1887

Chapter 14 : Regulation of Extracellular Toxin Production in

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Regulation of Extracellular Toxin Production in , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818524/9781555816766_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555818524/9781555816766_Chap14-2.gif

Abstract:

is a gram-positive, spore-forming anaerobic rod that is widespread in the environment and is commonly isolated from the gastrointestinal tract of humans and animals, as well as from soil and sewage. This chapter provides an overview of the regulatory systems and mechanisms involved in the control of toxin production in . Two-component signal transduction systems represent one of the most widespread mechanisms by which bacteria sense and respond to a diverse range of changes in both environmental stimuli and bacterial cell density. Genetic studies have shown that disruption of either or resulted in an altered toxin production profile. Although VirSR was first identified as a positive regulator of extracellular toxin production, it is now considered a bifunctional system, as it has been demonstrated to positively and negatively regulate the expression of many genes at the transcriptional level. The maintenance of the correct helical phasing, the correct spacing between the VirR boxes, and the correct distance between the VirR boxes and the -35 region were shown to be critical for optimal transcriptional activation. Genomic analysis has predicted a number of small regulatory RNAs (sRNAs) in the genomes of isolates. In the gas gangrene strains, 13 and ATCC 13124, 193 and 181 sRNAs have been predicted, respectively, whereas 131 sRNA were predicted in the food poisoning isolate, SM101.

Citation: Cheung J, Low L, Hiscox T, Rood J. 2013. Regulation of Extracellular Toxin Production in , p 281-294. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch14
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Regulation of gene expression by the VirSR two-component signal transduction system. The VirS sensor histidine kinase (shown in pink) autophosphorylates upon detection of an external signal. Phosphorylated VirS then donates the phosphoryl group to its cognate response regulator, VirR (shown in blue). Phosphorylated VirR directly regulates the expression of , , , , and in strain 13, in EHE-NE18, and presumably and in ATCC 13124 and in SM101. VirSR indirectly regulates the expression of the indicated genes through the VR-RNA, VirT, and VirU sRNAs. Positive regulation is denoted by the green arrows and plus symbols, while negative regulation is shown by the red lines and minus symbols. The VirX sRNA positively regulates the expression the , , and genes in a VirSRindependent manner. doi:10.1128/9781555818524.ch14f1

Citation: Cheung J, Low L, Hiscox T, Rood J. 2013. Regulation of Extracellular Toxin Production in , p 281-294. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

VirR boxes in the genome. VirR boxes are written in blue and are boxed. The genes found downstream are indicated adjacent to the relevant VirR boxes. The putative −35 and −10 sequences are underlined and shown in pink and green, respectively. doi:10.1128/9781555818524.ch14f2

Citation: Cheung J, Low L, Hiscox T, Rood J. 2013. Regulation of Extracellular Toxin Production in , p 281-294. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Processing of mRNA by VR-RNA. (A) Potential base-pairing between the 5′′UTR of mRNA and the 3′′region of VR-RNA. The numbers indicate the nucleotides relative to the ATG start, where A is +1. The triangles represent the processing sites on the mRNA. (B) Predicted structures of the unprocessed and processed 5′′UTR of mRNA from the transcription start site to the AUG start codon (underlined). The predicted Δ values (in kilocalories per mole) are indicated above each structure. The ribosome binding sequences (SD) are shown in bold. Panels are reprinted from ( ) with the permission of the authors and the publisher. doi:10.1128/9781555818524.ch14f3

Citation: Cheung J, Low L, Hiscox T, Rood J. 2013. Regulation of Extracellular Toxin Production in , p 281-294. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818524.chap14
1. Abe, K.,, N. Obana,, and K. Nakamura. 2010. Effects of depletion of RNA-binding protein Tex on the expression of toxin genes in Clostridium perfringens. Biosci. Biotechnol. Biochem. 74:15641571.
2. Andre, G.,, E. Haudecoeur,, M. Monot,, K. Ohtani,, T. Shimizu,, B. Dupuy,, and I. Martin-Verstraete. 2010. Global regulation of gene expression in response to cysteine availability in Clostridium perfringens. BMC Microbiol. 10:234.
3. Awad, M. M.,, A. E. Bryant,, D. L. Stevens,, and J. I. Rood. 1995. Virulence studies on chromosomal α-toxin and θ-toxin mutants constructed by allelic exchange provide genetic evidence for the essential role of –-toxin in Clostridium perfringens-mediated gas gangrene. Mol. Microbiol. 15:191202.
4. Awad, M. M.,, D. M. Ellemor,, R. L. Boyd,, J. J. Emmins,, and J. I. Rood. 2001. Synergistic effects of alpha-toxin and perfringolysin O in Clostridium perfringens-mediated gas gangrene. Infect. Immun. 69:79047910.
5. Banu, S.,, K. Ohtani,, H. Yaguchi,, T. Swe,, S. T. Cole,, H. Hayashi,, and T. Shimizu. 2000. Identification of novel VirR/VirS-regulated genes in Clostridium perfringens. Mol. Microbiol. 35:854864.
6. Ba-Thein, W.,, M. Lyristis,, K. Ohtani,, I. T. Nisbet,, H. Hayashi,, J. I. Rood,, and T. Shimizu. 1996. The virR/virS locus regulates the transcription of genes encoding extracellular toxin production in Clostridium perfringens. J. Bacteriol. 178:25142520.
7. Beier, D.,, and R. Gross. 2006. Regulation of bacterial virulence by two-component systems. Curr. Opin. Microbiol. 9:143152.
8. Bourret, R. B.,, and R. E. Silversmith. 2010. Two-component signal transduction. Curr. Opin. Microbiol. 13:113115.
9. Bronner, S.,, H. Monteil,, and G. Prevost. 2004. Regulation of virulence determinants in Staphylococcus aureus: complexity and applications. FEMS Microbiol. Rev. 28:183200.
10. Brynestad, S.,, and P. E. Granum. 2002. Clostridium perfringens and foodborne infections. Int. J. Food Microbiol. 74:195202.
11. Calva, E.,, and R. Oropeza. 2006. Two-component signal transduction systems, environmental signals, and virulence. Microb. Ecol. 51:166176.
12. Canard, B.,, T. Garnier,, B. Saint-Joanis,, and S. T. Cole. 1994. Molecular genetic analysis of the nagH gene encoding a hyaluronidase of Clostridium perfringens. Mol. Gen. Genet. 243:215224.
13. Casino, P.,, V. Rubio,, and A. Marina. 2010. The mechanism of signal transduction by two-component systems. Curr. Opin. Struct. Biol. 20:763771.
14. Chen, Y.,, D. C. Indurthi,, S. W. Jones,, and E. T. Papoutsakis. 2011. Small RNAs in the genus Clostridium. mBio 2:e0034000310.
15. Cheung, J. K.,, M. M. Awad,, S. McGowan,, and J. I. Rood. 2009. Functional analysis of the VirSR phosphorelay from Clostridium perfringens. PLoS One 4:e5849.
16. Cheung, J. K.,, B. Dupuy,, D. S. Deveson,, and J. I. Rood. 2004. The spatial organization of the VirR boxes is critical for VirR-mediated expression of the perfringolysin O gene, pfoA, from Clostridium perfringens. J. Bacteriol. 186:33213330.
17. Cheung, J. K.,, A. L. Keyburn,, G. P. Carter,, A. L. Lanckriet,, F. Van Immerseel,, R. J. Moore,, and J. I. Rood. 2010. The VirSR two-component signal transduction system regulates NetB toxin production in Clostridium perfringens. Infect. Immun. 78:30643072.
18. Cheung, J. K.,, and J. I. Rood. 2000a. Glutamate residues in the putative transmembrane region are required for the function of the VirS sensor histidine kinase from Clostridium perfringens. Microbiology 146(Pt. 2):517525.
19. Cheung, J. K.,, and J. I. Rood. 2000b. The VirR response regulator from Clostridium perfringens binds independently to two imperfect direct repeats located upstream of the pfoA promoter. J. Bacteriol. 182:5766.
20. Chiarezza, M.,, D. Lyras,, S. J. Pidot,, M. Flores-Diaz,, M. M. Awad,, C. L. Kennedy,, L. M. Cordner,, T. Phumoonna,, R. Poon,, M. L. Hughes,, J. J. Emmins,, A. Alape-Giron,, and J. I. Rood. 2009. The NanI and NanJ sialidases of Clostridium perfringens are not essential for virulence. Infect. Immun. 77:44214428.
21. Czeczulin, J. R.,, P. C. Hanna,, and B. A. McClane. 1993. Cloning, nucleotide sequencing, and expression of the Clostridium perfringens enterotoxin gene in Escherichia coli. Infect. Immun. 61:34293439.
22. Duncan, C. L. 1973. Time of enterotoxin formation and release during sporulation of Clostridium perfringens type A. J. Bacteriol. 113:932936.
23. Duncan, C. L.,, G. J. King,, and W. R. Frieben. 1973. A paracrystalline inclusion formed during sporulation of enterotoxin-producing strains of Clostridium perfringens type A. J. Bacteriol. 114:845859.
24. Fernandez-Miyakawa, M. E.,, D. J. Fisher,, R. Poon,, S. Sayeed,, V. Adams,, J. I. Rood,, B. A. McClane,, and F. A. Uzal. 2007. Both epsilon-toxin and beta-toxin are important for the lethal properties of Clostridium perfringens type B isolates in the mouse intravenous injection model. Infect. Immun. 75:14431452.
25. Fernandez Miyakawa, M. E.,, and F. A. Uzal. 2003. The early effects of Clostridium perfringens type D epsilon toxin in ligated intestinal loops of goats and sheep. Vet. Res. Commun. 27:231241.
26. Fisher, D. J.,, M. E. Fernandez-Miyakawa,, S. Sayeed,, R. Poon,, V. Adams,, J. I. Rood,, F. A. Uzal,, and B. A. McClane. 2006. Dissecting the contributions of Clostridium perfringens type C toxins to lethality in the mouse intravenous injection model. Infect. Immun. 74:52005210.
27. Frohlich, K. S.,, and J. Vogel. 2009. Activation of gene expression by small RNA. Curr. Opin.Microbiol. 12:674682.
28. Fuchs, T. M.,, H. Deppisch,, V. Scarlato,, and R. Gross. 1996. A new gene locus of Bordetella pertussis defines a novel family of prokaryotic transcriptional accessory proteins. J. Bacteriol. 178:44454452.
29. Galloway, W. R.,, J. T. Hodgkinson,, S. D. Bowden,, M. Welch,, and D. R. Spring. 2011. Quorum sensing in Gram-negative bacteria: small-molecule modulation of AHL and AI-2 quorum sensing pathways. Chem. Rev. 111:2867.
30. Galperin, M. Y. 2010. Diversity of structure and function of response regulator output domains. Curr. Opin. Microbiol. 13:150159.
31. Gibert, M.,, C. Jolivert-Reynaud,, and M. R. Popoff. 1997. Beta2 toxin, a novel toxin produced by Clostridium perfringens. Gene 203:6573.
32. Gotoh, Y.,, Y. Eguchi,, T. Watanabe,, S. Okamoto,, A. Doi,, and R. Utsumi. 2010. Two-component signal transduction as potential drug targets in pathogenic bacteria. Curr. Opin. Microbiol. 13:232239.
33. Gottesman, S. 2005. Micros for microbes: non-coding regulatory RNAs in bacteria. Trends Genet. 21:399404.
34. Harry, K. H.,, R. Zhou,, L. Kroos,, and S. B. Melville. 2009. Sporulation and enterotoxin (CPE) synthesis are controlled by the sporulation-specific sigma factors SigE and SigK in Clostridium perfringens. J. Bacteriol. 191:27282742.
35. Hassan, S.,, K. Ohtani,, R. Wang,, Y. Yuan,, Y. Wang,, Y. Yamaguchi,, and T. Shimizu. 2010. Transcriptional regulation of hemO encoding heme oxygenase in Clostridium perfringens. J. Microbiol. 48:96101.
36. Higashi, Y.,, M. Chazono,, K. Inoue,, Y. Yanagase,, and T. Amano. 1973. Complementation of theta-toxinogenicity between mutants of two groups of Clostridium perfringens. Biken J. 16:19.
37. Hiscox, T. J.,, A. Chakravorty,, J. M. Choo,, K. Ohtani,, T. Shimizu,, J. K. Cheung,, and J. I. Rood. 2011. Regulation of virulence by the RevR response regulator in Clostridium perfringens. Infect. Immun. 79:21452153.
38. Huang, I. H.,, M. Waters,, R. R. Grau,, and M. R. Sarker. 2004. Disruption of the gene (spo0A) encoding sporulation transcription factor blocks endospore formation and enterotoxin production in enterotoxigenic Clostridium perfringens type A. FEMS Microbiol. Lett. 233:233240.
39. Hynes, W. L.,, and S. L. Walton. 2000. Hyaluronidases of Gram-positive bacteria. FEMS Microbiol. Lett. 183:201207.
40. Imagawa, T.,, and Y. Higashi. 1992. An activity which restores theta toxin activity in some theta toxin-deficient mutants of Clostridium perfringens. Microbiol. Immunol. 36:523527.
41. Imagawa, T.,, T. Tatsuki,, Y. Higashi,, and T. Amano. 1981. Complementation characteristics of newly isolated mutants from two groups of strains of Clostridium perfringens. Biken J. 24:1321.
42. Janzon, L.,, S. Lofdahl,, and S. Arvidson. 1989. Identification and nucleotide sequence of the delta-lysin gene, hld, adjacent to the accessory gene regulator (agr) of Staphylococcus aureus. Mol. Gen. Genet. 219:480485.
43. Ji, G.,, R. C. Beavis,, and R. P. Novick. 1995. Cell density control of staphylococcal virulence mediated by an octapeptide pheromone. Proc. Natl. Acad. Sci. USA 92:1205512059.
44. Johnson, S.,, and D. N. Gerding,. 1997. Enterotoxemic infections, p. 117140. In J. I. Rood,, B. A. McClane,, J. G. Songer,, and R. W. Titball (ed.), The Clostridia: Molecular Biology and Pathogenesis. Academic Press, San Diego, CA.
45. Kawsar, H. I.,, K. Ohtani,, K. Okumura,, H. Hayashi,, and T. Shimizu. 2004. Organization and transcriptional regulation of myo-inositol operon in Clostridium perfringens. FEMS Microbiol. Lett. 235:289295.
46. Keyburn, A. L.,, T. L. Bannam,, J. Moore,, and J. I. Rood. 2010. NetB, a pore-forming toxin from necrotic enteritis strains of Clostridium perfringens. Toxins 2:19131927.
47. Keyburn, A. L.,, J. D. Boyce,, P. Vaz,, T. L. Bannam,, M. E. Ford,, D. Parker,, A. Di Rubbo,, J. I. Rood,, and R. J. Moore. 2008. NetB, a new toxin that is associated with avian necrotic enteritis caused by Clostridium perfringens. PLoS Pathog. 4:e26.
48. Lawerence, G. W., 1997. The pathogenesis of enteritis necroticans, p. 197207. In J. I. Rood,, B. A. McClane,, J. G. Songer,, and R. W. Titball (ed.), The Clostridia: Molecular Biology and Pathogenesis. Academic Press, San Diego, CA.
49. Li, J.,, J. Chen,, J. E. Vidal,, and B. A. McClane. 2011. The Agr-like quorum-sensing system regulates sporulation and production of enterotoxin and beta2 toxin by Clostridium perfringens type A non-food-borne human gastrointestinal disease strain F5603. Infect. Immun. 79:24512459.
50. Li, J.,, and B. A. McClane. 2010. Evaluating the involvement of alternative sigma factors SigF and SigG in Clostridium perfringens sporulation and enterotoxin synthesis. Infect. Immun. 78:42864293.
51. Liu, J. M.,, and A. Camilli. 2010. A broadening world of bacterial small RNAs. Curr. Opin. Microbiol. 13:1823.
52. Loffler, A.,, and R. Labbe. 1986. Characterization of a parasporal inclusion body from sporulating, enterotoxin-positive Clostridium perfringens type A. J. Bacteriol. 165:542548.
53. Lyristis, M.,, A. E. Bryant,, J. Sloan,, M. M. Awad,, I. T. Nisbet,, D. L. Stevens,, and J. I. Rood. 1994. Identification and molecular analysis of a locus that regulates extracellular toxin production in Clostridium perfringens. Mol. Microbiol. 12:761777.
54. Ma, M.,, J. Vidal,, J. Saputo,, B. A. McClane,, and F. Uzal. 2011. The VirS/VirR two-component system regulates the anaerobic cytotoxicity, intestinal pathogenicity, and enterotoxemic lethality of Clostridium perfringens type C isolate CN3685. mBio 2:e0033800310.
55. McClane, B. A., 2005. Clostridial enterotoxins, p. 385406. In P. Dürre (ed.), Handbook on Clostridia. CRC Press, Boca Raton, FL.
56. McGowan, S.,, I. S. Lucet,, J. K. Cheung,, M. M. Awad,, J. C. Whisstock,, and J. I. Rood. 2002. The FxRxHrS motif: a conserved region essential for DNA binding of the VirR response regulator from Clostridium perfringens. J. Mol. Biol. 322:9971011.
57. McGowan, S.,, J. R. O'Connor,, J. K. Cheung,, and J. I. Rood. 2003. The SKHR motif is required for biological function of the VirR response regulator from Clostridium perfringens. J. Bacteriol. 185:62056208.
58. Myers, G. S.,, D. A. Rasko,, J. K. Cheung,, J. Ravel,, R. Seshadri,, R. T. DeBoy,, Q. Ren,, J. Varga,, M. M. Awad,, L. M. Brinkac,, S. C. Daugherty,, D. H. Haft,, R. J. Dodson,, R. Madupu,, W. C. Nelson,, M. J. Rosovitz,, S. A. Sullivan,, H. Khouri,, G. I. Dimitrov,, K. L. Watkins,, S. Mulligan,, J. Benton,, D. Radune,, D. J. Fisher,, H. S. Atkins,, T. Hiscox,, B. H. Jost,, S. J. Billington,, J. G. Songer,, B.A. McClane,, R. W. Titball,, J. I. Rood,, S. B. Melville,, and I. T. Paulsen. 2006. Skewed genomic variability in strains of the toxigenic bacterial pathogen, Clostridium perfringens. Genome Res. 16:10311040.
59. Nikolskaya, A. N.,, and M. Y. Galperin. 2002. A novel type of conserved DNA-binding domain in the transcriptional regulators of the AlgR/AgrA/LytR family. Nucleic Acids Res. 30:24532459.
60. Novick, R. P. 2003. Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol. Microbiol. 48:14291449.
61. Novick, R. P.,, S. J. Projan,, J. Kornblum,, H. F. Ross,, G. Ji,, B. Kreiswirth,, F. Vandenesch,, and S. Moghazeh. 1995. The agr P2 operon: an autocatalytic sensory transduction system in Staphylococcus aureus. Mol. Gen. Genet. 248:446458.
62. Novick, R. P.,, H. F. Ross,, S. J. Projan,, J. Kornblum,, B. Kreiswirth,, and S. Moghazeh. 1993. Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J. 12:39673975.
63. Obana, N.,, and K. Nakamura. 2011. A novel toxin regulator, the CPE1446-CPE1447 protein heteromeric complex, controls toxin genes in Clostridium perfringens. J. Bacteriol. 193:44174424.
64. Obana, N.,, Y. Shirahama,, K. Abe,, and K. Nakamura. 2010. Stabilization of Clostridium perfringens collagenase mRNA by VR-RNA-dependent cleavage in 5– leader sequence. Mol. Microbiol. 77:14161428.
65. Ohtani, K.,, S. K. Bhowmik,, H. Hayashi,, and T. Shimizu. 2002a. Identification of a novel locus that regulates expression of toxin genes in Clostridium perfringens. FEMS Microbiol. Lett. 209:113118.
66. Ohtani, K.,, H. Hayashi,, and T. Shimizu. 2002b. The luxS gene is involved in cell-cell signalling for toxin production in Clostridium perfringens. Mol. Microbiol. 44:171179.
67. Ohtani, K.,, H. Hirakawa,, K. Tashiro,, S. Yoshizawa,, S. Kuhara,, and T. Shimizu. 2010. Identification of a two-component VirR/VirS regulon in Clostridium perfringens. Anaerobe 16:258264.
68. Ohtani, K.,, H. I. Kawsar,, K. Okumura,, H. Hayashi,, and T. Shimizu. 2003. The VirR/VirS regulatory cascade affects transcription of plasmid-encoded putative virulence genes in Clostridium perfringens strain 13. FEMS Microbiol. Lett. 222:137141.
69. Ohtani, K.,, H. Takamura,, H. Yaguchi,, H. Hayashi,, and T. Shimizu. 2000. Genetic analysis of the ycgJ-metB-cysK-ygaG operon negatively regulated by the VirR/VirS system in Clostridium perfringens. Microbiol. Immunol. 44:525528.
70. Ohtani, K.,, Y. Yuan,, S. Hassan,, R. Wang,, Y. Wang,, and T. Shimizu. 2009. Virulence gene regulation by the agr system in Clostridium perfringens. J. Bacteriol. 191:39193927.
71. Okumura, K.,, H. I. Kawsar,, T. Shimizu,, T. Ohta,, and H. Hayashi. 2005. Identification and characterization of a cell-wall anchored DNase gene in Clostridium perfringens. FEMS Microbiol. Lett. 242:281285.
72. Okumura, K.,, K. Ohtani,, H. Hayashi,, and T. Shimizu. 2008. Characterization of genes regulated directly by the VirR/VirS system in Clostridium perfringens. J. Bacteriol. 190:77197727.
73. Otto, M. 2004. Quorum-sensing control in staphylococci—a target for antimicrobial drug therapy? FEMS Microbiol. Lett. 241:135141.
74. Petit, L.,, M. Gibert,, and M. R. Popoff. 1999. Clostridium perfringens: toxinotype and genotype. Trends Microbiol. 7:104110.
75. Popoff, M. R.,, and P. Bouvet. 2009. Clostridial toxins. Future Microbiol. 4:10211064.
76. Rood, J. I. 1998. Virulence genes of Clostridium perfringens. Annu. Rev. Microbiol. 52:333360.
77. Rood, J. I.,, and S. T. Cole. 1991. Molecular genetics and pathogenesis of Clostridium perfringens. Microbiol. Rev. 55:621648.
78. Sarker, M. R.,, R. J. Carman,, and B. A. McClane. 1999. Inactivation of the gene (cpe) encoding Clostridium perfringens enterotoxin eliminates the ability of two cpe-positive C. perfringens type A human gastrointestinal disease isolates to affect rabbit ileal loops. Mol. Microbiol. 33:946958.
79. Sayeed, S.,, M. E. Fernandez-Miyakawa,, D. J. Fisher,, V. Adams,, R. Poon,, J. I. Rood,, F. A. Uzal,, and B. A. McClane. 2005. Epsilon-toxin is required for most Clostridium perfringens type D vegetative culture supernatants to cause lethality in the mouse intravenous injection model. Infect. Immun. 73:74137421.
80. Sayeed, S.,, F. A. Uzal,, D. J. Fisher,, J. Saputo,, J. E. Vidal,, Y. Chen,, P. Gupta,, J. I. Rood,, and B. A. McClane. 2008. Beta toxin is essential for the intestinal virulence of Clostridium perfringens type C disease isolate CN3685 in a rabbit ileal loop model. Mol. Microbiol. 67:1530.
81. Shimizu, T.,, W. Ba-Thein,, M. Tamaki,, and H. Hayashi. 1994. The virR gene, a member of a class of two-component response regulators, regulates the production of perfringolysin O, collagenase, and hemagglutinin in Clostridium perfringens. J. Bacteriol. 176:16161623.
82. Shimizu, T.,, K. Ohtani,, H. Hirakawa,, K. Ohshima,, A. Yamashita,, T. Shiba,, N. Ogasawara,, M. Hattori,, S. Kuhara,, and H. Hayashi. 2002a. Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proc. Natl. Acad. Sci. USA 99:9961001.
83. Shimizu, T.,, K. Shima,, K. Yoshino,, K. Yonezawa,, and H. Hayashi. 2002b. Proteome and transcriptome analysis of the virulence genes regulated by the VirR/VirS system in Clostridium perfringens. J. Bacteriol. 184:25872594.
84. Shimizu, T.,, H. Yaguchi,, K. Ohtani,, S. Banu,, and H. Hayashi. 2002c. Clostridial VirR/VirS regulon involves a regulatory RNA molecule for expression of toxins. Mol. Microbiol. 43:257265.
85. Sidote, D. J.,, C. M. Barbieri,, T. Wu,, and A. M. Stock. 2008. Structure of the Staphylococcus aureus AgrA LytTR domain bound to DNA reveals a beta fold with an unusual mode of binding. Structure 16:727735.
86. Skjelkvale, R.,, and T. Uemura. 1977. Experimental diarrhoea in human volunteers following oral administration of Clostridium perfringens enterotoxin. J. Appl. Bacteriol. 43:281286.
87. Songer, J. G. 2010. Clostridia as agents of zoonotic disease. Vet. Microbiol. 140:399404.
88. Songer, J. G., 1997. Clostridial diseases of animals, p. 153182. In J. I. Rood,, B. A. McClane,, J. G. Songer,, and R. W. Titball (ed.), The Clostridia: Molecular Biology and Pathogenesis. Academic Press, San Diego, CA.
89. Songer, J. G. 1996. Clostridial enteric diseases of domestic animals. Clin. Microbiol. Rev. 9:216234.
90. Songer, J. G.,, and D. W. Miskimmins. 2004. Clostridium perfringens type E enteritis in calves: two cases and a brief review of the literature. Anaerobe 10:239242.
91. Songer, J. G.,, and F. A. Uzal. 2005. Clostridial enteric infections in pigs. J. Vet. Diagn. Investig. 17:528536.
92. Stevens, D. L.,, R. K. Tweten,, M. M. Awad,, J. I. Rood,, and A. E. Bryant. 1997. Clostridial gas gangrene: evidence that alpha and theta toxins differentially modulate the immune response and induce acute tissue necrosis. J. Infect. Dis. 176:189195.
93. Timbermont, L.,, F. Haesebrouck,, R. Ducatelle,, and F. Van Immerseel. 2011. Necrotic enteritis in broilers: an updated review on the pathogenesis. Avian Pathol. 40:341347.
94. Titball, R. W. 2005. Gas gangrene: an open and closed case. Microbiology 151:28212828.
95. Tsuge, H.,, M. Nagahama,, M. Oda,, S. Iwamoto,, H. Utsunomiya,, V. E. Marquez,, N. Katunuma,, M. Nishizawa,, and J. Sakurai. 2008. Structural basis of actin recognition and arginine ADP-ribosylation by Clostridium perfringens iota-toxin. Proc. Natl. Acad. Sci. USA 105:73997404.
96. Uzal, F.,, and B. A. McClane. 2011. Recent progress in understanding the pathogenesis of Clostridium perfringens type C infections. Vet. Microbiol. 153:3743.
97. Uzal, F. A.,, J. Saputo,, S. Sayeed,, J. E. Vidal,, D. J. Fisher,, R. Poon,, V. Adams,, M. E. Fernandez-Miyakawa,, J. I. Rood,, and B. A. McClane. 2009. Development and application of new mouse models to study the pathogenesis of Clostridium perfringens type C enterotoxemias. Infect. Immun. 77:52915299.
98. Uzal, F. A.,, and J. G. Songer. 2008. Diagnosis of Clostridium perfringens intestinal infections in sheep and goats. J. Vet. Diagn. Investig. 20:253265.
99. Vandenesch, F.,, J. Kornblum,, and R. P. Novick. 1991. A temporal signal, independent of agr, is required for hla but not spa transcription in Staphylococcus aureus. J. Bacteriol. 173:63136320.
100. Van Immerseel, F.,, J. I. Rood,, R. J. Moore,, and R. W. Titball. 2009. Rethinking our understanding of the pathogenesis of necrotic enteritis in chickens. Trends Microbiol. 17:3236.
101. Varga, J.,, V. L. Stirewalt,, and S. B. Melville. 2004. The CcpA protein is necessary for efficient sporulation and enterotoxin gene (cpe) regulation in Clostridium perfringens. J. Bacteriol. 186:52215229.
102. Vidal, J. E.,, J. Chen,, J. Li,, and B. A. McClane. 2009a. Use of an EZ-Tn5-based random mutagenesis system to identify a novel toxin regulatory locus in Clostridium perfringens strain 13. PLoS One 4:e6232.
103. Vidal, J. E.,, K. Ohtani,, T. Shimizu,, and B. A. McClane. 2009b. Contact with enterocyte-like Caco-2 cells induces rapid upregulation of toxin production by Clostridium perfringens type C isolates. Cell. Microbiol. 11:13061328.
104. Vidal, J. E.,, B. A. McClane,, J. Saputo,, J. Parker,, and F. A. Uzal. 2008. Effects of Clostridium perfringens beta-toxin on the rabbit small intestine and colon. Infect. Immun. 76:43964404.
105. Waters, L. S.,, and G. Storz. 2009. Regulatory RNAs in bacteria. Cell 136:615628.
106. Wolz, C.,, P. Pohlmann-Dietze,, A. Steinhuber,, Y. T. Chien,, A. Manna,, W. van Wamel,, and A. Cheung. 2000. Agr-independent regulation of fibronectin-binding protein(s) by the regulatory locus sar in Staphylococcus aureus. Mol. Microbiol. 36:230243.
107. Xavier, K. B.,, and B. L. Bassler. 2003. LuxS quorum sensing: more than just a numbers game. Curr. Opin. Microbiol. 6:191197.
108. Yuan, Y.,, K. Ohtani,, S. Yoshizawa,, and T. Shimizu. 21 September 2011. Complex transcriptional regulation of citrate metabolism in Clostridium perfringens. Anaerobe 18:4854. [Epub ahead of print.]
109. Zhao, Y.,, and S. B. Melville. 1998. Identification and characterization of sporulation-dependent promoters upstream of the enterotoxin gene (cpe) of Clostridium perfringens. J. Bacteriol. 180:136142.

Tables

Generic image for table
Table 1

Toxins produced and diseases caused by toxinotypes

Citation: Cheung J, Low L, Hiscox T, Rood J. 2013. Regulation of Extracellular Toxin Production in , p 281-294. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch14

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error