Chapter 16 : Anthrax and Iron

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Anthrax and Iron, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818524/9781555816766_Chap16-1.gif /docserver/preview/fulltext/10.1128/9781555818524/9781555816766_Chap16-2.gif


In order to cause disease, pathogenic bacteria require specialized means to sense the various microenvironments presented to them in the context of a host and then to regulate the systems required for establishment, persistence, growth, and induction of the pathologies associated with infection. The example presented in this chapter focuses on one such system utilized by during anthrax infections, iron acquisition. Recently, research focused on the acquisition of one such nutrient essential for successful anthrax infections, iron, has come to the fore. The chapter summarizes the various mechanisms used by for obtaining iron, reviews the relative impact of each of these mechanisms on a successful anthrax infection, and presents the transcriptome regulated by low concentrations of iron. Once inside the bacterial cytoplasm, iron is released from heme when the heme monooxygenase, IsdG, breaks down the molecule. Siderophores are high-affinity iron-chelating molecules that are secreted into the extracellular environment, where they scavenge iron from a variety of host sources. produces two siderophores, bacillibactin and petrobactin. Petrobactin is made up of one central citrate flanked by two spermidine molecules, each with terminal dihydroxybenzoic acid residues. Consequently, molecules that inhibit or block iron acquisition, related membrane transport processes, or bacterial iron-based regulation, in general, may prove to be effective new medical counter-measures against anthrax and related infections. It is predicted that as more defined details of the genes, proteins, factors, and mechanisms that regulate iron metabolism become understood, reasonable countermeasure targets will be identified.

Citation: Carlson, Jr. P, Dixon S, Hanna P. 2013. Anthrax and Iron, p 307-313. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch16
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

The three primary mechanisms of iron acquisition in . The pathways for iron acquisition using heme (left), petrobactin (center), and bacillibactin (right) are shown. The structure of each molecule is shown above its respective transport system (red residues interact directly with iron). Iron-binding molecules are represented by red squares (heme), yellow crescents (petrobactin), and maroon triangles (bacillibactin). All known components of these three specific transport systems are represented. Specific components and functions of each iron acquisition system are discussed within the text. Representations of the genes in the biosynthetic operons for petrobactin and bacillibactin are shown beneath their respective transport systems. doi:10.1128/9781555818524.ch16f1

Citation: Carlson, Jr. P, Dixon S, Hanna P. 2013. Anthrax and Iron, p 307-313. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abergel, R. J.,, M. K. Wilson,, J. E. Arceneaux,, T. M. Hoette,, R. K. Strong,, B. R. Byers,, and K. N. Raymond. 2006. Anthrax pathogen evades the mammalian immune system through stealth siderophore production. Proc. Natl. Acad. Sci. USA 103:18499-18503.
2. Abergel, R. J.,, A. M. Zawadzka,, and K. N. Raymond. 2008. Petrobactin-mediated iron transport in pathogenic bacteria: coordination chemistry of an unusual 3,4-catecholate/citrate siderophore. J. Am. Chem. Soc. 130: 2124 2125.
3. Andrews, S. C.,, A. K. Robinson,, and F. Rodriguez-Quinones. 2003. Bacterial iron homeostasis. FEMS Microbiol. Rev. 27: 215 237.
4. Baichoo, N.,, and J. D. Helmann. 2002. Recognition of DNA by Fur: a reinterpretation of the Fur box consensus sequence. J. Bacteriol. 184: 5826 5832.
5. Baichoo, N.,, T. Wang,, R. Ye,, and J. D. Helmann. 2002. Global analysis of the Bacillus subtilis Fur regulon and the iron starvation stimulon. Mol. Microbiol. 45: 1613 1629.
6. Barbeau, K.,, G. Zhang,, D. H. Live,, and A. Butler. 2002. Petrobactin, a photoreactive siderophore produced by the oil-degrading marine bacterium Marinobacter hydrocarbonoclasticus. J. Am. Chem. Soc. 124: 378 379.
7. Bellaire, B. H.,, P. H. Elzer,, C. L. Baldwin,, and R. M. Roop II. 2003a. Production of the siderophore 2,3-dihydroxybenzoic acid is required for wild-type growth of Brucella abortus in the presence of erythritol under low-iron conditions in vitro. Infect. Immun. 71: 2927 2932.
8. Bellaire, B. H.,, P. H. Elzer,, S. Hagius,, J. Walker,, C. L. Baldwin,, and R. M. Roop II. 2003b. Genetic organization and iron-responsive regulation of the Brucella abortus 2,3-dihydroxybenzoic acid biosynthesis operon, a cluster of genes required for wild-type virulence in pregnant cattle. Infect. Immun. 71: 1794 1803.
9. Bellaire, B. H.,, P. H. Elzer,, C. L. Baldwin,, and R. M. Roop II. 1999. The siderophore 2,3-dihydroxybenzoic acid is not required for virulence of Brucella abortus in BALB/c mice. Infect. Immun. 67: 2615 2618.
10. Bergman, N. H.,, E. C. Anderson,, E. E. Swenson,, M. M. Niemeyer,, A. D. Miyoshi,, and P. C. Hanna. 2006. Transcriptional profiling of the Bacillus anthracis life cycle in vitro and an implied model for regulation of spore formation. J. Bacteriol. 188: 6092 6100.
11. Carlson, P. E., Jr.,, K. A. Carr,, B. K. Janes,, E. C. Anderson,, and P. C. Hanna. 2009. Transcriptional profiling of Bacillus anthracis Sterne (34F2) during iron starvation. PLoS One 4:e6988.
12. Carlson, P. E., Jr.,, S. D. Dixon,, B. K. Janes,, K. A. Carr,, T. D. Nusca,, E.C. Anderson,, S. E. Keene,, D. H. Sherman,, and P. C. Hanna. 2010. Genetic analysis of petrobactin transport in Bacillus anthracis. Mol. Microbiol. 75: 900 909.
13. Cendrowski, S.,, W. MacArthur,, and P. Hanna. 2004. Bacillus anthracis requires siderophore biosynthesis for growth in macrophages and mouse virulence. Mol. Microbiol. 51: 407 417.
14. Chateau, A.,, W. van Schaik,, A. Six,, W. Aucher,, and A. Fouet. 2011. CodY regulation is required for full virulence and heme iron acquisition in Bacillus anthracis. FASEB J. 25: 4445 4456.
15. Chu, B. C.,, A. Garcia-Herrero,, T. H. Johanson,, K. D. Krewulak,, C. K. Lau,, R. S. Peacock,, Z. Slavinskaya,, and H. J. Vogel. 2010. Siderophore uptake in bacteria and the battle for iron with the host; a bird’s eye view. Biometals 23: 601 611.
16. Davidson, A. L.,, E. Dassa,, C. Orelle,, and J. Chen. 2008. Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol. Mol. Biol. Rev. 72: 317 364.
17. Dertz, E. A.,, J. Xu,, A. Stintzi,, and K. N. Raymond. 2006. Bacillibactin-mediated iron transport in Bacillus subtilis. J. Am. Chem. Soc. 128: 22 23.
18. Dixon, T. C.,, M. Meselson,, J. Guillemin,, and P. C. Hanna. 1999. Anthrax. N. Engl. J. Med. 341: 815 826.
19. Fabian, M.,, E. Solomaha,, J. S. Olson,, and A. W. Maresso. 2009. Heme transfer to the bacterial cell envelope occurs via a secreted hemophore in the Gram-positive pathogen Bacillus anthracis. J. Biol. Chem. 284: 32138 32146.
20. Faraldo-Gomez, J. D.,, and M. S. Sansom. 2003. Acquisition of siderophores in gram-negative bacteria. Nat. Rev. Mol. Cell Biol. 4: 105 116.
21. Fischbach, M. A.,, H. Lin,, D. R. Liu,, and C. T. Walsh. 2006. How pathogenic bacteria evade mammalian sabotage in the battle for iron. Nat. Chem. Biol. 2: 132 138.
22. Gat, O.,, G. Zaide,, I. Inbar,, H. Grosfeld,, T. Chitlaru,, H. Levy,, and A. Shafferman. 2008. Characterization of Bacillus anthracis iron-regulated surface determinant (Isd) proteins containing NEAT domains. Mol. Microbiol. 70: 983 999.
23. Glanfield, A.,, D. P. McManus,, G. J. Anderson,, and M. K. Jones. 2007. Pumping iron: a potential target for novel therapeutics against schistosomes. Trends Parasitol. 23: 583 588.
24. Goetz, D. H.,, M. A. Holmes,, N. Borregaard,, M. E. Bluhm,, K. N. Raymond,, and R. K. Strong. 2002. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol. Cell 10: 1033 1043.
25. Gonzalez Carrero, M. I.,, F. J. Sangari,, J. Aguero,, and J. M. Garcia Lobo. 2002. Brucella abortus strain 2308 produces brucebactin, a highly efficient catecholic siderophore. Microbiology 148: 353 360.
26. Honsa, E. S.,, and A. W. Maresso. 2011. Mechanisms of iron import in anthrax. Biometals 24: 533 545.
27. Hotta, K.,, C. Y. Kim,, D. T. Fox,, and A. T. Koppisch. 2010. Siderophore-mediated iron acquisition in Bacillus anthracis and related strains. Microbiology 156: 1918 1925.
28. Koppisch, A. T.,, C. C. Browder,, A. L. Moe,, J. T. Shelley,, B. A. Kinkel,, L. E. Hersman,, S. Iyer,, and C. E. Ruggiero. 2005. Petrobactin is the primary siderophore synthesized by Bacillus anthracis str. Sterne under conditions of iron starvation. Biometals 18: 577 585.
29. Koppisch, A. T.,, K. Hotta,, D. T. Fox,, C. E. Ruggiero,, C. Y. Kim,, T. Sanchez,, S. Iyer,, C. C. Browder,, P. J. Unkefer,, and C. J. Unkefer. 2008. Biosynthesis of the 3,4-dihydroxybenzoate moieties of petrobactin by Bacillus anthracis. J. Org. Chem. 73: 5759 5765.
30. Lee, J. Y.,, B. K. Janes,, K. D. Passalacqua,, B. F. Pfleger,, N. H. Bergman,, H. Liu,, K. Hakansson,, R. V. Somu,, C. C. Aldrich,, S. Cendrowski,, P. C. Hanna,, and D. H. Sherman. 2007. Biosynthetic analysis of the petrobactin siderophore pathway from Bacillus anthracis. J. Bacteriol. 189: 1698 1710.
31. Lee, J. Y.,, K. D. Passalacqua,, P. C. Hanna,, and D. H. Sherman. 2011. Regulation of petrobactin and bacillibactin biosynthesis in Bacillus anthracis under iron and oxygen variation. PLoS One 6: e20777.
32. Lopez-Goni, I.,, I. Moriyon,, and J. B. Neilands. 1992. Identification of 2,3-dihydroxybenzoic acid as a Brucella abortus siderophore. Infect. Immun. 60: 4496 4503.
33. Maresso, A. W.,, T. J. Chapa,, and O. Schneewind. 2006. Surface protein IsdC and Sortase B are required for heme-iron scavenging of Bacillus anthracis. J. Bacteriol. 188: 8145 8152.
34. Maresso, A. W.,, G. Garufi,, and O. Schneewind. 2008. Bacillus anthracis secretes proteins that mediate heme acquisition from hemoglobin. PLoS Pathog. 4:e1000132.
35. Maresso, A. W.,, and O. Schneewind. 2006. Iron acquisition and transport in Staphylococcus aureus. Biometals 19: 193 203.
36. May, J. J.,, T. M. Wendrich,, and M. A. Marahiel. 2001. The dhb operon of Bacillus subtilis encodes the biosynthetic template for the catecholic siderophore 2,3-dihydroxybenzoate-glycine- threonine trimeric ester bacillibactin. J. Biol. Chem. 276: 7209 7217.
37. Miethke, M.,, O. Klotz,, U. Linne,, J. J. May,, C. L. Beckering,, and M. A. Marahiel. 2006. Ferri-bacillibactin uptake and hydrolysis in Bacillus subtilis. Mol. Microbiol. 61: 1413 1427.
38. Miethke, M.,, S. Schmidt,, and M. A. Marahiel. 2008. The major facilitator superfamily-type transporter YmfE and the multidrug-efflux activator Mta mediate bacillibactin secretion in Bacillus subtilis. J. Bacteriol. 190: 5143 5152.
39. Muller, S. I.,, M. Valdebenito,, and K. Hantke. 2009. Salmochelin, the long-overlooked catecholate siderophore of Salmonella. Biometals 22: 691 695.
40. Ollinger, J.,, K. B. Song,, H. Antelmann,, M. Hecker,, and J. D. Helmann. 2006. Role of the Fur regulon in iron transport in Bacillus subtilis. J. Bacteriol. 188: 3664 3673.
41. Passalacqua, K. D.,, N. H. Bergman,, J. Y. Lee,, D. H. Sherman,, and P. C.Hanna. 2007. The global transcriptional responses of Bacillus anthracis Sterne (34F 2) and a ΔsodA1 mutant to paraquat reveal metal ion homeostasis imbalances during endogenous superoxide stress. J. Bacteriol. 189: 3996 4013.
42. Pezard, C.,, P. Berche,, and M. Mock. 1991. Contribution of individual toxin components to virulence of Bacillus anthracis. Infect. Immun. 59: 3472 3477.
43. Pfleger, B. F.,, Y. Kim,, T. D. Nusca,, N. Maltseva,, J. Y. Lee,, C. M. Rath,, J. B. Scaglione,, B. K. Janes,, E. C. Anderson,, N. H. Bergman,, P. C. Hanna,, A. Joachimiak,, and D. H. Sherman. 2008. Structural and functional analysis of AsbF: origin of the stealth 3,4-dihydroxybenzoic acid subunit for petrobactin biosynthesis. Proc. Natl. Acad. Sci. USA 105: 17133 17138.
44. Pfleger, B. F.,, J. Y. Lee,, R. V. Somu,, C. C. Aldrich,, P. C. Hanna,, and D. H. Sherman. 2007. Characterization and analysis of early enzymes for petrobactin biosynthesis in Bacillus anthracis. Biochemistry 46: 4147 4157.
45. Ratledge, C. 2004. Iron, mycobacteria and tuberculosis. Tuberculosis (Edinburgh) 84: 110 130.
46. Ratledge, C.,, and L. G. Dover. 2000. Iron metabolism in pathogenic bacteria. Annu. Rev. Microbiol. 54: 881 941.
47. Schaible, U. E.,, and S. H. Kaufmann. 2004. Iron and microbial infection. Nat. Rev. Microbiol. 2: 946 953.
48. Skaar, E. P.,, A. H. Gaspar,, and O. Schneewind. 2006. Bacillus anthracis IsdG, a heme-degrading monooxygenase. J. Bacteriol. 188: 1071 1080.
49. Stauff, D. L.,, and E. P. Skaar. 2009. Bacillus anthracis HssRS signalling to HrtAB regulates haem resistance during infection. Mol. Microbiol. 72: 763 778.
50. Tarlovsky, Y.,, M. Fabian,, E. Solomaha,, E. Honsa,, J. S. Olson,, and A. W. Maresso. 2010. A Bacillus anthracis S-layer homology protein that binds heme and mediates heme delivery to IsdC. J. Bacteriol. 192: 3503 3511.
51. Wandersman, C.,, and P. Delepelaire. 2004. Bacterial iron sources: from siderophores to hemophores. Annu. Rev. Microbiol. 58: 611 647.
52. Wilson, M. K.,, R. J. Abergel,, J. E. Arceneaux,, K. N. Raymond,, and B. R. Byers. 2009. Temporal production of the two Bacillus anthracis siderophores, petrobactin and bacillibactin. Biometals 23: 129 134.
53. Zawadzka, A. M.,, R. J. Abergel,, R. Nichiporuk,, U. N. Andersen,, and K. N. Raymond. 2009a. Siderophore-mediated iron acquisition systems in Bacillus cereus: identification of receptors for anthrax virulence-associated petrobactin. Biochemistry 48: 3645 3657.
54. Zawadzka, A. M.,, Y. Kim,, N. Maltseva,, R. Nichiporuk,, Y. Fan,, A. Joachimiak,, and K. N. Raymond. 2009b. Characterization of a Bacillus subtilis transporter for petrobactin, an anthrax stealth siderophore. Proc. Natl. Acad. Sci. USA 106: 21854 21859.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error