Chapter 18 : Regulation of Bacterial Type IV Secretion

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Regulation of Bacterial Type IV Secretion, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818524/9781555816766_Chap18-1.gif /docserver/preview/fulltext/10.1128/9781555818524/9781555816766_Chap18-2.gif


This chapter explores the question of how bacterial pathogens regulate the biogenesis and function of their type IV secretion systems (T4SSs) in pathogenic settings. First, it describes a regulatory cascade involving the perception of multiple signals exchanged between and its plant host. This signaling dialogue leads not only to infection of plant tissue but also to enhanced conjugative transfer of the virulence-associated tumor-inducing (pTi) plasmid. Second, it summarizes the regulatory features of a large T4SS subfamily, the conjugation systems functioning in gram-negative and -positive species. The chapter then summarizes regulatory features of the well-characterized effector translocators of spp., , and spp., and also examines why and how these and other bacterial pathogens cross-regulate T4SSs and other surface motility or attachment devices such as flagella and type IV pili. Finally, the chapter discusses post-transcriptional regulation of substrate-T4SS docking reactions and donor-target cell contacts. The overarching goal of this chapter is to identify mechanistic themes and variations that have evolved to regulate the myriad of T4SS activities exploited by bacterial pathogens during infection. The conjugation systems are the largest subfamily, present in nearly all bacterial species and some archaeal species. Many bacterial pathogens rely on flagellar or type IV pilus-based motility to migrate to sites favorable for colonization within the host. For all T4SSs, transduction of exogenous or physiological signals ultimately converges on the regulatory machinery controlling transcription of machine subunits, DNA processing enzymes, or protein effectors.

Citation: Laverde-Gomez J, Sarkar M, Christie P. 2013. Regulation of Bacterial Type IV Secretion, p 335-362. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch18
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

General architectures of T4SSs in gram-negative and -positive bacteria. The T4SSs of gram-negative bacteria are composed of a translocation channel and an extracellular filament, e.g., conjugative pilus, that may or may not be physically connected. These systems translocate substrates to prokaryotic or eukaryotic target cells by a contact-dependent mechanism. Conjugation systems translocate DNA substrates as ssDNA covalently bound at their 5′ ends to relaxase (yellow circle, green wavy line). Effector translocators deliver protein substrates (yellow circle) to target cells, often to aid in the infection process. Some T4SSs export DNA or protein substrates or take up DNA (green wavy line) from the extracellular milieu by a contactindependent mechanism. Gram-positive T4SSs elaborate surface adhesins, e.g., AS, rather than conjugative pili and conjugatively transfer DNA substrates to bacterial recipient cells through direct cell-to-cell contact. doi:10.1128/9781555818524.ch18f1

Citation: Laverde-Gomez J, Sarkar M, Christie P. 2013. Regulation of Bacterial Type IV Secretion, p 335-362. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Schematic of chemical signaling events between and the transformed plant cell. Signals released from wounded plant cells initiate the infection process through the VirA/VirG/ChvE and ChvG/ChvI sensory response systems, resulting in gene activation. The Vir proteins mediate T-DNA processing, assembly of the VirB/VirD4 T4SS, and T-DNA translocation to susceptible plant cells. VirA/VirG also induces expression of the Ti plasmid genes, resulting in elevated Ti plasmid copy number. Opines released from transformed plant cells activate opine catabolism functions for growth of infecting bacteria. Opines also activate synthesis of TraR for autoinducer (AAI) synthesis. TraR and AAI at a critical concentration activate the Ti plasmid conjugation functions. TlrR and TraM negatively regulate TraR activity, and AttM and AttJ negatively control AAI levels. doi:10.1128/9781555818524.ch18f2

Citation: Laverde-Gomez J, Sarkar M, Christie P. 2013. Regulation of Bacterial Type IV Secretion, p 335-362. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Pheromone-inducible regulation of pCF10 transfer. The pheromone-responsive pCF10 is shown, with locations for genes coding for regulation and transfer (), the origin of transfer sequence (), and Tn. Chromosomally encoded peptide pheromone cCF10 released by donor cells is sequestered by . cCF10 released by recipient cells is taken up through an oligopeptide permease transporter and when bound to PrgX stimulates transcription of the transfer genes. pCF10- encoded peptide inhibitor iCF10 negatively regulates transfer gene expression, limiting plasmid transfer potential in donor cell populations. Human plasma binds iCF10, indirectly promoting plasmid transfer in the human host. pCF10-encoded AS promotes bacterial aggregation and plasmid transfer and biofilm formation on human tissues. doi:10.1128/9781555818524.ch18f3

Citation: Laverde-Gomez J, Sarkar M, Christie P. 2013. Regulation of Bacterial Type IV Secretion, p 335-362. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Inducible transfer of ICE. Conditions stimulating ICE transfer include DNA-damaging agents, e.g., quinolone antibiotics, and a high density of potential recipient cells lacking the ICE (whose presence is sensed by the ICEencoded PhrL pheromone inhibitor [blue-shaded triangles]). Induction of the SOS response activates the ImmA protease, which, in turn, inactivates the ImmR repressor, leading to expression of the excision and transfer genes. At a high density of donor cells, PhlR accumulates in the extracellular milieu and upon internalization inactivates the RapI inducer (green-shadedovals). Arrows denote activation of gene expression; bars denote inactivation/repression. doi:10.1128/9781555818524.ch18f4

Citation: Laverde-Gomez J, Sarkar M, Christie P. 2013. Regulation of Bacterial Type IV Secretion, p 335-362. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Transfer of the F factor is controlled by environmental and physiological signals acting through the regulatory factors shown. Factors that repress F gene expression are boxed and red shaded; those inducing gene expression are circled. The CpxRA two-component system is green shaded. The F-borne main regulators , , and FinO/ fertility inhibition system and their promoter targets are shown. RNase E degrades antisense RNA in the absence of bound RNA chaperone FinO. The regulators activated in response to environmental and physiological cues control F gene expression as described in the text (see also ). Arrows denote activation of gene expression; lines denote repression. Dotted arrows represent unspecified sensing or transduction mechanisms. doi:10.1128/9781555818524.ch18f5

Citation: Laverde-Gomez J, Sarkar M, Christie P. 2013. Regulation of Bacterial Type IV Secretion, p 335-362. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

The VirB T4SS genes are expressed in the phagosome in response to environmental signals and quorum signals. At neutral pH, IHF activates expression, whereas nutritional stress resulting in elevated levels of the alarmone (p)ppGpp promotes displacement of HutC for IHF. The BvrS/BvrR two-component system (green shaded) regulates expression directly and indirectly by controlling VjbR activity. VjbR and BlxR (blue shaded) control expression in response to sensing of unknown quorum signals. Arrows denote activation of gene expression; lines denote repression. Dashed arrows represent unspecified sensing or transduction mechanisms. doi:10.1128/9781555818524.ch18f6

Citation: Laverde-Gomez J, Sarkar M, Christie P. 2013. Regulation of Bacterial Type IV Secretion, p 335-362. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

In the LCV, various signals regulate expression of genes coding for the Dot/Icm T4SS and the estimated 200 effectors. Signals are perceived by three two-component systems (green shaded), which act directly on gene expression or indirectly, e.g., through sRNAs and and the RNA-binding protein CsrA. A complex regulatory network coordinates T4SS machine biogenesis with production of effectors for translocation at the appropriate stage of the infection cycle. A putative quorum sensing system (blue shaded) activates the LuxR homolog, LqsR. Arrows denote activation of gene expression; lines denote repression. Dashed arrows represent predicted activities. doi:10.1128/9781555818524.ch18f7

Citation: Laverde-Gomez J, Sarkar M, Christie P. 2013. Regulation of Bacterial Type IV Secretion, p 335-362. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

Coordinated regulation of T4SSs and other motility or attachment organelles. A pathogen may elaborate more than one T4SS for translocation of effectors to promote colonization at different stages of the infection cycle or for expansion of the infection niche. Conjugation systems function optimally in dense populations of nonmotile cells, e.g., biofilms; regulators induce genes and repress genes. Effector translocators coordinate the synthesis of T4SSs and flagella during the infection cycle through common environmentally responsive regulators. Most conjugation systems function efficiently among cells growing on solid surfaces; coregulation of type IV pili allows for sampling of the fluid environment for potential recipients for expanded transfer potential. In , the T4SS functions as a DNA release system; coregulation of a type IV pilusmediated DNA uptake system promotes gene flux and genetic diversity. doi:10.1128/9781555818524.ch18f8

Citation: Laverde-Gomez J, Sarkar M, Christie P. 2013. Regulation of Bacterial Type IV Secretion, p 335-362. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9
Figure 9

Posttranscriptional control of T4SS function. Intracellular factors can regulate the efficiency of timing of substrate translocation. Representative factors and their biological roles in modulating access of DNA or protein substrates with the T4CP receptor are listed. Target cell contact also regulates translocation. DNA transfer is inhibited by entry exclusion systems to prevent redundant transfer among equivalent donor cells. In F systems, a mating signal generated upon contact with a potential recipient cell activates the T4SS through an unknown mechanism. In , binding of a T4SS adhesin serves to activate both β-integrin receptors on the mammalian cell and the Cag T4SS on the bacterial cell to stimulate CagA translocation. doi:10.1128/9781555818524.ch18f9

Citation: Laverde-Gomez J, Sarkar M, Christie P. 2013. Regulation of Bacterial Type IV Secretion, p 335-362. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Al-Khodor, S.,, S. Kalachikov,, I. Morozova,, C. T. Price,, and Y. Abu Kwaik. 2009. The PmrA/PmrB two-component system of Legionella pneumophila is a global regulator required for intracellular replication within macrophages and protozoa. Infect. Immun. 77:374386.
2. Al-Khodor, S.,, C. T. Price,, F. Habyarimana,, A. Kalia,, and Y. Abu Kwaik. 2008. A Dot/Icm-translocated ankyrin protein of Legionella pneumophila is required for intracellular proliferation within human macrophages and protozoa. Mol. Microbiol. 70:908923.
3. Altman, E.,, and G. Segal. 2008. The response regulator CpxR directly regulates expression of several Legionella pneumophila icm/dot components as well as new translocated substrates. J. Bacteriol. 190:19851996.
4. Alt-Morbe, J.,, J. L. Stryker,, C. Fuqua,, P. L. Li,, S. K. Farrand,, and S. C. Winans. 1996. The conjugal transfer system of Agrobacterium tumefaciens octopine-type Ti plasmids is closely related to the transfer system of an IncP plasmid and distantly related to Ti plasmid vir genes. J. Bacteriol. 178:42484257.
5. Alvarez-Martinez, C. E.,, and P. J. Christie. 2009. Biological diversity of prokaryotic type IV secretion systems. Microbiol. Mol. Biol. Rev. 73:775808.
6. Amor, J. C.,, J. Swails,, X. Zhu,, C. R. Roy,, H. Nagai,, A. Ingmundson,, X. Cheng,, and R. A. Kahn. 2005. The structure of RalF, an ADP-ribosylation factor guanine nucleotide exchange factor from Legionella pneumophila, reveals the presence of a cap over the active site. J. Biol. Chem. 280:13921400.
7. Anderson, J. K.,, T. G. Smith,, and T. R. Hoover. 2010. Sense and sensibility: flagellum-mediated gene regulation. Trends Microbiol. 18:3037.
8. Antiporta, M. H.,, and G. M. Dunny. 2002. ccfA, the genetic determinant for the cCF10 peptide pheromone in Enterococcus faecalis OG1RF. J. Bacteriol. 184:11551162.
9. Arellano-Reynoso, B.,, N. Lapaque,, S. Salcedo,, G. Briones,, A. E. Ciocchini,, R. Ugalde,, E. Moreno,, I. Moriyon,, and J. P. Gorvel. 2005. Cyclic beta-1,2-glucan is a Brucella virulence factor required for intracellular survival. Nat. Immunol. 6:618625.
10. Arthur, D. C.,, A. F. Ghetu,, M. J. Gubbins,, R. A. Edwards,, L. S. Frost,, and J. N. Glover. 2003. FinO is an RNA chaperone that facilitates sense-antisense RNA interactions. EMBO J. 22:63466355.
11. Atmakuri, K.,, E. Cascales,, O. T. Burton,, L. M. Banta,, and P. J. Christie. 2007. Agrobacterium ParA/MinD-like VirC1 spatially coordinates early conjugative DNA transfer reactions. EMBO J. 26:25402551.
12. Atmakuri, K.,, Z. Ding,, and P. J. Christie. 2003. VirE2, a type IV secretion substrate, interacts with the VirD4 transfer protein at cell poles of Agrobacterium tumefaciens. Mol. Microbiol. 49:16991713.
13. Auchtung, J. M.,, C. A. Lee,, R. E. Monson,, A. P. Lehman,, and A. D. Grossman. 2005. Regulation of a Bacillus subtilis mobile genetic element by intercellular signaling and the global DNA damage response. Proc. Natl. Acad. Sci. USA 102:1255412559.
14. Audette, G. F.,, J. Manchak,, P. Beatty,, W. A. Klimke,, and L. S. Frost. 2007. Entry exclusion in F-like plasmids requires intact TraG in the donor that recognizes its cognate TraS in the recipient. Microbiology 153:442451.
15. Bachman, M. A.,, and M. S. Swanson. 2004. Genetic evidence that Legionella pneumophila RpoS modulates expression of the transmission phenotype in both the exponential phase and the stationary phase. Infect. Immun. 72:24682476.
16. Bachman, M. A.,, and M. S. Swanson. 2001. RpoS co-operates with other factors to induce Legionella pneumophila virulence in the stationary phase. Mol. Microbiol. 40:12011214.
17. Backert, S.,, and M. Clyne. 2011. Pathogenesis of Helicobacter pylori infection. Helicobacter 16(Suppl. 1):1925.
18. Backert, S.,, R. Fronzes,, and G. Waksman. 2008. VirB2 and VirB5 proteins: specialized adhesins in bacterial type-IV secretion systems? Trends Microbiol. 16:409413.
19. Bardill, J. P.,, J. L. Miller,, and J. P. Vogel. 2005. IcmS-dependent translocation of SdeA into macrophages by the Legionella pneumophila type IV secretion system. Mol. Microbiol. 56:90103.
20. Baron, C.,, and B. Coombes. 2007. Targeting bacterial secretion systems: benefits of disarmament in the microcosm. Infect. Disord. Drug Targets 7:1927.
21. Barrios, A. F.,, R. Zuo,, D. Ren,, and T. K. Wood. 2006. Hha, YbaJ, and OmpA regulate Escherichia coli K12 biofilm formation and conjugation plasmids abolish motility. Biotechnol. Bioeng. 93:188200.
22. Bates, S.,, A. M. Cashmore,, and B. M. Wilkins. 1998. IncP plasmids are unusually effective in mediating conjugation of Escherichia coli and Saccharomyces cerevisiae. J. Bacteriol. 180:65386543.
23. Beaber, J. W.,, B. Hochhut,, and M. K. Waldor. 2004. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 427:7274.
24. Berkmen, M. B.,, C. A. Lee,, E. K. Loveday,, and A. D. Grossman. 2010. Polar positioning of a conjugation protein from the integrative and conjugative element ICEBs1 of Bacillus subtilis. J. Bacteriol. 192:3845.
25. Binns, A. N.,, C. E. Beaupre,, and E. M. Dale. 1995. Inhibition of VirB-mediated transfer of diverse substrates from Agrobacterium tumefaciens by the IncQ plasmid RSF1010. J. Bacteriol. 177:48904899.
26. Boschiroli, M. L.,, S. Ouahrani-Bettache,, V. Foulongne,, S. Michaux-Charachon,, G. Bourg,, A. Allardet-Servent,, C. Cazevieille,, J. P. Lavigne,, J. P. Liautard,, M. Ramuz,, and D. O’Callaghan. 2002a. Type IV secretion and Brucella virulence. Vet. Microbiol. 90:341348.
27. Boschiroli, M. L.,, S. Ouahrani-Bettache,, V. Foulongne,, S. Michaux-Charachon,, G. Bourg,, A. Allardet-Servent,, C. Cazevieille,, J. P. Liautard,, M. Ramuz,, and D. O’Callaghan. 2002b. The Brucella suis virB operon is induced intracellularly in macrophages. Proc. Natl. Acad. Sci. USA 99:15441549.
28. Bose, B.,, J. M. Auchtung,, C. A. Lee,, and A. D. Grossman. 2008. A conserved anti-repressor controls horizontal gene transfer by proteolysis. Mol. Microbiol. 70:570582.
29. Bose, B.,, and A. D. Grossman. 2011. Regulation of horizontal gene transfer in Bacillus subtilis by activation of a conserved site-specific protease. J. Bacteriol. 193:2229.
30. Burstein, D.,, T. Zusman,, E. Degtyar,, R. Viner,, G. Segal,, and T. Pupko. 2009. Genome-scale identification of Legionella pneumophila effectors using a machine learning approach. PLoS Pathog. 5:e1000508.
31. Byrd, D. R.,, and S. W. Matson. 1997. Nicking by transesterification: the reaction catalysed by a relaxase. Mol. Microbiol. 25:10111022.
32. Cambronne, E. D.,, and C. R. Roy. 2007. The Legionella pneumophila IcmSW complex interacts with multiple Dot/Icm effectors to facilitate type IV translocation. PLoS Pathog. 3:e188.
33. Cangelosi, G. A.,, R. G. Ankenbauer,, and E. W. Nester. 1990. Sugars induce the Agrobacterium virulence genes through a periplasmic binding protein and a transmembrane signal protein. Proc. Natl. Acad. Sci. USA 87:67086712.
34. Carter, M. Q.,, J. Chen,, and S. Lory. 2010. The Pseudomonas aeruginosa pathogenicity island PAPI-1 is transferred via a novel type IV pilus. J. Bacteriol. 192:32493258.
35. Cascales, E.,, K. Atmakuri,, Z. Liu,, A. N. Binns,, and P. J. Christie. 2005. Agrobacterium tumefaciens oncogenic suppressors inhibit T-DNA and VirE2 protein substrate binding to the VirD4 coupling protein. Mol. Microbiol. 58:565579.
36. Cascales, E.,, and P. J. Christie. 2003. The versatile bacterial type IV secretion systems. Nat. Rev. Microbiol. 1:137150.
37. Chai, Y.,, C. S. Tsai,, H. Cho,, and S. C. Winans. 2007. Reconstitution of the biochemical activities of the AttJ repressor and the AttK, AttL, and AttM catabolic enzymes of Agrobacterium tumefaciens. J. Bacteriol. 189:36743679.
38. Chai, Y.,, J. Zhu,, and S. C. Winans. 2001. TrlR, a defective TraR-like protein of Agrobacterium tumefaciens, blocks TraR function in vitro by forming inactive TrlR:TraR dimers. Mol. Microbiol. 40:414421.
39. Chandler, J. R.,, A. R. Flynn,, E. M. Bryan,, and G. M. Dunny. 2005. Specific control of endogenous cCF10 pheromone by a conserved domain of the pCF10-encoded regulatory protein PrgY in Enterococcus faecalis. J. Bacteriol. 187:48304843.
40. Chang, C. H.,, and S. C. Winans. 1992. Functional roles assigned to the periplasmic, linker, and receiver domains. J. Bacteriol. 174:70337039.
41. Chang, C. H.,, and S. C. Winans. 1996. Resection and mutagenesis of the acid pH-inducible P2 promoter of the Agrobacterium tumefaciens virG gene. J. Bacteriol. 178:47174720.
42. Chatterjee, A.,, C. M. Johnson,, C.-C. Shu,, Y. N. Kaznessis,, D. Ramkrishna,, G. M. Dunny,, and W.-S. Hu. 2011. Convergent transcription confers a bistable switch in Enterococcus faecalis conjugation. Proc. Natl. Acad. Sci. USA 108:97219726.
43. Chen, C. Y.,, and C. I. Kado. 1994. Inhibition of Agrobacterium tumefaciens oncogenicity by the osa gene of pSa. J. Bacteriol. 176:56975703.
44. Chen, Y.,, X. Zhang,, D. Manias,, H. J. Yeo,, G. M. Dunny,, and P. J. Christie. 2008. Enterococcus faecalis PcfC, a spatially localized substrate receptor for type IV secretion of the pCF10 transfer intermediate. J. Bacteriol. 190:36323645.
45. Cheng, H. P.,, and G. C. Walker. 1998. Succinoglycan production by Rhizobium meliloti is regulated through the ExoS-ChvI two-component regulatory system. J. Bacteriol. 180:2026.
46. Cheng, H. P.,, and S. Y. Yao. 2004. The key Sinorhizobium meliloti succinoglycan biosynthesis gene exoY is expressed from two promoters. FEMS Microbiol. Lett. 231:131136.
47. Cho, H.,, and S. C. Winans. 2005. VirA and VirG activate the Ti plasmid repABC operon, elevating plasmid copy number in response to wound-released chemical signals. Proc. Natl. Acad. Sci. USA 102:1484314848.
48. Christie, P. J., 2009. Agrobacterium and plant cell transformation, p. 2943. In M. Schaechter (ed.), The Desk Encyclopedia of Microbiology, 2nd ed. Academic Press, San Diego, CA.
49. Christie, P. J. 2004. Bacterial type IV secretion: the Agrobacterium VirB/D4 and related conjugation systems. Biochim. Biophys. Acta 1694:219234.
50. Christie, P. J.,, K. Atmakuri,, V. Krishnamoorthy,, S. Jakubowski,, and E. Cascales. 2005. Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu. Rev. Microbiol. 59:451485.
51. Chuang, O. N.,, P. M. Schlievert,, C. L. Wells,, D. A. Manias,, T. J. Tripp,, and G. M. Dunny. 2009. Multiple functional domains of Enterococcus faecalis aggregation substance Asc10 contribute to endocarditis virulence. Infect. Immun. 77:539548.
52. Chuang-Smith, O. N.,, C. L. Wells,, M. J. Henry-Stanley,, and G. M. Dunny. 2010. Acceleration of Enterococcus faecalis biofilm formation by aggregation substance expression in an ex vivo model of cardiac valve colonization. PLoS One 5:e15798.
53. Clarke, M.,, L. Maddera,, R. L. Harris,, and P. M. Silverman. 2008. F-pili dynamics by live-cell imaging. Proc. Natl. Acad. Sci. USA 105:1797817981.
54. Clewell, D. B. 2007. Properties of Enterococcus faecalis plasmid pAD1, a member of a widely disseminated family of pheromone-responding, conjugative, virulence elements encoding cytolysin. Plasmid 58:205227.
55. Clewell, D. B.,, F. Y. An,, S. E. Flannagan,, M. Antiporta,, and G. M. Dunny. 2000. Enterococcal sex pheromone precursors are part of signal sequences for surface lipoproteins. Mol. Microbiol. 35:246247.
56. Coburn, B.,, I. Sekirov,, and B. B. Finlay. 2007. Type III secretion systems and disease. Clin. Microbiol. Rev. 20:535549.
57. Conradi, J.,, S. Huber,, K. Gaus,, F. Mertink,, S. Royo Gracia,, U. Strijowski,, S. Backert,, and N. Sewald. 2011. Cyclic RGD peptides interfere with binding of the Helicobacter pylori protein CagL to integrins alpha(V)beta (3) and alpha (5)beta (1). Amino Acids doi 10.1007/s00726-V011-1066-0.
58. Cook, L.,, A. Chatterjee,, A. Barnes,, J. Yarwood,, W.-S. Hu,, and G. Dunny. 2011. Biofilm growth alters regulation of conjugation by a bacterial pheromone. Mol. Microbiol. doi:10.1111/j.1365-2958.2011.07786.x.
59. Couturier, M. R.,, E. Tasca,, C. Montecucco,, and M. Stein. 2006. Interaction with CagF is required for translocation of CagA into the host via the Helicobacter pylori type IV secretion system. Infect. Immun. 74:273281.
60. Craig, L.,, and J. Li. 2008. Type IV pili: paradoxes in form and function. Curr. Opin. Struct. Biol. 18:267277.
61. Dalebroux, Z. D.,, S. L. Svensson,, E. C. Gaynor,, and M. S. Swanson. 2010. ppGpp conjures bacterial virulence. Microbiol. Mol. Biol. Rev. 74:171199.
62. Dean, P. 2011. Functional domains and motifs of bacterial type III effector proteins and their roles in infection. FEMS Microbiol. Rev. doi:10.1111/j.1574-6976.2011.00271.x.
63. de Barsy, M.,, A. Jamet,, D. Filopon,, C. Nicolas,, G. Laloux,, J. F. Rual,, A. Muller,, J. C. Twizere,, B. Nkengfac,, J. Vandenhaute,, D. E. Hill,, S. P. Salcedo,, J. P. Gorvel,, J. J. Letesson,, and X. De Bolle. 2011. Identification of a Brucella spp. secreted effector specifically interacting with human small GTPase Rab2. Cell. Microbiol. 13:10441058.
64. Dehio, C. 2005. Bartonella-host-cell interactions and vascular tumour formation. Nat. Rev. Microbiol. 3:621631.
65. Dehio, C. 2008. Infection-associated type IV secretion systems of Bartonella and their diverse roles in host cell interaction. Cell. Microbiol. 10:15911598.
66. de Jong, M. F.,, Y. H. Sun,, A. B. den Hartigh,, J. M. van Dijl,, and R. M. Tsolis. 2008. Identification of VceA and VceC, two members of the VjbR regulon that are translocated into macrophages by the Brucella type IV secretion system. Mol. Microbiol. 70:13781396.
67. Delrue, R. M.,, C. Deschamps,, S. Leonard,, C. Nijskens,, I. Danese,, J. M. Schaus,, S. Bonnot,, J. Ferooz,, A. Tibor,, X. De Bolle,, and J. J. Letesson. 2005. A quorum-sensing regulator controls expression of both the type IV secretion system and the flagellar apparatus of Brucella melitensis. Cell. Microbiol. 7:11511161.
68. den Hartigh, A. B.,, H. G. Rolan,, M. F. de Jong,, and R. M. Tsolis. 2008. VirB3 to VirB6 and VirB8 to VirB11, but not VirB7, are essential for mediating persistence of Brucella in the reticuloendothelial system. J. Bacteriol. 190:44274436.
69. Diaz, M. R.,, J. M. King,, and T. L. Yahr. 2011. Intrinsic and extrinsic regulation of type III secretion gene expression in Pseudomonas aeruginosa. Front. Microbiol. 2:89.
70. Dozot, M.,, R. A. Boigegrain,, R. M. Delrue,, R. Hallez,, S. Ouahrani-Bettache,, I. Danese,, J. J. Letesson,, X. De Bolle,, and S. Kohler. 2006. The stringent response mediator Rsh is required for Brucella melitensis and Brucella suis virulence, and for expression of the type IV secretion system virB. Cell. Microbiol. 8:17911802.
71. Dudley, E. G.,, C. Abe,, J. M. Ghigo,, P. Latour-Lambert,, J. C. Hormazabal,, and J. P. Nataro. 2006. An IncI1 plasmid contributes to the adherence of the atypical enteroaggregative Escherichia coli strain C1096 to cultured cells and abiotic surfaces. Infect. Immun. 74:21022114.
72. Dunny, G. M. 2007. The peptide pheromone-inducible conjugation system of Enterococcus faecalis plasmid pCF10: cell-cell signalling, gene transfer, complexity and evolution. Philos. Trans. R. Soc. Lond. B 362:11851193.
73. Dunny, G. M.,, B. L. Brown,, and D. B. Clewell. 1978. Induced cell aggregation and mating in Streptococcus faecalis: evidence for a bacterial sex pheromone. Proc. Natl. Acad. Sci. USA 75:34793483.
74. Dunny, G. M.,, and C. M. Johnson. 2011. Regulatory circuits controlling enterococcal conjugation: lessons for functional genomics. Curr. Opin. Microbiol. 14:174180.
75. Dym, O.,, S. Albeck,, T. Unger,, J. Jacobovitch,, A. Branzburg,, Y. Michael,, D. Frenkiel-Krispin,, S. G. Wolf,, and M. Elbaum. 2008. Crystal structure of the Agrobacterium virulence complex VirE1-VirE2 reveals a flexible protein that can accommodate different partners. Proc. Natl. Acad. Sci. USA 105:1117011175.
76. Edwards, R. L.,, M. Jules,, T. Sahr,, C. Buchrieser,, and M. S. Swanson. 2010. The Legionella pneumophila LetA/LetS two-component system exhibits rheostat-like behavior. Infect. Immun. 78:25712583.
77. Erhardt, M.,, K. Namba,, and K. T. Hughes. 2010. Bacterial nanomachines: the flagellum and type III injectisome. Cold Spring Harbor Perspect. Biol. 2:a000299.
78. Fernandez-Gonzalez, E.,, H. D. de Paz,, A. Alperi,, L. Agundez,, M. Faustmann,, F. J. Sangari,, C. Dehio,, and M. Llosa. 2011. Transfer of R388 derivatives by a pathogenesis-associated type IV secretion system into both bacteria and human cells. J. Bacteriol. 193:62576265.
79. Fischer, W. 2011. Assembly and molecular mode of action of the Helicobacter pylori Cag type IV secretion apparatus. FEBS J. 278:12031212.
80. Foulongne, V.,, G. Bourg,, C. Cazevieille,, S. Michaux-Charachon,, and D. O’Callaghan. 2000. Identification of Brucella suis genes affecting intracellular survival in an in vitro human macrophage infection model by signature-tagged mutagenesis. Infect. Immun. 68:12971303.
81. Frank, A. C.,, C. M. Alsmark,, M. Thollesson,, and S. G. Andersson. 2005. Functional divergence and horizontal transfer of type IV secretion systems. Mol. Biol. Evol. 22:13251336.
82. Franz, B.,, and V. A. Kempf. 2011. Adhesion and host cell modulation: critical pathogenicity determinants of Bartonella henselae. Parasites Vectors 4:54.
83. Frost, L. S., 2009. Conjugation, bacterial, p. 294308. In M. Schaechter (ed.), The Desk Encyclopedia of Microbiology, 2nd ed. Academic Press, San Diego, CA.
84. Frost, L. S.,, and G. Koraimann. 2010. Regulation of bacterial conjugation: balancing opportunity with adversity. Future Microbiol. 5:10571071.
85. Frost, L. S.,, R. Leplae,, A. O. Summers,, and A. Toussaint. 2005. Mobile genetic elements: the agents of open source genomics. Nat. Rev. Microbiol. 3:722732.
86. Fuqua, C.,, M. Burbea,, and S. C. Winans. 1995. Activity of the Agrobacterium Ti plasmid conjugal transfer regulator TraR is inhibited by the product of the traM gene. J. Bacteriol. 177:13671373.
87. Fuqua, W. C.,, and S. C. Winans. 1994. A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite. J. Bacteriol. 176:27962806.
88. Gal-Mor, O.,, T. Zusman,, and G. Segal. 2002. Analysis of DNA regulatory elements required for expression of the Legionella pneumophila icm and dot virulence genes. J. Bacteriol. 184:38233833.
89. Ghigo, J. M. 2001. Natural conjugative plasmids induce bacterial biofilm development. Nature 412:442445.
90. Gilmour, M. W.,, T. D. Lawley,, M. M. Rooker,, P. J. Newnham,, and D. E. Taylor. 2001. Cellular location and temperature-dependent assembly of IncHI1 plasmid R27-encoded TrhC-associated conjugative transfer protein complexes. Mol. Microbiol. 42:705715.
91. Grohmann, E.,, G. Muth,, and M. Espinosa. 2003. Conjugative plasmid transfer in Gram-positive bacteria. Microbiol. Mol. Biol. Rev. 67:277301.
92. Gubbins, M. J.,, I. Lau,, W. R. Will,, J. M. Manchak,, T. L. Raivio,, and L. S. Frost. 2002. The positive regulator, TraJ, of the Escherichia coli F plasmid is unstable in a cpxA* background. J. Bacteriol. 184:57815788.
93. Hamilton, H. L.,, N. M. Dominguez,, K. J. Schwartz,, K. T. Hackett,, and J. P. Dillard. 2005. Neisseria gonorrhoeae secretes chromosomal DNA via a novel type IV secretion system. Mol. Microbiol. 55:17041721.
94. Hammer, B. K.,, E. S. Tateda,, and M. S. Swanson. 2002. A two-component regulator induces the transmission phenotype of stationary-phase Legionella pneumophila. Mol. Microbiol. 44:107118.
95. Han, D. C.,, C. Y. Chen,, Y. F. Chen,, and S. C. Winans. 1992. Altered-function mutations of the transcriptional regulatory gene virG of Agrobacterium tumefaciens. J. Bacteriol. 174:70407043.
96. Haudecoeur, E.,, and D. Faure. 2010. A fine control of quorum-sensing communication in Agrobacterium tumefaciens. Commun. Integr. Biol. 3:8488.
97. Haudecoeur, E.,, M. Tannieres,, A. Cirou,, A. Raffoux,, Y. Dessaux,, and D. Faure. 2009. Different regulation and roles of lactonases AiiB and AttM in Agrobacterium tumefaciens C58. Mol. Plant-Microbe Interact. 22:529537.
98. Hong, P. C.,, R. M. Tsolis,, and T. A. Ficht. 2000. Identification of genes required for chronic persistence of Brucella abortus in mice. Infect. Immun. 68:41024107.
99. Izore, T.,, V. Job,, and A. Dessen. 2011. Biogenesis, regulation, and targeting of the type III secretion system. Structure 19:603612.
100. Jeters, R. T.,, G. R. Wang,, K. Moon,, N. B. Shoemaker,, and A. A. Salyers. 2009. Tetracycline-associated transcriptional regulation of transfer genes of the Bacteroides conjugative transposon CTnDOT. J. Bacteriol. 191:63746382.
101. Johnson, C. M.,, D. A. Manias,, H. A. Haemig,, S. Shokeen,, K. E. Weaver,, T. M. Henkin,, and G. M. Dunny. 2010. Direct evidence for control of the pheromone-inducible prgQ operon of Enterococcus faecalis plasmid pCF10 by a countertranscript-driven attenuation mechanism. J. Bacteriol. 192:16341642.
102. Judd, P. K.,, R. B. Kumar,, and A. Das. 2005. Spatial location and requirements for the assembly of the Agrobacterium tumefaciens type IV secretion apparatus. Proc. Natl. Acad. Sci. USA 102:1149811503.
103. Juhas, M.,, J. R. van der Meer,, M. Gaillard,, R. M. Harding,, D. W. Hood,, and D. W. Crook. 2009. Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol. Rev. 33:376393.
104. Kalogeraki, V. S.,, and S. C. Winans. 1998. Wound-released chemical signals may elicit multiple responses from an Agrobacterium tumefaciens strain containing an octopine-type Ti plasmid. J. Bacteriol. 180:56605667.
105. Kalogeraki, V. S.,, J. Zhu,, J. L. Stryker,, and S. C. Winans. 2000. The right end of the vir region of an octopine-type Ti plasmid contains four new members of the vir regulon that are not essential for pathogenesis. J. Bacteriol. 182:17741778.
106. Karnholz, A.,, C. Hoefler,, S. Odenbreit,, W. Fischer,, D. Hofreuter,, and R. Haas. 2006. Functional and topological characterization of novel components of the comB DNA transformation competence system in Helicobacter pylori. J. Bacteriol. 188:882893.
107. Khan, S. R.,, and S. K. Farrand. 2009. The BlcC (AttM) lactonase of Agrobacterium tumefaciens does not quench the quorum-sensing system that regulates Ti plasmid conjugative transfer. J. Bacteriol. 191:13201329.
108. Komano, T.,, T. Yoshida,, K. Narahara,, and N. Furuya. 2000. The transfer region of IncI1 plasmid R64: similarities between R64 tra and Legionella icm/dot genes. Mol. Microbiol. 35:13481359.
109. Kozlowicz, B. K.,, K. Shi,, Z. Y. Gu,, D. H. Ohlendorf,, C. A. Earhart,, and G. M. Dunny. 2006. Molecular basis for control of conjugation by bacterial pheromone and inhibitor peptides. Mol. Microbiol. 62:958969.
110. Kumar, R. B.,, and A. Das. 2002. Polar location and functional domains of the Agrobacterium tumefaciens DNA transfer protein VirD4. Mol. Microbiol. 43:15231532.
111. Kwok, T.,, D. Zabler,, S. Urman,, M. Rohde,, R. Hartig,, S. Wessler,, R. Misselwitz,, J. Berger,, N. Sewald,, W. Konig,, and S. Backert. 2007. Helicobacter exploits integrin for type IV secretion and kinase activation. Nature 449:862866.
112. Lai, E. M.,, O. Chesnokova,, L. M. Banta,, and C. I. Kado. 2000. Genetic and environmental factors affecting T-pilin export and T-pilus biogenesis in relation to flagellation of Agrobacterium tumefaciens. J. Bacteriol. 182:37053716.
113. Lang, S.,, K. Gruber,, S. Mihajlovic,, R. Arnold,, C. J. Gruber,, S. Steinlechner,, M. A. Jehl,, T. Rattei,, K. U. Frohlich,, and E. L. Zechner. 2010. Molecular recognition determinants for type IV secretion of diverse families of conjugative relaxases. Mol. Microbiol. 78:15391555.
114. Lanka, E.,, and B. M. Wilkins. 1995. DNA processing reactions in bacterial conjugation. Annu. Rev. Biochem. 64:141169.
115. Lau-Wong, I. C.,, T. Locke,, M. J. Ellison,, T. L. Raivio,, and L. S. Frost. 2008. Activation of the Cpx regulon destabilizes the F plasmid transfer activator, TraJ, via the HslVU protease in Escherichia coli. Mol. Microbiol. 67:516527.
116. Lawley, T.,, B. M. Wilkins,, and L. S. Frost,. 2004. Bacterial conjugation in gram-negative bacteria, p. 203226. In B. E. Funnell, and G. J. Phillips (ed.), Plasmid Biology. ASM Press, Washington, DC.
117. Lawley, T. D.,, W. A. Klimke,, M. J. Gubbins,, and L. S. Frost. 2003. F factor conjugation is a true type IV secretion system. FEMS Microbiol. Lett. 224:115.
118. Lee, C. A.,, and A. D. Grossman. 2007. Identification of the origin of transfer (oriT) and DNA relaxase required for conjugation of the integrative and conjugative element ICEBs1 of Bacillus subtilis. J. Bacteriol. 189:72547261.
119. Lee, K.,, M. W. Dudley,, K. M. Hess,, D. G. Lynn,, R. D. Joerger,, and A. N. Binns. 1992. Mechanism of activation of Agrobacterium virulence genes: identification of phenol-binding proteins. Proc. Natl. Acad. Sci. USA 89:86668670.
120. Leonard, B. A. B. 1996. Enterococcus faecalis pheromone binding protein, PrgZ, recruits a chromosomal oligopeptide permease system to import sex pheromone cCF10 for induction of conjugation. Proc. Natl. Acad. Sci. USA 93:260264.
121. Li, L.,, Y. Jia,, Q. Hou,, T. C. Charles,, E. W. Nester,, and S. Q. Pan. 2002. A global pH sensor: Agrobacterium sensor protein ChvG regulates acid- inducible genes on its two chromosomes and Ti plasmid. Proc. Natl. Acad. Sci. USA 99:1236912374.
122. Llosa, M.,, C. Roy,, and C. Dehio. 2009. Bacterial type IV secretion systems in human disease. Mol. Microbiol. 73:141151.
123. Locht, C.,, L. Coutte,, and N. Mielcarek. 2011. The ins and outs of pertussis toxin. FEBS J. doi:10.1111/j.1742-4658.2011.08237.x.
124. Lu, J.,, and L. S. Frost. 2005. Mutations in the C-terminal region of TraM provide evidence for in vivo TraM-TraD interactions during F-plasmid conjugation. J. Bacteriol. 187:47674773.
125. MacRitchie, D. M.,, D. R. Buelow,, N. L. Price,, and T. L. Raivio. 2008. Two-component signaling and gram negative envelope stress response systems. Adv. Exp. Med. Biol. 631:80110.
126. Marrero, J.,, and M. K. Waldor. 2007. Determinants of entry exclusion within Eex and TraG are cytoplasmic. J. Bacteriol. 189:64696473.
127. Marrero, J.,, and M. K. Waldor. 2005. Interactions between inner membrane proteins in donor and recipient cells limit conjugal DNA transfer. Dev. Cell 8:963970.
128. Martinez-Nunez, C.,, P. Altamirano-Silva,, F. Alvarado-Guillen,, E. Moreno,, C. Guzman-Verri,, and E. Chaves-Olarte. 2010. The two-component system BvrR/BvrS regulates the expression of the type IV secretion system VirB in Brucella abortus. J. Bacteriol. 192:56035608.
129. McCormick, J. K.,, H. Hirt,, G. M. Dunny,, and P. M. Schlievert. 2000. Pathogenic mechanisms of enterococcal endocarditis. Curr. Infect. Dis. Rep. 2:315321.
130. McNealy, T. L.,, V. Forsbach-Birk,, C. Shi,, and R. Marre. 2005. The Hfq homolog in Legionella pneumophila demonstrates regulation by LetA and RpoS and interacts with the global regulator CsrA. J. Bacteriol. 187:15271532.
131. Medini, D.,, A. Covacci,, and C. Donati. 2006. Protein homology network families reveal step-wise diversification of type III and type IV secretion systems. PLoS Comput. Biol. 2:e173.
132. Mikkelsen, H.,, M. Sivaneson,, and A. Filloux. 2011. Key two-component regulatory systems that control biofilm formation in Pseudomonas aeruginosa. Environ. Microbiol. 13:16661681.
133. Molin, S.,, and T. Tolker-Nielsen. 2003. Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr. Opin. Biotechnol. 14:255261.
134. Molofsky, A. B.,, and M. S. Swanson. 2003. Legionella pneumophila CsrA is a pivotal repressor of transmission traits and activator of replication. Mol. Microbiol. 50:445461.
135. Molofsky, A. B.,, and M. S. Swanson. 2004. Differentiate to thrive: lessons from the Legionella pneumophila life cycle. Mol. Microbiol. 53:2940.
136. Morgan, J. K.,, B. E. Luedtke,, and E. I. Shaw. 2010. Polar localization of the Coxiella burnetii type IVB secretion system. FEMS Microbiol. Lett. 305:177183.
137. Mukhopadhyay, A.,, R. Gao,, and D. G. Lynn. 2004. Integrating input from multiple signals: the VirA/VirG two-component system of Agrobacterium tumefaciens. Chembiochem 5:15351542.
138. Nagai, H.,, E. D. Cambronne,, J. C. Kagan,, J. C. Amor,, R. A. Kahn,, and C. R. Roy. 2005. A C-terminal translocation signal required for Dot/Icm-dependent delivery of the Legionella RalF protein to host cells. Proc. Natl. Acad. Sci. USA 102:826831.
139. Nagai, H.,, and T. Kubori. 2011. Type IVB secretion systems of Legionella and other Gram-negative bacteria. Front. Microbiol. 2:136.
140. Ninio, S.,, D. M. Zuckman-Cholon,, E. D. Cambronne,, and C. R. Roy. 2005. The Legionella IcmS-IcmW protein complex is important for Dot/Icm-mediated protein translocation. Mol. Microbiol. 55:912926.
141. Ogasawara, H.,, K. Yamamoto,, and A. Ishihama. 2011. Role of the biofilm master regulator CsgD in cross-regulation between biofilm formation and flagellar synthesis. J. Bacteriol. 193:25872597.
142. Ong, C. L.,, S. A. Beatson,, A. G. McEwan,, and M. A. Schembri. 2009. Conjugative plasmid transfer and adhesion dynamics in an Escherichia coli biofilm. Appl. Environ. Microbiol. 75:67836791.
143. Pansegrau, W.,, G. Ziegelin,, and E. Lanka. 1988. The origin of conjugative IncP plasmid transfer: interaction with plasmid-encoded products and the nucleotide sequence at the relaxation site. Biochim. Biophys. Acta 951:365374.
144. Pappas, G.,, N. Akritidis,, M. Bosilkovski,, and E. Tsianos. 2005. Brucellosis. N. Engl. J. Med. 352:23252336.
145. Parker, C.,, and R. J. Meyer. 2007. The R1162 relaxase/primase contains two, type IV transport signals that require the small plasmid protein MobB. Mol. Microbiol. 66:252261.
146. Paschos, A.,, A. den Hartigh,, M. A. Smith,, V. L. Atluri,, D. Sivanesan,, R. M. Tsolis,, and C. Baron. 2011. An in vivo high-throughput screening approach targeting the type IV secretion system component VirB8 identified inhibitors of Brucella abortus 2308 proliferation. Infect. Immun. 79:10331043.
147. Pattis, I.,, E. Weiss,, R. Laugks,, R. Haas,, and W. Fischer. 2007. The Helicobacter pylori CagF protein is a type IV secretion chaperone-like molecule that binds close to the C-terminal secretion signal of the CagA effector protein. Microbiology 153:28962909.
148. Pazour, G. J.,, and A. Das. 1990. Characterization of the VirG binding site of Agrobacterium tumefaciens. Nucleic Acids Res. 18:69096913. (Erratum, 19:1358, 1991.)
149. Peng, W. T.,, Y. W. Lee,, and E. W. Nester. 1998. The phenolic recognition profiles of the Agrobacterium tumefaciens VirA protein are broadened by a high level of the sugar binding protein ChvE. J. Bacteriol. 180:56325638.
150. Pulliainen, A. T.,, and C. Dehio. 2009. Bartonella henselae: subversion of vascular endothelial cell functions by translocated bacterial effector proteins. Int. J. Biochem. Cell Biol. 41:507510.
151. Quebatte, M.,, M. Dehio,, D. Tropel,, A. Basler,, I. Toller,, G. Raddatz,, P. Engel,, S. Huser,, H. Schein,, H. L. Lindroos,, S. G. Andersson,, and C. Dehio. 2010. The BatR/BatS two-component regulatory system controls the adaptive response of Bartonella henselae during human endothelial cell infection. J. Bacteriol. 192:33523367.
152. Rambow-Larsen, A. A.,, E. M. Petersen,, C. R. Gourley,, and G. A. Splitter. 2009t-parsed>. Brucella regulators: self-control in a hostile environment. Trends Microbiol.17:371377.
153. Rambow-Larsen, A. A.,, G. Rajashekara,, E. Petersen,, and G. Splitter. 2008. Putative quorum-sensing regulator BlxR of Brucella melitensis regulates virulence factors including the type IV secretion system and flagella. J. Bacteriol. 190:32743282.
154. Ramsey, M. E.,, K. L. Woodhams,, and J. P. Dillard. 2011. The gonococcal genetic island and type IV secretion in the pathogenic Neisseria. Front. Microbiol. 2:61.
155. Rasis, M.,, and G. Segal. 2009. The LetA-RsmYZ-CsrA regulatory cascade, together with RpoS and PmrA, post-transcriptionally regulates stationary phase activation of Legionella pneumophila Icm/Dot effectors. Mol. Microbiol. 72:9951010.
156. Roberts, A. P.,, and P. Mullany. 2009. A modular master on the move: the Tn916 family of mobile genetic elements. Trends Microbiol. 17:251258.
157. Rocha-Estrada, J.,, A. E. Aceves-Diez,, G. Guarneros,, and M. de la Torre. 2010. The RNPP family of quorum-sensing proteins in Gram-positive bacteria. Appl. Microbiol. Biotechnol. 87:913923.
158. Rouot, B.,, M. T. Alvarez-Martinez,, C. Marius,, P. Menanteau,, L. Guilloteau,, R. A. Boigegrain,, R. Zumbihl,, D. O’Callaghan,, N. Domke,, and C. Baron. 2003. Production of the type IV secretion system differs among Brucella species as revealed with VirB5- and VirB8-specific antisera. Infect. Immun. 71:10751082.
159. Roux, C. M.,, H. G. Rolan,, R. L. Santos,, P. D. Beremand,, T. L. Thomas,, L. G. Adams,, and R. M. Tsolis. 2007. Brucella requires a functional type IV secretion system to elicit innate immune responses in mice. Cell. Microbiol. 9:18511869.
160. Sahr, T.,, H. Bruggemann,, M. Jules,, M. Lomma,, C. Albert-Weissenberger,, C. Cazalet,, and C. Buchrieser. 2009. Two small ncRNAs jointly govern virulence and transmission in Legionella pneumophila. Mol. Microbiol. 72:741762.
161. Salgado-Pabon, W.,, Y. Du,, K. T. Hackett,, K. M. Lyons,, C. G. Arvidson,, and J. P. Dillard. 2010. Increased expression of the type IV secretion system in piliated Neisseria gonorrhoeae variants. J. Bacteriol. 192:19121920.
162. Schmid, M. C.,, R. Schulein,, M. Dehio,, G. Denecker,, I. Carena,, and C. Dehio. 2004. The VirB type IV secretion system of Bartonella henselae mediates invasion, proinflammatory activation and antiapoptotic protection of endothelial cells. Mol. Microbiol. 52:8192.
163. Schroder, G.,, R. Schuelein,, M. Quebatte,, and C. Dehio. 2011. Conjugative DNA transfer into human cells by the VirB/VirD4 type IV secretion system of the bacterial pathogen Bartonella henselae. Proc. Natl. Acad. Sci. USA 108:1464314648.
164. Schulein, R.,, P. Guye,, T. A. Rhomberg,, M. C. Schmid,, G. Schroder,, A. C. Vergunst,, I. Carena,, and C. Dehio. 2005. A bipartite signal mediates the transfer of type IV secretion substrates of Bartonella henselae into human cells. Proc. Natl. Acad. Sci. USA 102:856861.
165. Shaw, C. H.,, A. M. Ashby,, A. Brown,, C. Royal,, and G. J. Loake. 1988. virA and virG are the Ti-plasmid functions required for chemotaxis of Agrobacterium tumefaciens towards acetosyringone. Mol. Microbiol. 2:413417.
166. Shi, C.,, V. Forsbach-Birk,, R. Marre,, and T. L. McNealy. 2006. The Legionella pneumophila global regulatory protein LetA affects DotA and Mip. Int. J. Med. Microbiol. 296:1524.
167. Shi, K.,, C. K. Brown,, Z. Y. Gu,, B. K. Kozlowicz,, G. M. Dunny,, D. H. Ohlendorf,, and C. A. Earhart. 2005. Structure of peptide sex pheromone receptor PrgX and PrgX/pheromone complexes and regulation of conjugation in Enterococcus faecalis. Proc. Natl. Acad. Sci. USA 102:1859618601.
168. Shimoda, N.,, A. Toyoda-Yamamoto,, S. Aoki,, and Y. Machida. 1993. Genetic evidence for an interaction between the VirA sensor protein and the ChvE sugar-binding protein of Agrobacterium. J. Biol. Chem. 268:2655226558.
169. Shokeen, S.,, C. M. Johnson,, T. J. Greenfield,, D. A. Manias,, G. M. Dunny,, and K. E. Weaver. 2010. Structural analysis of the Anti-Q-Qs interaction: RNA-mediated regulation of E. faecalis plasmid pCF10 conjugation. Plasmid 64:2635.
170. Sieira, R.,, G. M. Arocena,, L. Bukata,, D. J. Comerci,, and R. A. Ugalde. 2010. Metabolic control of virulence genes in Brucella abortus: HutC coordinates virB expression and the histidine utilization pathway by direct binding to both promoters. J. Bacteriol. 192:217224.
171. Sieira, R.,, D. J. Comerci,, L. I. Pietrasanta,, and R. A. Ugalde. 2004. Integration host factor is involved in transcriptional regulation of the Brucella abortus virB operon. Mol. Microbiol. 54:808822.
172. Sola-Landa, A.,, J. Pizarro-Cerda,, M. J. Grillo,, E. Moreno,, I. Moriyon,, J. M. Blasco,, J. P. Gorvel,, and I. Lopez-Goni. 1998. A two-component regulatory system playing a critical role in plant pathogens and endosymbionts is present in Brucella abortus and controls cell invasion and virulence. Mol. Microbiol. 29:125138.
173. Taminiau, B.,, M. Daykin,, S. Swift,, M. L. Boschiroli,, A. Tibor,, P. Lestrate,, X. De Bolle,, D. O’Callaghan,, P. Williams,, and J. J. Letesson. 2002. Identification of a quorum-sensing signal molecule in the facultative intracellular pathogen Brucella melitensis. Infect. Immun. 70:30043011.
174. Tegtmeyer, N.,, R. Hartig,, R. M. Delahay,, M. Rohde,, S. Brandt,, J. Conradi,, S. Takahashi,, A. J. Smolka,, N. Sewald,, and S. Backert. 2010. A small fibronectin-mimicking protein from bacteria induces cell spreading and focal adhesion formation. J. Biol. Chem. 285:2351523526.
175. Tegtmeyer, N.,, S. Wessler,, and S. Backert. 2011. Role of the cag-pathogenicity island encoded type IV secretion system in Helicobacter pylori pathogenesis. FEBS J. 278:11901202.
176. Tiaden, A.,, T. Spirig,, T. Sahr,, M. A. Walti,, K. Boucke,, C. Buchrieser,, and H. Hilbi. 2010. The autoinducer synthase LqsA and putative sensor kinase LqsS regulate phagocyte interactions, extracellular filaments and a genomic island of Legionella pneumophila. Environ. Microbiol. 12:12431259.
177. Tiaden, A.,, T. Spirig,, S. S. Weber,, H. Bruggemann,, R. Bosshard,, C. Buchrieser,, and H. Hilbi. 2007. The Legionella pneumophila response regulator LqsR promotes host cell interactions as an element of the virulence regulatory network controlled by RpoS and LetA. Cell. Microbiol. 9:29032920.
178. Uzureau, S.,, M. Godefroid,, C. Deschamps,, J. Lemaire,, X. De Bolle,, and J. J. Letesson. 2007. Mutations of the quorum sensing-dependent regulator VjbR lead to drastic surface modifications in Brucella melitensis. J. Bacteriol. 189:60356047.
179. Uzureau, S.,, J. Lemaire,, E. Delaive,, M. Dieu,, A. Gaigneaux,, M. Raes,, X. De Bolle,, and J. J. Letesson. 2010. Global analysis of quorum sensing targets in the intracellular pathogen Brucella melitensis 16 M. J. Proteome Res. 9:32003217.
180. Valdivia, R. H.,, L. Wang,, and S. C. Winans. 1991. Characterization of a putative periplasmic transport system for octopine accumulation encoded by Agrobacterium tumefaciens Ti plasmid pTiA6. J. Bacteriol. 173:63986405.
181. van der Veen, S.,, and T. Abee. 2011. Bacterial SOS response: a food safety perspective. Curr. Opin. Biotechnol. 22:136142.
182. Vayssier-Taussat, M.,, D. Le Rhun,, H. K. Deng,, F. Biville,, S. Cescau,, A. Danchin,, G. Marignac,, E. Lenaour,, H. J. Boulouis,, M. Mavris,, L. Arnaud,, H. Yang,, J. Wang,, M. Quebatte,, P. Engel,, H. Saenz,, and C. Dehio. 2010. The Trw type IV secretion system of Bartonella mediates host-specific adhesion to erythrocytes. PLoS Pathog. 6:e1000946.
183. Vergunst, A. C.,, M. C. van Lier,, A. den Dulk-Ras,, T. A. Grosse Stuve,, A. Ouwehand,, and P. J. Hooykaas. 2005. Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium. Proc. Natl. Acad. Sci. USA 102:832837.
184. Viadas, C.,, M. C. Rodriguez,, F. J. Sangari,, J. P. Gorvel,, J. M. Garcia-Lobo,, and I. Lopez-Goni. 2010. Transcriptome analysis of the Brucella abortus BvrR/BvrS two-component regulatory system. PloS One 5:e10216.
185. Vincent, C. D.,, and J. P. Vogel. 2006. The Legionella pneumophila IcmS-LvgA protein complex is important for Dot/Icm-dependent intracellular growth. Mol. Microbiol. 61:596613.
186. Vogel, J. P.,, H. L. Andrews,, S. K. Wong,, and R. R. Isberg. 1998. Conjugative transfer by the virulence system of Legionella pneumophila. Science 279:873876.
187. Vogel, J. P.,, and R. R. Isberg. 1999. Cell biology of Legionella pneumophila. Curr. Opin. Microbiol. 2:3034.
188. Wang, L.,, and S. C. Winans. 1995. High angle and ligand-induced low angle DNA bends incited by OccR lie in the same plane with OccR bound to the interior angle. J. Mol. Biol. 253:3238.
189. Wardal, E.,, E. Sadowy,, and W. Hryniewicz. 2010. Complex nature of enterococcal pheromone-responsive plasmids. Pol. J. Microbiol. 9:7987.
190. Weeks, J. N.,, C. L. Galindo,, K. L. Drake,, G. L. Adams,, H. R. Garner,, and T. A. Ficht. 2010. Brucella melitensis VjbR and C12-HSL regulons: contributions of the N-dodecanoyl homoserine lactone signaling molecule and LuxR homologue VjbR to gene expression. BMC Microbiol. 10:167.
191. Wells, D. H.,, E. J. Chen,, R. F. Fisher,, and S. R. Long. 2007. ExoR is genetically coupled to the ExoS-ChvI two-component system and located in the periplasm of Sinorhizobium meliloti. Mol. Microbiol. 64:647664.
192. White, C. E.,, and S. C. Winans. 2007. Cell-cell communication in the plant pathogen Agrobacterium tumefaciens. Philos. Trans. R. Soc. Lond. B 362:11351148.
193. Will, W. R.,, and L. S. Frost. 2006a. Characterization of the opposing roles of H-NS and TraJ in transcriptional regulation of the F-plasmid tra operon. J. Bacteriol. 188:507514.
194. Will, W. R.,, and L. S. Frost. 2006b. Hfq is a regulator of F-plasmid TraJ and TraM synthesis in Escherichia coli. J. Bacteriol. 188:124131.
195. Will, W. R.,, J. Lu,, and L. S. Frost. 2004. The role of H-NS in silencing F transfer gene expression during entry into stationary phase. Mol. Microbiol. 54:769782.
196. Winans, S. C. 1991. An Agrobacterium two-component regulatory system for the detection of chemicals released from plant wounds. Mol. Microbiol. 5:23452350.
197. Winans, S. C.,, P. R. Ebert,, S. E. Stachel,, M. P. Gordon,, and E. W. Nester. 1986. A gene essential for Agrobacterium virulence is homologous to a family of positive regulatory loci. Proc. Natl. Acad. Sci. USA 83:82788282.
198. Winans, S. C.,, R. A. Kerstetter,, J. E. Ward,, and E. W. Nester. 1989. A protein required for transcriptional regulation of Agrobacterium virulence genes spans the cytoplasmic membrane. J. Bacteriol. 171:16161622.
199. Wozniak, R. A.,, and M. K. Waldor. 2010. Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat. Rev. Microbiol. 8:552563.
200. Yao, S. Y.,, L. Luo,, K. J. Har,, A. Becker,, S. Ruberg,, G. Q. Yu,, J. B. Zhu,, and H. P. Cheng. 2004. Sinorhizobium meliloti ExoR and ExoS proteins regulate both succinoglycan and flagellum production. J. Bacteriol. 186:60426049.
201. Yoshida, T.,, S. R. Kim,, and T. Komano. 1999. Twelve pil genes are required for biogenesis of the R64 thin pilus. J. Bacteriol. 181:20382043.
202. Yuan, Z. C.,, P. Liu,, P. Saenkham,, K. Kerr,, and E. W. Nester. 2008. Transcriptome profiling and functional analysis of Agrobacterium tumefaciens reveals a general conserved response to acidic conditions (pH 5.5) and a complex acid-mediated signaling involved in Agrobacterium-plant interactions. J. Bacteriol. 190:494507.
203. Zhang, H. B.,, C. Wang,, and L. H. Zhang. 2004. The quormone degradation system of Agrobacterium tumefaciens is regulated by starvation signal and stress alarmone (p)ppGpp. Mol. Microbiol. 52:13891401.
204. Zhang, H. B.,, L. H. Wang,, and L. H. Zhang. 2002. Genetic control of quorum-sensing signal turnover in Agrobacterium tumefaciens. Proc. Natl. Acad. Sci. USA 99:46384643.
205. Zhao, Z.,, E. Sagulenko,, Z. Ding,, and P. J. Christie. 2001. Activities of virE1 and the VirE1 secretion chaperone in export of the multifunctional VirE2 effector via an Agrobacterium type IV secretion pathway. J. Bacteriol. 183:38553865.
206. Zhu, J.,, J. W. Beaber,, M. I. More,, C. Fuqua,, A. Eberhard,, and S. C. Winans. 1998. Analogs of the autoinducer 3-oxooctanoyl-homoserine lactone strongly inhibit activity of the TraR protein of Agrobacterium tumefaciens. J. Bacteriol. 180:53985405.
207. Zhu, W.,, S. Banga,, Y. Tan,, C. Zheng,, R. Stephenson,, J. Gately,, and Z. Q. Luo. 2011. Comprehensive identification of protein substrates of the Dot/Icm type IV transporter of Legionella pneumophila. PLoS One 6:e17638.
208. Zola, T. A.,, H. R. Strange,, N. M. Dominguez,, J. P. Dillard,, and C. N. Cornelissen. 2010. Type IV secretion machinery promotes Ton-independent intracellular survival of Neisseria gonorrhoeae within cervical epithelial cells. Infect. Immun. 78:24292437.
209. Zusman, T.,, G. Aloni,, E. Halperin,, H. Kotzer,, E. Degtyar,, M. Feldman,, and G. Segal. 2007. The response regulator PmrA is a major regulator of the icm/dot type IV secretion system in Legionella pneumophila and Coxiella burnetii. Mol. Microbiol. 63:15081523.


Generic image for table
Table 1

Regulatory mechanisms controlling type IV secretion

Citation: Laverde-Gomez J, Sarkar M, Christie P. 2013. Regulation of Bacterial Type IV Secretion, p 335-362. In Vasil M, Darwin A (ed), Regulation of Bacterial Virulence. ASM Press, Washington, DC. doi: 10.1128/9781555818524.ch18

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error