1887

Chapter 15 : Regulation of Toxin Production in

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Regulation of Toxin Production in , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818524/9781555816766_Chap15-1.gif /docserver/preview/fulltext/10.1128/9781555818524/9781555816766_Chap15-2.gif

Abstract:

This chapter discusses our current understanding of gene regulation in , focusing on how toxin production is regulated, with a particular emphasis on the major toxins, toxin A and toxin B. The onset of toxin synthesis is associated with entry into the stationary phase of growth. The precise growth phase signals involved in the initiation of toxin production remain unknown, even though nutrient signals have clearly been shown to have a profound effect on toxin production by . TcdA and TcdB are encoded by and , respectively, which are located in a region of the chromosome known as the pathogenicity locus (PaLoc). The TcdR protein has a helix-turn-helix DNA binding motif and has limited similarity to some clostridial transcriptional activator proteins, as well as to several families of eubacterial RNA polymerase sigma factors, which is consistent with the hypothesis that TcdR is a positive regulator of toxin production. The regulation of toxin production in is clearly complex and relies on a number of different regulatory systems. In species, activation of Spo0A occurs via a phosphorelay cascade that eventuates in the phosphorylation of Spo0A via Spo0F and Spo0B. SigH is an alternative sigma factor that is involved in the transition to stationary phase and sporulation. Recent breakthroughs in genetic manipulation technologies available for , together with refined animal infection models, will facilitate future studies and will further define the complex regulatory networks involved in toxin regulation.

Citation: Carter G, Mackin K, Rood J, Lyras D. 2013. Regulation of Toxin Production in , p 295-306. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch15
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Structure of the PaLoc and flanking regions. Filled arrows indicate open reading frames, with arrows showing the direction of transcription. Toxin genes are shown in blue, regulatory genes are in orange and green, is in yellow, and genes located outside the PaLoc are in grey. The sigma factor TcdR interacts with the core RNA polymerase protein, facilitating recognition of the , , and promoters by the TcdR-RNA polymerase complex and promoting transcription from these promoters. The anti-sigma factor TcdC negatively regulates transcription by interacting with TcdR. doi:10.1128/9781555818524.ch15f1

Citation: Carter G, Mackin K, Rood J, Lyras D. 2013. Regulation of Toxin Production in , p 295-306. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Activation of by CdtR. An unknown signal activates the putative CdtS sensor histidine kinase, which then leads to the phosphorylation (P) of the response regulator CdtR. Phosphorylated CdtR activates the transcription of the operon, which is part of the chromosomal CdtLoc, as shown. doi:10.1128/9781555818524.ch15f2

Citation: Carter G, Mackin K, Rood J, Lyras D. 2013. Regulation of Toxin Production in , p 295-306. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818524.chap15
1. Akerlund, T.,, B. Svenungsson,, A. Lagergren,, and L. G. Burman. 2006. Correlation of disease severity with fecal toxin levels in patients with Clostridium difficile-associated diarrhea and distribution of PCR ribotypes and toxin yields in vitro of corresponding isolates. J. Clin. Microbiol. 44: 353 358.
2. Antunes, A.,, I. Martin-Verstraete,, and B. Dupuy. 2011. CcpA-mediated repression of Clostridium difficile toxin gene expression. Mol. Microbiol. 79: 882 899.
3. Baker, S. S.,, H. Faden,, W. Sayej,, R. Patel,, and R. D. Baker. 2010. Increasing incidence of community-associated atypical Clostridium difficile disease in children. Clin. Pediatr. (Philadelphia) 49: 644 647.
4. Barth, H.,, K. Aktories,, M. R. Popoff,, and B. G. Stiles. 2004. Binary bacterial toxins: biochemistry, biology, and applications of common Clostridium and Bacillus proteins. Microbiol. Mol. Biol. Rev. 68: 373 402.
5. Bergara, F.,, C. Ibarra,, J. Iwamasa,, J. C. Patarroyo,, R. Aguilera,, and L. M. Marquez-Magana. 2003. CodY is a nutritional repressor of flagellar gene expression in Bacillus subtilis. J. Bacteriol. 185: 3118 3126.
6. Bordeleau, E.,, L. C. Fortier,, F. Malouin,, and V. Burrus. 2011. c-di-GMP turn-over in Clostridium difficile is controlled by a plethora of diguanylate cyclases and phosphodiesterases. PLoS Genet. 7: e1002039.
7. Borriello, S. P. 1998. Pathogenesis of Clostridium difficile infection. J. Antimicrob. Chemother. 41: 13 19.
8. Bouvet, P. J.,, and M. R. Popoff. 2008. Genetic relatedness of Clostridium difficile isolates from various origins determined by triple-locus sequence analysis based on toxin regulatory genes tcdC, tcdR, and cdtR. J. Clin. Microbiol. 46: 3703 3713.
9. Braun, V.,, T. Hundsberger,, P. Leukel,, M. Sauerborn,, and C. von Eichel-Streiber. 1996. Definition of the single integration site of the pathogenicity locus in Clostridium difficile. Gene 181: 29 38.
10. Carter, G. P.,, G. R. Douce,, R. Govind,, P. M. Howarth,, K. E. Mackin,, J. Spencer,, A. M. Buckley,, A. Antunes,, D. Kotsanas,, G. A. Jenkin,, B. Dupuy,, J. I. Rood,, and D. Lyras. 2011. The anti-sigma factor TcdC modulates hypervirulence in an epidemic BI/NAP1/027 clinical isolate of Clostridium difficile. PLoS Pathog. 7: e1002317.
11. Carter, G. P.,, D. Lyras,, D. L. Allen,, K. E. Mackin,, P. M. Howarth,, J. R. O’Connor,, and J. I. Rood. 2007. Binary toxin production in Clostridium difficile is regulated by CdtR, a LytTR family response regulator. J. Bacteriol. 189: 7290 7301.
12. Carter, G. P.,, J. I. Rood,, and D. Lyras. 2010. The role of toxin A and toxin B in Clostridium difficile-associated disease: past and present perspectives. Gut Microbes 1: 58 64.
13. Chiang, C.,, C. Bongiorni,, and M. Perego. 2011. Glucose-dependent activation of Bacillus anthracis toxin gene expression and virulence requires the carbon catabolite protein CcpA. J. Bacteriol. 193: 52 62.
14. Curry, S. R.,, J. W. Marsh,, C. A. Muto,, M. M. O’Leary,, A. W. Pasculle,, and L. H. Harrison. 2007. tcdC genotypes associated with severe TcdC truncation in an epidemic clone and other strains of Clostridium difficile. J. Clin. Microbiol. 45: 215 221.
15. Dineen, S. S.,, S. M. McBride,, and A. L. Sonenshein. 2010. Integration of metabolism and virulence by Clostridium difficile CodY. J. Bacteriol. 192: 5350 5362.
16. Dineen, S. S.,, A. C. Villapakkam,, J. T. Nordman,, and A. L. Sonenshein. 2007. Repression of Clostridium difficile toxin gene expression by CodY. Mol. Microbiol. 66: 206 219.
17. Dobson, G.,, C. Hickey,, and J. Trinder. 2003. Clostridium difficile colitis causing toxic megacolon, severe sepsis and multiple organ dysfunction syndrome. Intensive Care Med. 29: 1030.
18. Dupuy, B.,, R. Govind,, A. Antunes,, and S. Matamouros. 2008. Clostridium difficile toxin synthesis is negatively regulated by TcdC. J. Med. Microbiol. 57: 685 689.
19. Dupuy, B.,, N. Mani,, S. Katayama,, and A. L. Sonenshein. 2005. Transcription activation of a UV-inducible Clostridium perfringens bacteriocin gene by a novel sigma factor. Mol. Microbiol. 55: 1196 1206.
20. Dupuy, B.,, S. Raffestin,, S. Matamouros,, N. Mani,, M. R. Popoff,, and A. L. Sonenshein. 2006. Regulation of toxin and bacteriocin gene expression in Clostridium by interchangeable RNA polymerase sigma factors. Mol. Microbiol. 60: 1044 1057.
21. Dupuy, B.,, and A. L. Sonenshein. 1998. Regulated transcription of Clostridium difficile toxin genes. Mol. Microbiol. 27: 107 120.
22. Fawcett, P.,, P. Eichenberger,, R. Losick,, and P. Youngman. 2000. The transcriptional profile of early to middle sporulation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 97: 8063 8068.
23. Freeman, J.,, M. P. Bauer,, S. D. Baines,, J. Corver,, W. N. Fawley,, B. Goorhuis,, E. J. Kuijper,, and M. H. Wilcox. 2010. The changing epidemiology of Clostridium difficile infections. Clin. Microbiol. Rev. 23: 529 549.
24. Goh, S.,, B. J. Chang,, and T. V. Riley. 2005. Effect of phage infection on toxin production by Clostridium difficile. J. Med. Microbiol. 54: 129 135.
25. Gorke, B.,, and J. Stulke. 2008. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat. Rev. Microbiol. 6: 613 624.
26. Govind, R.,, G. Vediyappan,, R. D. Rolfe,, B. Dupuy,, and J. A. Fralick. 2009. Bacteriophage-mediated toxin gene regulation in Clostridium difficile. J. Virol. 83: 12037 12045.
27. Govind, R.,, G. Vediyappan,, R. D. Rolfe,, and J. A. Fralick. 2006. Evidence that Clostridium difficile TcdC is a membrane-associated protein. J. Bacteriol. 188: 3716 3720.
28. Handke, L. D.,, R. P. Shivers,, and A. L. Sonenshein. 2008. Interaction of Bacillus subtilis CodY with GTP. J. Bacteriol. 190: 798 806.
29. Heap, J. T.,, O. J. Pennington,, S. T. Cartman,, G. P. Carter,, and N. P. Minton. 2007. The ClosTron: a universal gene knock-out system for the genus Clostridium. J. Microbiol. Methods 70: 452 464.
30. Henkin, T. M.,, F. J. Grundy,, W. L. Nicholson,, and G. H. Chambliss. 1991. Catabolite repression of alpha-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli lacl and galR repressors. Mol. Microbiol. 5: 575 584.
31. Huang, I. H.,, M. Waters,, R. R. Grau,, and M. R. Sarker. 2004. Disruption of the gene ( spo0A) encoding sporulation transcription factor blocks endospore formation and enterotoxin production in enterotoxigenic Clostridium perfringens type A. FEMS Microbiol. Lett. 233: 233 240.
32. Hundsberger, T.,, V. Braun,, M. Weidmann,, P. Leukel,, M. Sauerborn,, and C. von Eichel-Streiber. 1997. Transcription analysis of the genes tcdA-E of the pathogenicity locus of Clostridium difficile. Eur. J. Biochem. 244: 735 742.
33. Just, I.,, J. Selzer,, M. Wilm,, C. von Eichel-Streiber,, M. Mann,, and K. Aktories. 1995. Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature 375: 500 503.
34. Kamiya, S.,, H. Ogura,, X. Q. Meng,, and S. Nakamura. 1992. Correlation between cytotoxin production and sporulation in Clostridium difficile. J. Med. Microbiol. 37: 206 210.
35. Karlsson, S.,, L. G. Burman,, and T. Akerlund. 2008. Induction of toxins in Clostridium difficile is associated with dramatic changes of its metabolism. Microbiology 154: 3430 3436.
36. Karlsson, S.,, L. G. Burman,, and T. Akerlund. 1999. Suppression of toxin production in Clostridium difficile VPI 10463 by amino acids. Microbiology 145: 1683 1693.
37. Karlsson, S.,, B. Dupuy,, K. Mukherjee,, E. Norin,, L. G. Burman,, and T. Akerlund. 2003. Expression of Clostridium difficile toxins A and B and their sigma factor TcdD is controlled by temperature. Infect. Immun. 71: 1784 1793.
38. Levdikov, V. M.,, E. Blagova,, P. Joseph,, A. L. Sonenshein,, and A. J. Wilkinson. 2006. The structure of CodY, a GTP- and isoleucine-responsive regulator of stationary phase and virulence in gram-positive bacteria. J. Biol. Chem. 281: 11366 11373.
39. Li, C.,, F. Sun,, H. Cho,, V. Yelavarthi,, C. Sohn,, C. He,, O. Schneewind,, and T. Bae. 2010. CcpA mediates proline auxotrophy and is required for Staphylococcus aureus pathogenesis. J. Bacteriol. 192: 3883 3892.
40. Loo, V. G.,, L. Poirier,, M. A. Miller,, M. Oughton,, M. D. Libman,, S. Michaud,, A. M. Bourgault,, T. Nguyen,, C. Frenette,, M. Kelly,, A. Vibien,, P. Brassard,, S. Fenn,, K. Dewar,, T. J. Hudson,, R. Horn,, P. Rene,, Y. Monczak,, and A. Dascal. 2005. A predominantly clonal multi-institutional outbreak of Clostridium difficile-associated diarrhea with high morbidity and mortality. N. Engl. J. Med. 353: 2442 2449.
41. Lopez, D.,, H. Vlamakis,, and R. Kolter. 2009. Generation of multiple cell types in Bacillus subtilis. FEMS Microbiol. Rev. 33: 152 163.
42. Mani, N.,, and B. Dupuy. 2001. Regulation of toxin synthesis in Clostridium difficile by an alternative RNA polymerase sigma factor. Proc. Natl. Acad. Sci. USA 98: 5844 5849.
43. Mani, N.,, D. Lyras,, L. Barroso,, P. Howarth,, T. Wilkins,, J. I. Rood,, A. L. Sonenshein,, and B. Dupuy. 2002. Environmental response and autoregulation of Clostridium difficile TxeR, a sigma factor for toxin gene expression. J. Bacteriol. 184: 5971 5978.
44. Marvaud, J.,, M. Gibert,, K. Inoue,, Y. Fujinaga,, K. Oguma,, and M. Popoff. 1998. botR/A is a positive regulator of botulinum neurotoxin and associated non-toxin protein genes in Clostridium botulinum A. Mol. Microbiol. 29: 1009 1018.
45. Matamouros, S.,, P. England,, and B. Dupuy. 2007. Clostridium difficile toxin expression is inhibited by the novel regulator TcdC. Mol. Microbiol. 64: 1274 1288.
46. McDonald, L. C.,, G. E. Killgore,, A. Thompson,, R. C. Owens,, S. V. Kazakova,, S. P. Sambol,, S. Johnson,, and D. N. Gerding. 2005. An epidemic, toxin gene–variant strain of Clostridium difficile. N. Engl. J. Med. 353: 2433 2441.
47. Merrigan, M.,, A. Venugopal,, M. Mallozzi,, B. Roxas,, V. K. Viswanathan,, S. Johnson,, D. N. Gerding,, and G. Vedantam. 2010. Human hypervirulent Clostridium difficile strains exhibit increased sporulation as well as robust toxin production. J. Bacteriol. 192: 4904 4911.
48. Metcalf, D. S.,, and J. S. Weese. 2011. Binary toxin locus analysis in Clostridium difficile. J. Med. Microbiol. 60: 1137 1145.
49. Miwa, Y.,, A. Nakata,, A. Ogiwara,, M. Yamamoto,, and Y. Fujita. 2000. Evaluation and characterization of catabolite- responsive elements ( cre) of Bacillus subtilis. Nucleic Acids Res. 28: 1206 1210.
50. Molle, V.,, Y. Nakaura,, R. P. Shivers,, H. Yamaguchi,, R. Losick,, Y. Fujita,, and A. L. Sonenshein. 2003. Additional targets of the Bacillus subtilis global regulator CodY identified by chromatin immunoprecipitation and genome-wide transcript analysis. J. Bacteriol. 185: 1911 1922.
51. Moncrief, J.,, L. Barroso,, and T. Wilkins. 1997. Positive regulation of Clostridium difficile toxins. Infect. Immun. 65: 1105 1108.
52. Murray, R.,, D. Boyd,, P. N. Levett,, M. R. Mulvey,, and M. J. Alfa. 2009. Truncation in the tcdC region of the Clostridium difficile PathLoc of clinical isolates does not predict increased biological activity of toxin B or toxin A. BMC Infect. Dis. 9: 103.
53. O’Brien, J. A.,, B. J. Lahue,, J. J. Caro,, and D. M. Davidson. 2007. The emerging infectious challenge of Clostridium difficile-associated disease in Massachusetts hospitals: clinical and economic consequences. Infect. Control Hosp. Epidemiol. 28: 1219 1227.
54. O’Connor, J. R.,, D. Lyras,, K. A. Farrow,, V. Adams,, D. R. Powell,, J. Hinds,, J. K. Cheung,, and J. I. Rood. 2006. Construction and analysis of chromosomal Clostridium difficile mutants. Mol. Microbiol. 61: 1335 1351.
55. Papatheodorou, P.,, J. E. Carette,, G. W. Bell,, C. Schwan,, G. Guttenberg,, T. R. Brummelkamp,, and K. Aktories. 2011. Lipolysis-stimulated lipoprotein receptor (LSR) is the host receptor for the binary toxin Clostridium difficile transferase (CDT). Proc. Natl. Acad. Sci. USA 108: 16422 16427.
56. Paredes, C. J.,, K. V. Alsaker,, and E. T. Papoutsakis. 2005. A comparative genomic view of clostridial sporulation and physiology. Nat. Rev. Microbiol. 3: 969 978.
57. Paredes-Sabja, D.,, N. Sarker,, and M. R. Sarker. 2011. Clostridium perfringens tpeL is expressed during sporulation. Microb. Pathog. 51: 384 388.
58. Perego, M.,, G. B. Spiegelman,, and J. A. Hoch. 1988. Structure of the gene for the transition state regulator, abrB: regulator synthesis is controlled by the spo0A sporulation gene in Bacillus subtilis. Mol. Microbiol. 2: 689 699.
59. Perelle, S.,, M. Gibert,, P. Bourlioux,, G. Corthier,, and M. Popoff. 1997. Production of a complete binary toxin (actin-specific ADP-ribosyltransferase) by Clostridium difficile CD196. Infect. Immun. 65: 1402 1407.
60. Pohl, K.,, P. Francois,, L. Stenz,, F. Schlink,, T. Geiger,, S. Herbert,, C. Goerke,, J. Schrenzel,, and C. Wolz. 2009. CodY in Staphylococcus aureus: a regulatory link between metabolism and virulence gene expression. J. Bacteriol. 191: 2953 2963.
61. Raffestin, S.,, B. Dupuy,, J. C. Marvaud,, and M. R. Popoff. 2005. BotR/A and TetR are alternative RNA polymerase sigma factors controlling the expression of the neurotoxin and associated protein genes in Clostridium botulinum type A and Clostridium tetani. Mol. Microbiol. 55: 235 249.
62. Ratnayake-Lecamwasam, M.,, P. Serror,, K. W. Wong,, and A. L. Sonenshein. 2001. Bacillus subtilis CodY represses early-stationary-phase genes by sensing GTP levels. Genes Dev. 15: 1093 1103.
63. Reeves, A. E.,, C. M. Theriot,, I. L. Bergin,, G. B. Huffnagle,, P. D. Schloss,, and V. B. Young. 2011. The interplay between microbiome dynamics and pathogen dynamics in a murine model of Clostridium difficile infection. Gut Microbes 2: 145 158.
64. Saujet, L.,, M. Monot,, B. Dupuy,, O. Soutourina,, and I. Martin-Verstraete. 2011. The key sigma factor of transition phase, SigH, controls sporulation, metabolism, and virulence factor expression in Clostridium difficile. J. Bacteriol. 193: 3186 3196.
65. Schwan, C.,, T. Nolke,, A. S. Kruppke,, D. M. Schubert,, A. E. Lang,, and K. Aktories. 2011. Cholesterol- and sphingolipid-rich microdomains are essential for microtubule-based membrane protrusions induced by Clostridium difficile transferase (CDT). J. Biol. Chem. 286: 29356 29365.
66. Schwan, C.,, B. Stecher,, T. Tzivelekidis,, M. van Ham,, M. Rohde,, W. D. Hardt,, J. Wehland,, and K. Aktories. 2009. Clostridium difficile toxin CDT induces formation of microtubule-based protrusions and increases adherence of bacteria. PLoS Pathog. 5: e1000626.
67. Sebaihia, M.,, B. W. Wren,, P. Mullany,, N. F. Fairweather,, N. Minton,, R. Stabler,, N. R. Thomson,, A. P. Roberts,, A. M. Cerdeno-Tarraga,, H. Wang,, M. T. Holden,, A. Wright,, C. Churcher,, M. A. Quail,, S. Baker,, N. Bason,, K. Brooks,, T. Chillingworth,, A. Cronin,, P. Davis,, L. Dowd,, A. Fraser,, T. Feltwell,, Z. Hance,, S. Holroyd,, K. Jagels,, S. Moule,, K. Mungall,, C. Price,, E. Rabbinowitsch,, S. Sharp,, M. Simmonds,, K. Stevens,, L. Unwin,, S. Whithead,, B. Dupuy,, G. Dougan,, B. Barrell,, and J. Parkhill. 2006. The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat. Genet. 38: 779 786.
68. Sekulovic, O.,, M. Meessen-Pinard,, and L. C. Fortier. 2011. Prophage-stimulated toxin production in Clostridium difficile NAP1/027 lysogens. J. Bacteriol. 193: 2726 2734.
69. Shivers, R. P.,, S. S. Dineen,, and A. L. Sonenshein. 2006. Positive regulation of Bacillus subtilis ackA by CodY and CcpA: establishing a potential hierarchy in carbon flow. Mol. Microbiol. 62: 811 822.
70. Shivers, R. P.,, and A. L. Sonenshein. 2004. Activation of the Bacillus subtilis global regulator CodY by direct interaction with branched-chain amino acids. Mol. Microbiol. 53: 599 611.
71. Sonenshein, A. L. 2007. Control of key metabolic intersections in Bacillus subtilis. Nat. Rev. Microbiol. 5: 917 927.
72. Stabler, R. A.,, D. N. Gerding,, J. G. Songer,, D. Drudy,, J. S. Brazier,, H. T. Trinh,, A. A. Witney,, J. Hinds,, and B. W. Wren. 2006. Comparative phylogenomics of Clostridium difficile reveals clade specificity and microevolution of hypervirulent strains. J. Bacteriol. 188: 7297 7305.
73. Stabler, R. A.,, M. He,, L. Dawson,, M. Martin,, E. Valiente,, C. Corton,, T. D. Lawley,, M. Sebaihia,, M. A. Quail,, G. Rose,, D. N. Gerding,, M. Gibert,, M. R. Popoff,, J. Parkhill,, G. Dougan,, and B. W. Wren. 2009. Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium. Genome Biol. 10: R102.
74. Stephenson, K.,, and R. J. Lewis. 2005. Molecular insights into the initiation of sporulation in Gram-positive bacteria: new technologies for an old phenomenon. FEMS Microbiol. Rev. 29: 281 301.
75. Sudarsan, N.,, E. R. Lee,, Z. Weinberg,, R. H. Moy,, J. N. Kim,, K. H. Link,, and R. R. Breaker. 2008. Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321: 411 413.
76. Tan, K. S.,, B. Y. Wee,, and K. P. Song. 2001. Evidence for holin function of tcdE gene in the pathogenicity of Clostridium difficile. J. Med. Microbiol. 50: 613 619.
77. Underwood, S.,, S. Guan,, V. Vijayasubhash,, S. D. Baines,, L. Graham,, R. J. Lewis,, M. H. Wilcox,, and K. Stephenson. 2009. Characterization of the sporulation initiation pathway of Clostridium difficile and its role in toxin production. J. Bacteriol. 191: 7296 7305.
78. van Schaik, W.,, A. Chateau,, M. A. Dillies,, J. Y. Coppee,, A. L. Sonenshein,, and A. Fouet. 2009. The global regulator CodY regulates toxin gene expression in Bacillus anthracis and is required for full virulence. Infect. Immun. 77: 4437 4445.
79. Varga, J.,, V. L. Stirewalt,, and S. B. Melville. 2004. The CcpA protein is necessary for efficient sporulation and enterotoxin gene ( cpe) regulation in Clostridium perfringens. J. Bacteriol. 186: 5221 5229.
80. Voth, D. E.,, and J. D. Ballard. 2005. Clostridium difficile toxins: mechanism of action and role in disease. Clin. Microbiol. Rev. 18: 247 263.
81. Warny, M.,, J. Pepin,, A. Fang,, G. Killgore,, A. Thompson,, J. Brazier,, E. Frost,, and L. C. MacDonald. 2005. Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet 366: 1079 1084.
82. Weir, J.,, M. Predich,, E. Dubnau,, G. Nair,, and I. Smith. 1991. Regulation of spo0H, a gene coding for the Bacillus subtilis sigma H factor. J. Bacteriol. 173: 521 529.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error