular permeability in rabbits by culture filtrates of Bacillus cereus and related species. Infect. Immun. 10:299303.
94. Glomski, I. J.,, F. Dumetz,, G. Jouvion,, M. R. Huerre,, M. Mock,, and P. L. Goossens. 2008. Inhaled non-capsulated Bacillus anthracis in A/J mice: nasopharynx and alveolar space as dual portals of entry, delayed dissemination, and specific organ targeting. Microbes Infect. 10:13981404.
95. Gohar, M.,, K. Faegri,, S. Perchat,, S. Ravnum,, O. A. Okstad,, M. Gominet,, A. B. Kolsto,, and D. Lereclus. 2008. The PlcR virulence regulon of Bacillus cereus. PLoS One 3:e2793.
96. Gohar, M.,, O. A. Okstad,, N. Gilois,, V. Sanchis,, A. B. Kolsto,, and D. Lereclus. 2002. Two-dimensional electrophoresis analysis of the extracellular proteome of Bacillus cereus reveals the importance of the PlcR regulon. Proteomics 2:784791.
97. Goldfine, H.,, T. Bannam,, N. C. Johnston,, and W. R. Zuckert. 1998. Bacterial phospholipases and intracellular growth: the two distinct phospholipases C of Listeria monocytogenes. Symp. Ser. Soc. Appl. Microbiol. 27:7S14S.V
98. Gominet, M.,, L. Slamti,, N. Gilois,, M. Rose,, and D. Lereclus. 2001. Oligopeptide permease is required for expression of the Bacillus thuringiensis plcR regulon and for virulence. Mol. Microbiol. 40:963975.
99. Gonzalez, J. M., Jr.,, B. J. Brown,, and B. C. Carlton. 1982. Transfer of Bacillus thuringiensis plasmids coding for delta-endotoxin among strains of B. thuringiensis and B. cereus. Proc. Natl. Acad. Sci. USA 79:69516955.
100. Grandvalet, C.,, M. Gominet,, and D. Lereclus. 2001. Identification of genes involved in the activation of the Bacillus thuringiensis inhA metalloprotease gene at the onset of sporulation. Microbiology 147:18051813.
101. Granum, P. E.,, and T. Lund. 1997. Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Lett. 157:223228.
102. Granum, P. E.,, K. O’Sullivan,, and T. Lund. 1999. The sequence of the non-haemolytic enterotoxin operon from Bacillus cereus. FEMS Microbiol. Lett. 177:225229.
103. Grass, G.,, A. Schierhorn,, E. Sorkau,, H. Muller,, P. Rucknagel,, D. H. Nies,, and B. Fricke. 2004. Camelysin is a novel surface metalloproteinase from Bacillus cereus. Infect. Immun. 72:219228.
104. Green, B. D.,, L. Battisti,, T. M. Koehler,, C. B. Thorne,, and B. E. Ivins. 1985. Demonstration of a capsule plasmid in Bacillus anthracis. Infect. Immun. 49:291297.
105. Guidi-Rontani, C.,, M. Levy,, H. Ohayon,, and M. Mock. 2001. Fate of germinated Bacillus anthracis spores in primary murine macrophages. Mol. Microbiol. 42:931938.
106. Guidi-Rontani, C.,, M. Weber-Levy,, E. Labruyere,, and M. Mock. 1999. Germination of Bacillus anthracis spores within alveolar macrophages. Mol. Microbiol. 31:917.
107. Guignot, J.,, M. Mock,, and A. Fouet. 1997. AtxA activates the transcription of genes harbored by both Bacillus anthracis virulence plasmids. FEMS Microbiol. Lett. 147:203207.
108. Guillemet, E.,, C. Cadot,, S. L. Tran,, M. H. Guinebretiere,, D. Lereclus,, and N. Ramarao. 2010. The InhA metalloproteases of Bacillus cereus contribute concomitantly to virulence. J.Bacteriol. 192:286294.
109. Hadjifrangiskou, M.,, and T. M. Koehler. 2008. Intrinsic curvature associated with the coordinately regulated anthrax toxin gene promoters. Microbiology 154:25012512.
110. Hammerstrom, T. G.,, J. H. Roh,, E. P. Nikonowicz,, and T. M. Koehler. 2011. Bacillus anthracis virulence regulator AtxA: oligomeric state, function and CO2-signalling. Mol. Microbiol. 82:634647.
111. Heffernan, B. J.,, B. Thomason,, A. Herring-Palmer,, and P. Hanna. 2007. Bacillus anthracis anthrolysin O and three phospholipases C are functionally redundant in a murine model of inhalation anthrax. FEMS Microbiol. Lett. 271:98105.
112. Heffernan, B. J.,, B. Thomason,, A. Herring-Palmer,, L. Shaughnessy,, R. McDonald,, N. Fisher,, G. B. Huffnagle,, and P. Hanna. 2006. Bacillus anthracis phospholipases C facilitate macrophage-associated growth and contribute to virulence in a murine model of inhalation anthrax. Infect. Immun. 74:37563764.
113. Heinrichs, J. H.,, D. J. Beecher,, J. D. MacMillan,, and B. A. Zilinskas. 1993. Molecular cloning and characterization of the hblA gene encoding the B component of hemolysin BL from Bacillus cereus. J. Bacteriol. 175:67606766.
114. Heninger, S.,, M. Drysdale,, J. Lovchik,, J. Hutt,, M. F. Lipscomb,, T.M. Koehler,, and C. R. Lyons. 2006. Toxin-deficient mutants of Bacillus anthracis are lethal in a murine model for pulmonary anthrax. Infect. Immun. 74:60676074.
115. Hernandez, E.,, F. Ramisse,, J. P. Ducoureau,, T. Cruel,, and J. D. Cavallo. 1998. Bacillus thuringiensis subsp. konkukian (serotype H34) superinfection: case report and experimental evidence of pathogenicity in immunosuppressed mice. J. Clin. Microbiol. 36:21382139.
116. Hoffmaster, A. R.,, K. K. Hill,, J. E. Gee,, C. K. Marston,, B. K. De,, T. Popovic,, D. Sue,, P. P. Wilkins,, S. B. Avashia,, R. Drumgoole,, C.H. Helma,, L. O. Ticknor,, R. T. Okinaka,, and P. J. Jackson. 2006. Characterization of Bacillus cereus isolates associated with fatal pneumonias: strains are closely related to Bacillus anthracis and harbor B. anthracis virulence genes. J. Clin. Microbiol. 44:33523360.
117. Hoffmaster, A. R.,, and T. M. Koehler. 1997. The anthrax toxin activator gene atxA is associated with CO2-enhanced non-toxin gene expression in Bacillus anthracis. Infect. Immun. 65:30913099.
118. Hoffmaster, A. R.,, and T. M. Koehler. 1999a. Autogenous regulation of the Bacillus anthracis pag operon. J. Bacteriol. 181:44854492.
119. Hoffmaster, A. R.,, and T. M. Koehler. 1999b. Control of virulence gene expression in Bacillus anthracis. J. Appl. Microbiol. 87:279281.
120. Hoffmaster, A. R.,, J. Ravel,, D. A. Rasko,, G. D. Chapman,, M. D. Chute,, C. K. Marston,, B. K. De,, C. T. Sacchi,, C. Fitzgerald,, L.W. Mayer,, M. C. Maiden,, F. G. Priest,, M. Barker,, L. Jiang,, R. Z. Cer,, J. Rilstone,, S. N. Peterson,, R. S. Weyant,, D. R. Galloway,, T.D. Read,, T. Popovic,, and C. M. Fraser. 2004. Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax. Proc. Natl. Acad. Sci. USA 101:84498454.
121. Hofte, H.,, and H. R. Whiteley. 1989. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53:242255.
122. Horii, T.,, S. Notake,, K. Tamai,, H. Yanagisawa,, and P. Brennan. 2011. Bacillus cereus from blood cultures: virulence genes, antimicrobial susceptibility and risk factors for blood stream infection. FEMS Immun. Med. Microbiol. 63:202209.
123. Hu, H.,, Q. Sa,, T. M. Koehler,, A. I. Aronson,, and D. Zhou. 2006. Inactivation of Bacillus anthracis spores in murine primary macrophages. Cell. Microbiol. 8:16341642.
124. Ikezawa, H.,, M. Mori,, and R. Taguchi. 1980. Studies on sphingomyelinase of Bacillus cereus: hydrolytic and hemolytic actions on erythrocyte membranes. Arch. Biochem. Biophys. 199:572578.
125. Jensen, G. B.,, B. M. Hansen,, J. Eilenberg,, and J. Mahillon. 2003. The hidden lifestyles of Bacillus cereus and relatives. Environ. Microbiol. 5:631640.
126. Kastrup, C. J.,, J. Q. Boedicker,, A. P. Pomerantsev,, M. Moayeri,, Y. Bian,, R. R. Pompano,, T. R. Kline,, P. Sylvestre,, F. Shen,, S. H. Leppla,, W. J. Tang,, and R. F. Ismagilov. 2008. Spatial localization of bacteria controls coagulation of human blood by ‘quorum acting.’ Nat. Chem. Biol. 4:742750.
127. Keppie, J.,, H. Smith,, and P. W. Harris-Smith. 1953. The chemical basis of the virulence of Bacillus anthracis. II. Some biological properties of bacterial products. Br. J. Exp. Pathol. 34:486496.
128. Kern, J.,, and O. Schneewind. 2010. BslA, the S-layer adhesin of B.anthracis, is a virulence factor for anthrax pathogenesis. Mol. Microbiol. 75:324332.
129. Kern, J. W.,, and O. Schneewind. 2008. BslA, a pXO1-encoded adhesin of Bacillus anthracis. Mol. Microbiol. 68:504515.
130. Klee, S. R.,, M. Ozel,, B. Appel,, C. Boesch,, H. Ellerbrok,, D. Jacob,, G. Holland,, F. H. Leendertz,, G. Pauli,, R. Grunow,, and H. Nattermann. 2006. Characterization of Bacillus anthracis-like bacteria isolated from wild great apes from Côte d’Ivoire and Cameroon. J. Bacteriol. 188:53335344.
131. Klichko, V. I.,, J. Miller,, A. Wu,, S. G. Popov,, and K. Alibek. 2003. Anaerobic induction of Bacillus anthracis hemolytic activity. Biochem. Biophys. Res. Commun. 303:855862.
132. Koehler, T. M., 2000. Bacillus anthracis, p. 519528. In V. A. Fischetti (ed.), Gram-Positive Pathogens. American Society for Microbiology, Washington, DC.
133. Koehler, T. M. 2002. Bacillus anthracis genetics and virulence gene regulation. Curr. Top. Microbiol. Immunol. 271:143164.
134. Koehler, T. M. 2009. Bacillus anthracis physiology and genetics. Mol. Aspects Med. 30:386396.
135. Koehler, T. M.,, Z. Dai,, and M. Kaufman-Yarbray. 1994. Regulation of the Bacillus anthracis protective antigen gene: CO2 and a trans-acting element activate transcription from one of two promoters. J. Bacteriol. 176:586595.
136. Kolsto, A. B.,, N. J. Tourasse,, and O. A. Okstad. 2009. What sets Bacillus anthracis apart from other Bacillus species? Annu. Rev. Microbiol. 63:451476.
137. Kotiranta, A.,, K. Lounatmaa,, and M. Haapasalo. 2000. Epidemiology and pathogenesis of Bacillus cereus infections. Microbes Infect. 2:189198.
138. Krantz, B. A.,, R. A. Melnyk,, S. Zhang,, S. J. Juris,, D. B. Lacy,, Z. Wu,, A. Finkelstein,, and R. J. Collier. 2005. A phenylalanine clamp catalyzes protein translocation through the anthrax toxin pore. Science 309:777781.
139. Kroten, M. A.,, M. Bartoszewicz,, and I. Swiecicka. 2010. Cereulide and valinomycin, two important natural dodecadepsipeptides with ionophoretic activities. Pol. J. Microbiol. 59:310.
140. Kuroki, R.,, K. Kawakami,, L. Qin,, C. Kaji,, K. Watanabe,, Y. Kimura,, C. Ishiguro,, S. Tanimura,, Y. Tsuchiya,, I. Hamaguchi,, M. Sakakura,, S. Sakabe,, K. Tsuji,, M. Inoue,, and H. Watanabe. 2009. Nosocomial bacteremia caused by biofilm-forming Bacillus cereus and Bacillus thuringiensis. Intern. Med. 48:791796.
141. Leppla, S. H. 1982. Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proc. Natl. Acad. Sci. USA 79:31623166.
142. Lereclus, D.,, H. Agaisse,, M. Gominet,, and J. Chaufaux. 1995. Overproduction of encapsulated insecticidal crystal proteins in a Bacillus thuringiensis spo0A mutant. Nat. Biotechnol. 13:6771.
143. Lereclus, D.,, H. Agaisse,, M. Gominet,, S. Salamitou,, and V. Sanchis. 1996. Identification of a Bacillus thuringiensis gene that positively regulates transcription of the phosphatidylinositol-specific phospholipase C gene at the onset of the stationary phase. J.Bacteriol. 178:27492756.
144. Lereclus, D.,, H. Agaisse,, C. Grandvalet,, S. Salamitou,, and M. Gominet. 2000. Regulation of toxin and virulence gene transcription in Bacillus thuringiensis. Int. J. Med. Microbiol. 290:295299.
145. Lindback, T.,, A. Fagerlund,, M. S. Rodland,, and P. E. Granum. 2004. Characterization of the Bacillus cereus Nhe enterotoxin. Microbiology 150:39593967.
146. Lindback, T.,, O. A. Okstad,, A. L. Rishovd,, and A. B. Kolsto. 1999. Insertional inactivation of hblC encoding the L2 component of Bacillus cereus ATCC 14579 haemolysin BL strongly reduces enterotoxigenic activity, but not the haemolytic activity against human erythrocytes. Microbiology 145:31393146.
147. Lucking, G.,, M. K. Dommel,, S. Scherer,, A. Fouet,, and M. Ehling-Schulz. 2009. Cereulide synthesis in emetic Bacillus cereus is controlled by the transition state regulator AbrB, but not by the virulence regulator PlcR. Microbiology 155:922931.
148. Lund, T.,, M. L. De Buyser,, and P. E. Granum. 2000. A new cytotoxin from Bacillus cereus that may cause necrotic enteritis. Mol. Microbiol. 38:254261.
149. Lund, T.,, and P. E. Granum. 1996. Characterisation of a non-haemolytic enterotoxin complex from Bacillus cereus isolated after a foodborne outbreak. FEMS Microbiol. Lett. 141:151156.
150. Mahler, H.,, A. Pasi,, J. M. Kramer,, P. Schulte,, A. C. Scoging,, W. Bar,, and S. Krahenbuhl. 1997. Fulminant liver failure in association with the emetic toxin of Bacillus cereus. N. Engl. J. Med. 336:11421148.
151. Makino, S.,, C. Sasakawa,, I. Uchida,, N. Terakado,, and M. Yoshikawa. 1988. Cloning and CO2-dependent expression of the genetic region for encapsulation from Bacillus anthracis. Mol. Microbiol. 2:371376.
152. Makino, S.,, I. Uchida,, N. Terakado,, C. Sasakawa,, and M. Yoshikawa. 1989a. Molecular characterization and protein analysis of the cap region, which is essential for encapsulation in Bacillus anthracis. J. Bacteriol. 171:722730.
153. Makino, Y.,, S. Negoro,, I. Urabe,, and H. Okada. 1989b. Stability-increasing mutants of glucose dehydrogenase from Bacillus megaterium IWG3. J. Biol. Chem. 264:63816385.
154. Malvar, T.,, and J. A. Baum. 1994. Tn5401 disruption of the spo0F gene, identified by direct chromosomal sequencing, results in CryIIIA overproduction in Bacillus thuringiensis. J. Bacteriol. 176:47504753.
155. Mandic-Mulec, I.,, N. Gaur,, U. Bai,, and I. Smith. 1992. Sin, a stage-specific repressor of cellular differentiation. J. Bacteriol. 174:35613569.
156. Mignot, T.,, M. Mock,, and A. Fouet. 2003. A plasmid-encoded regulator couples the synthesis of toxins and surface structures in Bacillus anthracis. Mol. Microbiol. 47:917927.
157. Mignot, T.,, M. Mock,, D. Robichon,, A. Landier,, D. Lereclus,, and A. Fouet. 2001. The incompatibility between the PlcR- and AtxA-controlled regulons may have selected a nonsense mutation in Bacillus anthracis. Mol. Microbiol. 42:11891198.
158. Mikesell, P.,, B. E. Ivins,, J. D. Ristroph,, and T. M. Dreier. 1983. Evidence for plasmid-mediated toxin production in Bacillus anthracis. Infect. Immun. 39:371376.
159. Mikkola, R.,, N. E. Saris,, P. A. Grigoriev,, M. A. Andersson,, and M.S. Salkinoja-Salonen. 1999. Ionophoretic properties and mitochondrial effects of cereulide: the emetic toxin of B. cereus. Eur. J. Biochem. 263:112117.
160. Miller, C. J.,, J. L. Elliott,, and R. J. Collier. 1999. Anthrax protective antigen: prepore-to-pore conversion. Biochemistry 38:1043210441.
161. Miwa, Y.,, A. Nakata,, A. Ogiwara,, M. Yamamoto,, and Y. Fujita. 2000. Evaluation and characterization of catabolite-responsive elements (cre) of Bacillus subtilis. Nucleic Acids Res. 28:12061210.
162. Mock, M.,, and A. Fouet. 2001. Anthrax. Annu. Rev. Microbiol. 55:647671.
163. Moravek, M.,, R. Dietrich,, C. Buerk,, V. Broussolle,, M. H. Guinebretiere,, P. E. Granum,, C. Nguyen-The,, and E. Martlbauer. 2006. Determination of the toxic potential of Bacillus cereus isolates by quantitative enterotoxin analyses. FEMS Microbiol. Lett. 257:293298.
164. Mosser, E. M.,, and R. F. Rest. 2006. The Bacillus anthracis cholesterol-dependent cytolysin, Anthrolysin O, kills human neutrophils, monocytes and macrophages. BMC Microbiol. 6:56.
165. Mukherjee, D. V.,, J. H. Tonry,, K. S. Kim,, N. Ramarao,, T. G. Popova,, C. Bailey,, S. Popov,, and M. C. Chung. 2011. Bacillus anthracis protease InhA increases blood-brain barrier permeability and contributes to cerebral hemorrhages. PLoS One 6:e17921.
166. Nakano, M. M.,, and P. Zuber. 1998. Anaerobic growth of a “strict aerobe” (Bacillus subtilis). Annu. Rev. Microbiol. 52:165190.
167. Nakouzi, A.,, J. Rivera,, R. F. Rest,, and A. Casadevall. 2008. Passive administration of monoclonal antibodies to anthrolysin O prolong survival in mice lethally infected with Bacillus anthracis. BMC Microbiol. 8:159.
168. Oda, M.,, M. Takahashi,, T. Matsuno,, K. Uoo,, M. Nagahama,, and J. Sakurai. 2010. Hemolysis induced by Bacillus cereus sphingomyelinase. Biochim. Biophys. Acta 1798:10731080.
169. Oh, S. Y.,, J. M. Budzik,, G. Garufi,, and O. Schneewind. 2011. Two capsular polysaccharides enable Bacillus cereus G9241 to cause anthrax-like disease. Mol. Microbiol. 80:455470.
170. Okinaka, R.,, K. Cloud,, O. Hampton,, A. Hoffmaster,, K. Hill,, P. Keim,, T. Koehler,, G. Lamke,, S. Kumano,, D. Manter,, Y. Martinez,, D. Ricke,, R. Svensson,, and P. Jackson. 1999a. Sequence, assembly and analysis of pX01 and pX02. J. Appl. Microbiol. 87:261262.
171. Okinaka, R. T.,, K. Cloud,, O. Hampton,, A. R. Hoffmaster,, K. K. Hill,, P. Keim,, T. M. Koehler,, G. Lamke,, S. Kumano,, J. Mahillon,, D. Manter,, Y. Martinez,, D. Ricke,, R. Svensson,, and P. J. Jackson. 1999b. Sequence and organization of pXO1, the large Bacillus anthracis plasmid harboring the anthrax toxin genes. J. Bacteriol. 181:65096515.
172. Okstad, O. A.,, M. Gominet,, B. Purnelle,, M. Rose,, D. Lereclus,, and A. B. Kolsto. 1999. Sequence analysis of three Bacillus cereus loci carrying PIcR-regulated genes encoding degradative enzymes and enterotoxin. Microbiology 145(Pt. 11):31293138.
173. Ovodov, Y. S. 2006. Capsular antigens of bacteria. Capsular antigens as the basis of vaccines against pathogenic bacteria. Biochemistry 71:955961.
174. Perchat, S.,, T. Dubois,, S. Zouhir,, M. Gominet,, S. Poncet,, C. Lemy,, M. Aumont-Nicaise,, J. Deutscher,, M. Gohar,, S. Nessler,, and D. Lereclus. 2011. A cell-cell communication system regulates protease production during sporulation in bacteria of the Bacillus cereus group. Mol. Microbiol. 82:619633.
175. Pflughoeft, K. J.,, P. Sumby,, and T. M. Koehler. 2011. Bacillus anthracis sin locus and regulation of secreted proteases. J. Bacteriol. 193:631639.
176. Pomerantsev, A. P.,, K. V. Kalnin,, M. Osorio,, and S. H. Leppla. 2003. Phosphatidylcholine-specific phospholipase C and sphingomyelinase activities in bacteria of the Bacillus cereus group. Infect. Immun. 71:65916606.
177. Pomerantsev, A. P.,, O. M. Pomerantseva,, A. S. Camp,, R. Mukkamala,, S. Goldman,, and S. H. Leppla. 2009. PapR peptide maturation: role of the NprB protease in Bacillus cereus 569 PlcR/PapR global gene regulation. FEMS Immunol. Med. Microbiol. 55:361377.
178. Ramarao, N.,, and D. Lereclus. 2006. Adhesion and cytotoxicity of Bacillus cereus and Bacillus thuringiensis to epithelial cells are FlhA and PlcR dependent, respectively. Microbes Infect. 8:14831491.
179. Ramarao, N.,, and D. Lereclus. 2005. The InhA1 metalloprotease allows spores of the B. cereus group to escape macrophages. Cell. Microbiol. 7:13571364.
180. Rasko, D. A.,, M. R. Altherr,, C. S. Han,, and J. Ravel. 2005. Genomics of the Bacillus cereus group of organisms. FEMS Microbiol. Rev. 29:303329.
181. Ratnayake-Lecamwasam, M.,, P. Serror,, K. W. Wong,, and A. L. Sonenshein. 2001. Bacillus subtilis CodY represses early-stationary-phase genes by sensing GTP levels. Genes Dev. 15:10931103.
182. Raymond, B.,, P. R. Johnston,, C. Nielsen-LeRoux,, D. Lereclus,, and N. Crickmore. 2010. Bacillus thuringiensis: an impotent pathogen? Trends Microbiol. 18:189194.
183. Record, B. R.,, and R. G. Wallis. 1956. Physico-chemical examination of polyglutamic acid from Bacillus anthracis grown in vivo. Biochem. J. 63:443447.
184. Ribot, W. J.,, R. G. Panchal,, K. C. Brittingham,, G. Ruthel,, T. A. Kenny,, D. Lane,, B. Curry,, T. A. Hoover,, A. M. Friedlander,, and S. Bavari. 2006. Anthrax lethal toxin impairs innate immune functions of alveolar macrophages and facilitates Bacillus anthracis survival. Infect. Immun. 74:50295034.
185. Richter, S.,, V. J. Anderson,, G. Garufi,, L. Lu,, J. M. Budzik,, A. Joachimiak,, C. He,, O. Schneewind,, and D. Missiakas. 2009. Capsule anchoring in Bacillus anthracis occurs by a transpeptidation reaction that is inhibited by capsidin. Mol. Microbiol. 71:404420.
186. Roh, J. Y.,, J. Y. Choi,, M. S. Li,, B. R. Jin,, and Y. H. Je. 2007. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J. Microbiol. Biotechnol. 17:547559.
187. Ross, C. L.,, and T. M. Koehler. 2006. plcR papR-independent expression of anthrolysin O by Bacillus anthracis. J. Bacteriol. 188:78237829.
188. Ross, J. M. 1957. The pathogenesis of anthrax following the administration of spores by the respiratory route. J. Pathol. Bacteriol. 73:485494.
189. Russell, B. H.,, R. Vasan,, D. R. Keene,, T. M. Koehler,, and Y. Xu. 2008. Potential dissemination of Bacillus anthracis utilizing human lung epithelial cells. Cell. Microbiol. 10:945957.
190. Russell, B. H.,, R. Vasan,, D. R. Keene,, and Y. Xu. 2007. Bacillus anthracis internalization by human fibroblasts and epithelial cells. Cell. Microbiol. 9:12621274.
191. Saile, E.,, and T. M. Koehler. 2002. Control of anthrax toxin gene expression by the transition state regulator abrB. J. Bacteriol. 184:370380.
192. Salamitou, S.,, H. Agaisse,, A. Bravo,, and D. Lereclus. 1996. Genetic analysis of cryIIIA gene expression in Bacillus thuringiensis. Microbiology 142:20492055.
193. Salamitou, S.,, F. Ramisse,, M. Brehelin,, D. Bourguet,, N. Gilois,, M. Gominet,, E. Hernandez,, and D. Lereclus. 2000. The plcR regulon is involved in the opportunistic properties of Bacillus thuringiensis and Bacillus cereus in mice and insects. Microbiology 146:28252832.
194. Schindler, D.,, and H. Echols. 1981. Retroregulation of the int gene of bacteriophage lambda: control of translation completion. Proc. Natl. Acad. Sci. USA 78:44754479.
195. Schmiel, D. H.,, and V. L. Miller. 1999. Bacterial phospholipases and pathogenesis. Microbes Infect. 1:11031112.
196. Schnepf, E.,, N. Crickmore,, J. Van Rie,, D. Lereclus,, J. Baum,, J. Feitelson,, D. R. Zeigler,, and D. H. Dean. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62:775806.
197. Schoeni, J. L.,, and A. C. Wong. 2005. Bacillus cereus food poisoning and its toxins. J. Food Prot. 68:636648.
198. Shannon, J. G.,, C. L. Ross,, T. M. Koehler,, and R. F. Rest. 2003. Characterization of anthrolysin O, the Bacillus anthracis cholesterol-dependent cytolysin. Infect. Immun. 71:31833189.
199. Shimono, N.,, J. Hayashi,, H. Matsumoto,, N. Miyake,, Y. Uchida,, S. Shimoda,, N. Furusyo,, and K. Akashi. 26 October 2011. Vigorous cleaning and adequate ventilation are necessary to control an outbreak in a neonatal intensive care unit. J. Infect. Chemother. doi:10.1007/s10156-011-0326-y.
200. Shinagawa, K.,, Y. Ueno,, D. Hu,, S. Ueda,, and S. Sugii. 1996. Mouse lethal activity of a HEp-2 vacuolation factor, cereulide, produced by Bacillus cereus isolated from vomiting-type food poisoning. J.Vet. Med. Sci. 58:10271029.
201. Silo-Suh, L. A.,, B. J. Lethbridge,, S. J. Raffel,, H. He,, J. Clardy,, and J. Handelsman. 1994. Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl. Environ. Microbiol. 60:20232030.
202. Sirard, J. C.,, C. Guidi-Rontani,, A. Fouet,, and M. Mock. 2000. Characterization of a plasmid region involved in Bacillus anthracis toxin production and pathogenesis. Int. J. Med. Microbiol. 290:313316.
203. Sirard, J. C.,, M. Mock,, and A. Fouet. 1994. The three Bacillus anthracis toxin genes are coordinately regulated by bicarbonate and temperature. J. Bacteriol. 176:51885192.
204. Slamti, L.,, and D. Lereclus. 2002. A cell-cell signaling peptide activates the PlcR virulence regulon in bacteria of the Bacillus cereus group. EMBO J. 21:45504559.
205. Slamti, L.,, and D. Lereclus. 2005. Specificity and polymorphism of the PlcR-PapR quorum-sensing system in the Bacillus cereus group. J. Bacteriol. 187:11821187.
206. Slamti, L.,, S. Perchat,, M. Gominet,, G. Vilas-Boas,, A. Fouet,, M. Mock,, V. Sanchis,, J. Chaufaux,, M. Gohar,, and D. Lereclus. 2004. Distinct mutations in PlcR explain why some strains of the Bacillus cereus group are nonhemolytic. J. Bacteriol. 186:35313538.
207. Sonenshein, A. L. 2005. CodY, a global regulator of stationary phase and virulence in Gram-positive bacteria. Curr. Opin. Microbiol. 8:203207.
208. Spira, W. M.,, and J. M. Goepfert. 1972. Bacillus cereus-induced fluid accumulation in rabbit ileal loops. Appl. Microbiol. 24:341348.
209. Stenfors Arnesen, L. P.,, A. Fagerlund,, and P. E. Granum. 2008. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 32:579606.
210. Strauch, M. A.,, P. Ballar,, A. J. Rowshan,, and K. L. Zoller. 2005. The DNA-binding specificity of the Bacillus anthracis AbrB protein. Microbiology 151:17511759.
211. Stulke, J.,, and W. Hillen. 2000. Regulation of carbon catabolism in Bacillus species. Annu. Rev. Microbiol. 54:849880.
212. Sue, D.,, A. R. Hoffmaster,, T. Popovic,, and P. P. Wilkins. 2006. Capsule production in Bacillus cereus strains associated with severe pneumonia. J. Clin. Microbiol. 44:34263428.
213. Thoren, K. L.,, and B. A. Krantz. 2011. The unfolding story of anthrax toxin translocation. Mol. Microbiol. 80:588595.
214. Thorsen, L.,, B. M. Hansen,, K. F. Nielsen,, N. B. Hendriksen,, R.K. Phipps,, and B. B. Budde. 2006. Characterization of emetic Bacillus weihenstephanensis, a new cereulide-producing bacterium. Appl. Environ. Microbiol. 72:51185121.
215. Titball, R. W. 1998. Bacterial phospholipases. Symp. Ser. Soc. Appl. Microbiol. 27:127S137S.
216. Tournier, J. N.,, A. Quesnel-Hellmann,, A. Cleret,, and D. R. Vidal. 2007. Contribution of toxins to the pathogenesis of inhalational anthrax. Cell. Microbiol. 9:555565.
217. Tsvetanova, B.,, A. C. Wilson,, C. Bongiorni,, C. Chiang,, J. A. Hoch,, and M. Perego. 2007. Opposing effects of histidine phosphorylation regulate the AtxA virulence transcription factor in Bacillus anthracis. Mol. Microbiol. 63:644655.
218. Turk, B. E. 2007. Manipulation of host signalling pathways by anthrax toxins. Biochem. J. 402:405417.
219. Uchida, I.,, J. M. Hornung,, C. B. Thorne,, K. R. Klimpel,, and S.H. Leppla. 1993. Cloning and characterization of a gene whose product is a trans-activator of anthrax toxin synthesis. J.Bacteriol. 175:53295338.
220. Uchida, I.,, S. Makino,, T. Sekizaki,, and N. Terakado. 1997. Cross-talk to the genes for Bacillus anthracis capsule synthesis by atxA, the gene encoding the trans-activator of anthrax toxin synthesis. Mol. Microbiol. 23:12291240.
221. vand er Voort, M.,, O. P. Kuipers,, G. Buist,, W. M. de Vos,, and T. Abee. 2008. Assessment of CcpA-mediated catabolite control of gene expression in Bacillus cereus ATCC 14579. BMC Microbiol. 8:62.
222. van Schaik, W.,, A. Chateau,, M. A. Dillies,, J. Y. Coppee,, A. L. Sonenshein,, and A. Fouet. 2009. The global regulator CodY regulates toxin gene expression in Bacillus anthracis and is required for full virulence. Infect. Immun. 77:44374445.
223. Vassileva, M.,, K. Torii,, M. Oshimoto,, A. Okamoto,, N. Agata,, K. Yamada,, T. Hasegawa,, and M. Ohta. 2007. A new phylogenetic cluster of cereulide-producing Bacillus cereus strains. J. Clin. Microbiol. 45:12741277.
224. Vietri, N. J.,, R. Marrero,, T. A. Hoover,, and S. L. Welkos. 1995. Identification and characterization of a trans-activator involved in the regulation of encapsulation by Bacillus anthracis. Gene 152:19.
225. Warner, J. B.,, and J. S. Lolkema. 2003. CcpA-dependent carbon catabolite repression in bacteria. Microbiol. Mol. Biol. Rev. 67:475490.
226. Welkos, S.,, A. Friedlander,, S. Weeks,, S. Little,, and I. Mendelson. 2002. In-vitro characterization of the phagocytosis and fate of anthrax spores in macrophage and the effects of anti-PA antibody. J. Med. Microbiol. 51:821831.
227. Wilson, A. C.,, J. A. Hoch,, and M. Perego. 2009. Two small c-type cytochromes affect virulence gene expression in Bacillus anthracis. Mol. Microbiol. 72:109123.
228. Wilson, M. K.,, J. M. Vergis,, F. Alem,, J. R. Palmer,, A. M. Keane-Myers,, T. N. Brahmbhatt,, C. L. Ventura,, and A. D. O’Brien. 2011. Bacillus cereus G9241 makes anthrax toxin and capsule like highly virulent B. anthracis Ames but behaves like attenuated toxigenic nonencapsulated B. anthracis Sterne in rabbits and mice. Infect. Immun. 79:30123019.
229. Wong, H. C.,, and S. Chang. 1986. Identification of a positive retroregulator that stabilizes mRNAs in bacteria. Proc. Natl. Acad. Sci. USA 83:32333237.
230. Wong, H. C.,, H. E. Schnepf,, and H. R. Whiteley. 1983. Transcriptional and translational start sites for the Bacillus thuringiensis crystal protein gene. J. Biol. Chem. 258:19601967.
231. Young, J. A.,, and R. J. Collier. 2007. Anthrax toxin: receptor binding, internalization, pore formation, and translocation. Annu. Rev. Biochem. 76:243265.
232. Zhang, M. Y.,, A. Lovgren,, M. G. Low,, and R. Landen. 1993. Characterization of an avirulent pleiotropic mutant of the insect pathogen Bacillus thuringiensis: reduced expression of flagellin and phospholipases. Infect. Immun. 61:49474954.
233. Zhou, Y.,, Y. L. Choi,, M. Sun,, and Z. Yu. 2008. Novel roles of Bacillus thuringiensis to control plant diseases. Appl. Microbiol. Biotechnol. 80:563572.
234. Zigha, A.,, E. Rosenfeld,, P. Schmitt,, and C. Duport. 2007. The redox regulator Fnr is required for fermentative growth and enterotoxin synthesis in Bacillus cereus F4430/73. J. Bacteriol. 189:28132824.