1887

Chapter 15 : Regulation of Toxin Production in

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Regulation of Toxin Production in , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818524/9781555816766_Chap15-1.gif /docserver/preview/fulltext/10.1128/9781555818524/9781555816766_Chap15-2.gif

Abstract:

This chapter discusses our current understanding of gene regulation in , focusing on how toxin production is regulated, with a particular emphasis on the major toxins, toxin A and toxin B. The onset of toxin synthesis is associated with entry into the stationary phase of growth. The precise growth phase signals involved in the initiation of toxin production remain unknown, even though nutrient signals have clearly been shown to have a profound effect on toxin production by . TcdA and TcdB are encoded by and , respectively, which are located in a region of the chromosome known as the pathogenicity locus (PaLoc). The TcdR protein has a helix-turn-helix DNA binding motif and has limited similarity to some clostridial transcriptional activator proteins, as well as to several families of eubacterial RNA polymerase sigma factors, which is consistent with the hypothesis that TcdR is a positive regulator of toxin production. The regulation of toxin production in is clearly complex and relies on a number of different regulatory systems. In species, activation of Spo0A occurs via a phosphorelay cascade that eventuates in the phosphorylation of Spo0A via Spo0F and Spo0B. SigH is an alternative sigma factor that is involved in the transition to stationary phase and sporulation. Recent breakthroughs in genetic manipulation technologies available for , together with refined animal infection models, will facilitate future studies and will further define the complex regulatory networks involved in toxin regulation.

Citation: Carter G, Mackin K, Rood J, Lyras D. 2013. Regulation of Toxin Production in , p 295-306. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch15
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Structure of the PaLoc and flanking regions. Filled arrows indicate open reading frames, with arrows showing the direction of transcription. Toxin genes are shown in blue, regulatory genes are in orange and green, is in yellow, and genes located outside the PaLoc are in grey. The sigma factor TcdR interacts with the core RNA polymerase protein, facilitating recognition of the , , and promoters by the TcdR-RNA polymerase complex and promoting transcription from these promoters. The anti-sigma factor TcdC negatively regulates transcription by interacting with TcdR. doi:10.1128/9781555818524.ch15f1

Citation: Carter G, Mackin K, Rood J, Lyras D. 2013. Regulation of Toxin Production in , p 295-306. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Activation of by CdtR. An unknown signal activates the putative CdtS sensor histidine kinase, which then leads to the phosphorylation (P) of the response regulator CdtR. Phosphorylated CdtR activates the transcription of the operon, which is part of the chromosomal CdtLoc, as shown. doi:10.1128/9781555818524.ch15f2

Citation: Carter G, Mackin K, Rood J, Lyras D. 2013. Regulation of Toxin Production in , p 295-306. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818524.chap15
1. Akerlund, T.,, B. Svenungsson,, A. Lagergren,, and L. G. Burman. 2006. Correlation of disease severity with fecal toxin levels in patients with Clostridium difficile-associated diarrhea and distribution of PCR ribotypes and toxin yields in vitro of corresponding isolates. J. Clin. Microbiol. 44:353358.
2. Antunes, A.,, I. Martin-Verstraete,, and B. Dupuy. 2011. CcpA-mediated repression of Clostridium difficile toxin gene expression. Mol. Microbiol. 79:882899.
3. Baker, S. S.,, H. Faden,, W. Sayej,, R. Patel,, and R. D. Baker. 2010. Increasing incidence of community-associated atypical Clostridium difficile disease in children. Clin. Pediatr. (Philadelphia) 49:644647.
4. Barth, H.,, K. Aktories,, M. R. Popoff,, and B. G. Stiles. 2004. Binary bacterial toxins: biochemistry, biology, and applications of common Clostridium and Bacillus proteins. Microbiol. Mol. Biol. Rev. 68:373402.
5. Bergara, F.,, C. Ibarra,, J. Iwamasa,, J. C. Patarroyo,, R. Aguilera,, and L. M. Marquez-Magana. 2003. CodY is a nutritional repressor of flagellar gene expression in Bacillus subtilis. J. Bacteriol. 185:31183126.
6. Bordeleau, E.,, L. C. Fortier,, F. Malouin,, and V. Burrus. 2011. c-di-GMP turn-over in Clostridium difficile is controlled by a plethora of diguanylate cyclases and phosphodiesterases. PLoS Genet. 7:e1002039.
7. Borriello, S. P. 1998. Pathogenesis of Clostridium difficile infection. J. Antimicrob. Chemother. 41:1319.
8. Bouvet, P. J.,, and M. R. Popoff. 2008. Genetic relatedness of Clostridium difficile isolates from various origins determined by triple-locus sequence analysis based on toxin regulatory genes tcdC, tcdR, and cdtR. J. Clin. Microbiol. 46:37033713.
9. Braun, V.,, T. Hundsberger,, P. Leukel,, M. Sauerborn,, and C. von Eichel-Streiber. 1996. Definition of the single integration site of the pathogenicity locus in Clostridium difficile. Gene 181:2938.
10. Carter, G. P.,, G. R. Douce,, R. Govind,, P. M. Howarth,, K. E. Mackin,, J. Spencer,, A. M. Buckley,, A. Antunes,, D. Kotsanas,, G. A. Jenkin,, B. Dupuy,, J. I. Rood,, and D. Lyras. 2011. The anti-sigma factor TcdC modulates hypervirulence in an epidemic BI/NAP1/027 clinical isolate of Clostridium difficile. PLoS Pathog. 7:e1002317.
11. Carter, G. P.,, D. Lyras,, D. L. Allen,, K. E. Mackin,, P. M. Howarth,, J. R. O’Connor,, and J. I. Rood. 2007. Binary toxin production in Clostridium difficile is regulated by CdtR, a LytTR family response regulator. J. Bacteriol. 189:72907301.
12. Carter, G. P.,, J. I. Rood,, and D. Lyras. 2010. The role of toxin A and toxin B in Clostridium difficile-associated disease: past and present perspectives. Gut Microbes 1:5864.
13. Chiang, C.,, C. Bongiorni,, and M. Perego. 2011. Glucose-dependent activation of Bacillus anthracis toxin gene expression and virulence requires the carbon catabolite protein CcpA. J. Bacteriol. 193:5262.
14. Curry, S. R.,, J. W. Marsh,, C. A. Muto,, M. M. O’Leary,, A. W. Pasculle,, and L. H. Harrison. 2007. tcdC genotypes associated with severe TcdC truncation in an epidemic clone and other strains of Clostridium difficile. J. Clin. Microbiol. 45:215221.
15. Dineen, S. S.,, S. M. McBride,, and A. L. Sonenshein. 2010. Integration of metabolism and virulence by Clostridium difficile CodY. J. Bacteriol. 192:53505362.
16. Dineen, S. S.,, A. C. Villapakkam,, J. T. Nordman,, and A. L. Sonenshein. 2007. Repression of Clostridium difficile toxin gene expression by CodY. Mol. Microbiol. 66:206219.
17. Dobson, G.,, C. Hickey,, and J. Trinder. 2003. Clostridium difficile colitis causing toxic megacolon, severe sepsis and multiple organ dysfunction syndrome. Intensive Care Med. 29:1030.
18. Dupuy, B.,, R. Govind,, A. Antunes,, and S. Matamouros. 2008. Clostridium difficile toxin synthesis is negatively regulated by TcdC. J. Med. Microbiol. 57:685689.
19. Dupuy, B.,, N. Mani,, S. Katayama,, and A. L. Sonenshein. 2005. Transcription activation of a UV-inducible Clostridium perfringens bacteriocin gene by a novel sigma factor. Mol. Microbiol. 55:11961206.
20. Dupuy, B.,, S. Raffestin,, S. Matamouros,, N. Mani,, M. R. Popoff,, and A. L. Sonenshein. 2006. Regulation of toxin and bacteriocin gene expression in Clostridium by interchangeable RNA polymerase sigma factors. Mol. Microbiol. 60:10441057.
21. Dupuy, B.,, and A. L. Sonenshein. 1998. Regulated transcription of Clostridium difficile toxin genes. Mol. Microbiol. 27:107120.
22. Fawcett, P.,, P. Eichenberger,, R. Losick,, and P. Youngman. 2000. The transcriptional profile of early to middle sporulation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 97:80638068.
23. Freeman, J.,, M. P. Bauer,, S. D. Baines,, J. Corver,, W. N. Fawley,, B. Goorhuis,, E. J. Kuijper,, and M. H. Wilcox. 2010. The changing epidemiology of Clostridium difficile infections. Clin. Microbiol. Rev. 23:529549.
24. Goh, S.,, B. J. Chang,, and T. V. Riley. 2005. Effect of phage infection on toxin production by Clostridium difficile. J. Med. Microbiol. 54:129135.
25. Gorke, B.,, and J. Stulke. 2008. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat. Rev. Microbiol. 6:613624.
26. Govind, R.,, G. Vediyappan,, R. D. Rolfe,, B. Dupuy,, and J. A. Fralick. 2009. Bacteriophage-mediated toxin gene regulation in Clostridium difficile. J. Virol. 83:1203712045.
27. Govind, R.,, G. Vediyappan,, R. D. Rolfe,, and J. A. Fralick. 2006. Evidence that Clostridium difficile TcdC is a membrane-associated protein. J. Bacteriol. 188:37163720.
28. Handke, L. D.,, R. P. Shivers,, and A. L. Sonenshein. 2008. Interaction of Bacillus subtilis CodY with GTP. J. Bacteriol. 190:798806.
29. Heap, J. T.,, O. J. Pennington,, S. T. Cartman,, G. P. Carter,, and N. P. Minton. 2007. The ClosTron: a universal gene knock-out system for the genus Clostridium. J. Microbiol. Methods 70:452464.
30. Henkin, T. M.,, F. J. Grundy,, W. L. Nicholson,, and G. H. Chambliss. 1991. Catabolite repression of alpha-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli lacl and galR repressors. Mol. Microbiol. 5:575584.
31. Huang, I. H.,, M. Waters,, R. R. Grau,, and M. R. Sarker. 2004. Disruption of the gene (spo0A) encoding sporulation transcription factor blocks endospore formation and enterotoxin production in enterotoxigenic Clostridium perfringens type A. FEMS Microbiol. Lett. 233:233240.
32. Hundsberger, T.,, V. Braun,, M. Weidmann,, P. Leukel,, M. Sauerborn,, and C. von Eichel-Streiber. 1997. Transcription analysis of the genes tcdA-E of the pathogenicity locus of Clostridium difficile. Eur. J. Biochem. 244:735742.
33. Just, I.,, J. Selzer,, M. Wilm,, C. von Eichel-Streiber,, M. Mann,, and K. Aktories. 1995. Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature 375:500503.
34. Kamiya, S.,, H. Ogura,, X. Q. Meng,, and S. Nakamura. 1992. Correlation between cytotoxin production and sporulation in Clostridium difficile. J. Med. Microbiol. 37:206210.
35. Karlsson, S.,, L. G. Burman,, and T. Akerlund. 2008. Induction of toxins in Clostridium difficile is associated with dramatic changes of its metabolism. Microbiology 154:34303436.
36. Karlsson, S.,, L. G. Burman,, and T. Akerlund. 1999. Suppression of toxin production in Clostridium difficile VPI 10463 by amino acids. Microbiology 145:16831693.
37. Karlsson, S.,, B. Dupuy,, K. Mukherjee,, E. Norin,, L. G. Burman,, and T. Akerlund. 2003. Expression of Clostridium difficile toxins A and B and their sigma factor TcdD is controlled by temperature. Infect. Immun. 71:17841793.
38. Levdikov, V. M.,, E. Blagova,, P. Joseph,, A. L. Sonenshein,, and A. J. Wilkinson. 2006. The structure of CodY, a GTP- and isoleucine-responsive regulator of stationary phase and virulence in gram-positive bacteria. J. Biol. Chem. 281:1136611373.
39. Li, C.,, F. Sun,, H. Cho,, V. Yelavarthi,, C. Sohn,, C. He,, O. Schneewind,, and T. Bae. 2010. CcpA mediates proline auxotrophy and is required for Staphylococcus aureus pathogenesis. J. Bacteriol. 192:38833892.
40. Loo, V. G.,, L. Poirier,, M. A. Miller,, M. Oughton,, M. D. Libman,, S. Michaud,, A. M. Bourgault,, T. Nguyen,, C. Frenette,, M. Kelly,, A. Vibien,, P. Brassard,, S. Fenn,, K. Dewar,, T. J. Hudson,, R. Horn,, P. Rene,, Y. Monczak,, and A. Dascal. 2005. A predominantly clonal multi-institutional outbreak of Clostridium difficile-associated diarrhea with high morbidity and mortality. N. Engl. J. Med. 353:24422449.
41. Lopez, D.,, H. Vlamakis,, and R. Kolter. 2009. Generation of multiple cell types in Bacillus subtilis. FEMS Microbiol. Rev. 33:152163.
42. Mani, N.,, and B. Dupuy. 2001. Regulation of toxin synthesis in Clostridium difficile by an alternative RNA polymerase sigma factor. Proc. Natl. Acad. Sci. USA 98:58445849.
43. Mani, N.,, D. Lyras,, L. Barroso,, P. Howarth,, T. Wilkins,, J. I. Rood,, A. L. Sonenshein,, and B. Dupuy. 2002. Environmental response and autoregulation of Clostridium difficile TxeR, a sigma factor for toxin gene expression. J. Bacteriol. 184:59715978.
44. Marvaud, J.,, M. Gibert,, K. Inoue,, Y. Fujinaga,, K. Oguma,, and M. Popoff. 1998. botR/A is a positive regulator of botulinum neurotoxin and associated non-toxin protein genes in Clostridium botulinum A. Mol. Microbiol. 29:10091018.
45. Matamouros, S.,, P. England,, and B. Dupuy. 2007. Clostridium difficile toxin expression is inhibited by the novel regulator TcdC. Mol. Microbiol. 64:12741288.
46. McDonald, L. C.,, G. E. Killgore,, A. Thompson,, R. C. Owens,, S. V. Kazakova,, S. P. Sambol,, S. Johnson,, and D. N. Gerding. 2005. An epidemic, toxin gene–variant strain of Clostridium difficile. N. Engl. J. Med. 353:24332441.
47. Merrigan, M.,, A. Venugopal,, M. Mallozzi,, B. Roxas,, V. K. Viswanathan,, S. Johnson,, D. N. Gerding,, and G. Vedantam. 2010. Human hypervirulent Clostridium difficile strains exhibit increased sporulation as well as robust toxin production. J. Bacteriol. 192:49044911.
48. Metcalf, D. S.,, and J. S. Weese. 2011. Binary toxin locus analysis in Clostridium difficile. J. Med. Microbiol. 60:11371145.
49. Miwa, Y.,, A. Nakata,, A. Ogiwara,, M. Yamamoto,, and Y. Fujita. 2000. Evaluation and characterization of catabolite- responsive elements (cre) of Bacillus subtilis. Nucleic Acids Res. 28:12061210.
50. Molle, V.,, Y. Nakaura,, R. P. Shivers,, H. Yamaguchi,, R. Losick,, Y. Fujita,, and A. L. Sonenshein. 2003. Additional targets of the Bacillus subtilis global regulator CodY identified by chromatin immunoprecipitation and genome-wide transcript analysis. J. Bacteriol. 185:19111922.
51. Moncrief, J.,, L. Barroso,, and T. Wilkins. 1997. Positive regulation of Clostridium difficile toxins. Infect. Immun. 65:11051108.
52. Murray, R.,, D. Boyd,, P. N. Levett,, M. R. Mulvey,, and M. J. Alfa. 2009. Truncation in the tcdC region of the Clostridium difficile PathLoc of clinical isolates does not predict increased biological activity of toxin B or toxin A. BMC Infect. Dis. 9:103.
53. O’Brien, J. A.,, B. J. Lahue,, J. J. Caro,, and D. M. Davidson. 2007. The emerging infectious challenge of Clostridium difficile-associated disease in Massachusetts hospitals: clinical and economic consequences. Infect. Control Hosp. Epidemiol. 28:12191227.
54. O’Connor, J. R.,, D. Lyras,, K. A. Farrow,, V. Adams,, D. R. Powell,, J. Hinds,, J. K. Cheung,, and J. I. Rood. 2006. Construction and analysis of chromosomal Clostridium difficile mutants. Mol. Microbiol. 61:13351351.
55. Papatheodorou, P.,, J. E. Carette,, G. W. Bell,, C. Schwan,, G. Guttenberg,, T. R. Brummelkamp,, and K. Aktories. 2011. Lipolysis-stimulated lipoprotein receptor (LSR) is the host receptor for the binary toxin Clostridium difficile transferase (CDT). Proc. Natl. Acad. Sci. USA 108:1642216427.
56. Paredes, C. J.,, K. V. Alsaker,, and E. T. Papoutsakis. 2005. A comparative genomic view of clostridial sporulation and physiology. Nat. Rev. Microbiol. 3:969978.
57. Paredes-Sabja, D.,, N. Sarker,, and M. R. Sarker. 2011. Clostridium perfringens tpeL is expressed during sporulation. Microb. Pathog. 51:384388.
58. Perego, M.,, G. B. Spiegelman,, and J. A. Hoch. 1988. Structure of the gene for the transition state regulator, abrB: regulator synthesis is controlled by the spo0A sporulation gene in Bacillus subtilis. Mol. Microbiol. 2:689699.
59. Perelle, S.,, M. Gibert,, P. Bourlioux,, G. Corthier,, and M. Popoff. 1997. Production of a complete binary toxin (actin-specific ADP-ribosyltransferase) by Clostridium difficile CD196. Infect. Immun. 65:14021407.
60. Pohl, K.,, P. Francois,, L. Stenz,, F. Schlink,, T. Geiger,, S. Herbert,, C. Goerke,, J. Schrenzel,, and C. Wolz. 2009. CodY in Staphylococcus aureus: a regulatory link between metabolism and virulence gene expression. J. Bacteriol. 191:29532963.
61. Raffestin, S.,, B. Dupuy,, J. C. Marvaud,, and M. R. Popoff. 2005. BotR/A and TetR are alternative RNA polymerase sigma factors controlling the expression of the neurotoxin and associated protein genes in Clostridium botulinum type A and Clostridium tetani. Mol. Microbiol. 55:235249.
62. Ratnayake-Lecamwasam, M.,, P. Serror,, K. W. Wong,, and A. L. Sonenshein. 2001. Bacillus subtilis CodY represses early-stationary-phase genes by sensing GTP levels. Genes Dev. 15:10931103.
63. Reeves, A. E.,, C. M. Theriot,, I. L. Bergin,, G. B. Huffnagle,, P. D. Schloss,, and V. B. Young. 2011. The interplay between microbiome dynamics and pathogen dynamics in a murine model of Clostridium difficile infection. Gut Microbes 2:145158.
64. Saujet, L.,, M. Monot,, B. Dupuy,, O. Soutourina,, and I. Martin-Verstraete. 2011. The key sigma factor of transition phase, SigH, controls sporulation, metabolism, and virulence factor expression in Clostridium difficile. J. Bacteriol. 193:31863196.
65. Schwan, C.,, T. Nolke,, A. S. Kruppke,, D. M. Schubert,, A. E. Lang,, and K. Aktories. 2011. Cholesterol- and sphingolipid-rich microdomains are essential for microtubule-based membrane protrusions induced by Clostridium difficile transferase (CDT). J. Biol. Chem. 286:2935629365.
66. Schwan, C.,, B. Stecher,, T. Tzivelekidis,, M. van Ham,, M. Rohde,, W. D. Hardt,, J. Wehland,, and K. Aktories. 2009. Clostridium difficile toxin CDT induces formation of microtubule-based protrusions and increases adherence of bacteria. PLoS Pathog. 5:e1000626.
67. Sebaihia, M.,, B. W. Wren,, P. Mullany,, N. F. Fairweather,, N. Minton,, R. Stabler,, N. R. Thomson,, A. P. Roberts,, A. M. Cerdeno-Tarraga,, H. Wang,, M. T. Holden,, A. Wright,, C. Churcher,, M. A. Quail,, S. Baker,, N. Bason,, K. Brooks,, T. Chillingworth,, A. Cronin,, P. Davis,, L. Dowd,, A. Fraser,, T. Feltwell,, Z. Hance,, S. Holroyd,, K. Jagels,, S. Moule,, K. Mungall,, C. Price,, E. Rabbinowitsch,, S. Sharp,, M. Simmonds,, K. Stevens,, L. Unwin,, S. Whithead,, B. Dupuy,, G. Dougan,, B. Barrell,, and J. Parkhill. 2006. The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat. Genet. 38:779786.
68. Sekulovic, O.,, M. Meessen-Pinard,, and L. C. Fortier. 2011. Prophage-stimulated toxin production in Clostridium difficile NAP1/027 lysogens. J. Bacteriol. 193:27262734.
69. Shivers, R. P.,, S. S. Dineen,, and A. L. Sonenshein. 2006. Positive regulation of Bacillus subtilis ackA by CodY and CcpA: establishing a potential hierarchy in carbon flow. Mol. Microbiol. 62:811822.
70. Shivers, R. P.,, and A. L. Sonenshein. 2004. Activation of the Bacillus subtilis global regulator CodY by direct interaction with branched-chain amino acids. Mol. Microbiol. 53:599611.
71. Sonenshein, A. L. 2007. Control of key metabolic intersections in Bacillus subtilis. Nat. Rev. Microbiol. 5:917927.
72. Stabler, R. A.,, D. N. Gerding,, J. G. Songer,, D. Drudy,, J. S. Brazier,, H. T. Trinh,, A. A. Witney,, J. Hinds,, and B. W. Wren. 2006. Comparative phylogenomics of Clostridium difficile reveals clade specificity and microevolution of hypervirulent strains. J. Bacteriol. 188:72977305.
73. Stabler, R. A.,, M. He,, L. Dawson,, M. Martin,, E. Valiente,, C. Corton,, T. D. Lawley,, M. Sebaihia,, M. A. Quail,, G. Rose,, D. N. Gerding,, M. Gibert,, M. R. Popoff,, J. Parkhill,, G. Dougan,, and B. W. Wren. 2009. Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium. Genome Biol. 10:R102.
74. Stephenson, K.,, and R. J. Lewis. 2005. Molecular insights into the initiation of sporulation in Gram-positive bacteria: new technologies for an old phenomenon. FEMS Microbiol. Rev. 29:281301.
75. Sudarsan, N.,, E. R. Lee,, Z. Weinberg,, R. H. Moy,, J. N. Kim,, K. H. Link,, and R. R. Breaker. 2008. Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321:411413.
76. Tan, K. S.,, B. Y. Wee,, and K. P. Song. 2001. Evidence for holin function of tcdE gene in the pathogenicity of Clostridium difficile. J. Med. Microbiol. 50:613619.
77. Underwood, S.,, S. Guan,, V. Vijayasubhash,, S. D. Baines,, L. Graham,, R. J. Lewis,, M. H. Wilcox,, and K. Stephenson. 2009. Characterization of the sporulation initiation pathway of Clostridium difficile and its role in toxin production. J. Bacteriol. 191:72967305.
78. van Schaik, W.,, A. Chateau,, M. A. Dillies,, J. Y. Coppee,, A. L. Sonenshein,, and A. Fouet. 2009. The global regulator CodY regulates toxin gene expression in Bacillus anthracis and is required for full virulence. Infect. Immun. 77:44374445.
79. Varga, J.,, V. L. Stirewalt,, and S. B. Melville. 2004. The CcpA protein is necessary for efficient sporulation and enterotoxin gene (cpe) regulation in Clostridium perfringens. J. Bacteriol. 186:52215229.
80. Voth, D. E.,, and J. D. Ballard. 2005. Clostridium difficile toxins: mechanism of action and role in disease. Clin. Microbiol. Rev. 18:247263.
81. Warny, M.,, J. Pepin,, A. Fang,, G. Killgore,, A. Thompson,, J. Brazier,, E. Frost,, and L. C. MacDonald. 2005. Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet 366:10791084.
82. Weir, J.,, M. Predich,, E. Dubnau,, G. Nair,, and I. Smith. 1991. Regulation of spo0H, a gene coding for the Bacillus subtilis sigma H factor. J. Bacteriol. 173:521529.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error